ARCHIV 20/21 zimni semestr
[Zpet]
UNIVERSAL ALGEBRA (NMAG405)
Lecture: Thr 9:00 - 10:30 zoom
Practicals run by William DeMeo: Thr 10:40 - 12:10 zoom (the link contains material for/from practicals)
Grading:
- Practicals ("Z: Zapocet"): homeworks (60% from 4 best scores out of 5 homeworks)
- Lecture ("Zk: Zkouska"): 15% homeworks, 85% written test + possible oral examination
Literature:
Link to material only for NMAG405 students" (e.g. lecture recordings). The username and password was sent to you by email.
Homework
- Please prepare in PDF format. Latex or handwritting+Adobe Scan highly recommended.
- Submit your homeworks to your GitLab repository. Follow the instructions here.
- We will add comments to the PDF and record your mark to SIS
| topics (future topics may change) | recommended reading | lecture notes | homework |
8.10. | Motivation. Algebra (signature, type). Examples.
Pr.: Lattices vs. lattice ordered sets |
Bergman 1.1, 1.2 |
lecture 1 |
|
15.10. | Lattices, complete lattices, closure operators.
Pr.: Distributive and modular lattices. The lattice of equivalence relations.
|
Bergman 2.1, 2.2, 2.3 | lecture 2 | |
22.10. | Algebraic lattices and closure operators. Galois correspondences.
Pr.: Complete lattices, closure operators, Galois correspondences. |
Bergman 2.4, 2.5 | lecture 3 |
Homework 1 due 5 Nov |
29.10. | Subalgebras, products, quotients.
Pr.: Subalgebras, congruences. |
Bergman 1.3, 1.4, 1.5 |
lecture 4 corrected (lower quality) |
|
5.11. | H,S,P operators, variety. Homomorphisms.
Pr.: Homomorphisms. Finite algebras generate locally finite varieties. |
Bergman 1.1, 1.3, 3.1, 3.5 | lecture 5 |
Homework 2 due 19 Nov |
12.11. | Direct and subdirect decomposition
Pr.: Direct and subdirect decomposition. |
Bergman 3.2, 3.3 | lecture 6 | |
19.11. | Subdirect decomoposition, SIs in congruence distributive vaieties
Pr.: SIs in monounary algebras. |
Bergman 3.4, 3.5, (5.2) | lecture 7 | Homework 3 due 3 Dec |
26.11. | Terms, identities, free algebras.
Pr.: Free algebras. |
Bergman 4.3, 4.4 | lecture 8 | |
3.12. | The syntax-semantics Galois correspondence, Birkhoff's theorem.
Pr.: Equational bases. |
Bergman 4.4, (4.6) | lecture 9 | Homework 4 due 17 Dec |
10.12. | Clones. Free algebras as clones of term operations.
Pr.: Clones. |
Bergman 4.1 | lecture 10 | |
17.12. | The operations-relations Galois correspondence.
Pr.: Algebraic and relational clones. |
Bergman 4.2 | lecture 11 | Homework 5 due 7 Jan |
7.1. | Mal'cev conditions: Mal'cev, majority.
Mal'cev conditions |
Bergman 4.7 (part) | lecture 12 | |
 
 
INTRODUCTION TO COMPLEXITY OF CSP (NMAG563)
Run by Antoine Mottet: Fri 9:00 Zoom
 
 
KAFKA (NMMB551)
 
 
ARCHIV
[Archiv 2019/20 zimni semestr]
[Archiv 2018/19 letni semestr]
[Archiv 2018/19 zimni semestr]
[Archiv 2017/18 letni semestr]
[Archiv 2017/18 zimni semestr]
[Archiv 2016/17 letni semestr]
[Archiv 2016/17 zimni semestr]
[Archiv 2015/16 letni semestr]
[Archiv 2015/16 zimni semestr]
[Archiv 2014/15 letni semestr]
[Archiv 2014/15 zimni semestr]
[Archiv 2013/14 letni semestr]
[Archiv 2013/14 zimni semestr]
[Archiv 2012/13 letni semestr]
[Archiv 2012/13 zimni semestr]
[Archiv McMaster]
[Archiv 2009/10 letni semestr]
[Archiv 2009/10 zimni semestr]
[Archiv 2008/09 letni semestr]
[Archiv 2008/09 zimni semestr]
[Archiv 2007/08 letni semestr]
[Archiv 2007/08 zimni semestr]
[Archiv 2006/07 letni semestr]
[Archiv 2006/07 zimni semestr]
[Archiv 2005/06 letni semestr]
|