\begin{align}
\end{align}
Odchylka přímek a rovin
Odchylka dvou přímek
Definice
Odchylka přímek p(P, u), q(Q, v) je číslo φ ∈ <0, π/2>, pro které platí:
\(\cosφ = \dfrac{|uv|}{|u||v|}\).
Úloha
Spočítejte odchylku dvou přímek p(A; u) a q(B; v), je-li A[1; 3; 6], B[-5; -4; 2], u = (-4; 6; -1) a v = (6; 0; 3).
- Dosadíme do vzorce a spočítáme cosφ
\(\cosφ = \dfrac{|(-4) \cdot 6 + 6 \cdot 0 + (-1) \cdot 3|}{\sqrt{(-4)^{2} + 6^{2} + (-1)^{2}} \cdot \sqrt{6^{2} + 0^{2} + 3^{2}}} = \dfrac{|-27|}{\sqrt{2385}} \approx 0,55\) - φ ≈ 56°
Odchylka přímky a roviny
Odchylku přímky a roviny nepočítáme přímo, ale využijeme znalostí, které již máme.
Definice
Je-li přímka p kolmá k rovině ρ, je jejich vzájemná odchylka φ = π/2.
Není-li přímka p kolmá k rovině ρ, je jejich odchylka rovna odchylce přímky p a průsečnice p' rovin ρ a ψ, kde p ∈ ψ a ρ ⊥ ψ.
Poznámka
Ještě jednodušší je, sestrojit kolmici q k rovině ρ a počítat odchylku α přímek p a q. Vztah mezi hledanou a získanou odchylkou je:
φ = π/2 - α.
Pro výpočet odchylky φ přímky p(A, u) a roviny ρ(B, n) můžeme použít vzorec:
\(\sinφ = \cosα = \dfrac{|un|}{|u||n|}, φ \in \langle 0°;90° \rangle\).

Obr. 4.8: Odchylka přímky a roviny
Úloha
Spočítejte odchylku přímky p(A; u) a roviny ρ: 5x + 4y - 4z + 3 = 0, je-li A[3; -3; 4], a u = (7; -4; 9).
- Využijeme toho, že odchylka φ přímky p a roviny ρ je rovna
π/2 - α, kde α je odchylka kolmice na rovinu ρ a přímky p. Kolmice k rovině ρ má směrový vektor roven normálovému vektoru roviny ρ, který můžeme jednoduše určit z obecné rovnice této roviny.
- Dosadíme do vzorce a spočítáme cosα
\(\cosα = \dfrac{|5 \cdot 7 + 4 \cdot (-4) + (-4) \cdot 9|}{\sqrt{5^{2} + 4^{2} + (-4)^{2}} \cdot \sqrt{7^{2} + (-4)^{2} + 9^{2}}} = \dfrac{|-17|}{\sqrt{8322}} \approx 0,19\) - α ≈ 79°.
- φ = π/2 - α ≈ 90° - 79° ≈ 11°.
Odchylka rovin
Definice
Odchylka rovin ρ a ψ, je rovna odchylce přímek p a q, pro které platí p = (ρ ∩ σ), q = (ψ ∩ σ), kde σ je rovina kolmá na ρ i ψ.
Slovy bychom výše uvedenou definici mohli rozepsat takto:
Odchylku φ dvou rovin ρ a ψ, vypočítáme následujícím způsobem. Nejprve najdeme rovinu, která je k oběma kolmá
. Tato rovina protne roviny ρ a ψ v přímkách p a q. Odchylka φ rovin ρ a ψ je rovna odchylce přímek p a q.
Podobně jako když jsme hledali odchylku přímky a roviny, můžeme využít normálových vektorů rovin ρ a ψ. Na obr. 4.9 je vidět, že přímky r a s svírají úhel stejné velikosti jako p a q. Odchylku dvou rovin můžeme tedy snadno určit pomocí jejich normálových vektorů.

Obr. 4.9: Odchylka dvou rovin
Poznámka
Pro výpočet odchylky φ dvou rovin ρ(A, nρ) a ψ(B, nψ) můžeme použít vzorec vyplývající z předchozí úvahy:
\(\cosφ = \dfrac{|n_{ρ}n_{ψ}|}{|n_{ρ}||n_{ψ}|}, φ \in \langle 0°;90° \rangle\).
Úloha
Spočítejte odchylku rovin ρ: 6x + 7y + 1z + 4 = 0 a σ: 4x - 7y - 9z - 2 = 0.
- Normálové vektory rovin ρ i σ známe. Víme, že odchylka dvou rovin se rovná odchylce jejich normálových vektorů, můžeme tedy rovnou počítat jejich odchylku φ.
- Dosadíme do vzorce a spočítáme cosφ
\(\cosφ = \dfrac{|6 \cdot 4 + 7 \cdot (-7) + 1 \cdot (-9)|}{\sqrt{6^{2} + 7^{2} + 1^{2}} \cdot \sqrt{4^{2} + (-7)^{2} + (-9)^{2}}} = \dfrac{|-34|}{\sqrt{12556}} \approx 0,30\) - φ ≈ 72°.