NMAG 405 - Universal Algebra 1 - fall semester 2020/21 Homework 1

Deadline 5.11.2020, 9:00

(10 points) A latin square (A, *) is an algebra of type (2), such that for each a, b ∈ A there exists a unique x ∈ A with x * a = b and a unique y ∈ A with a * y = b; we then denote x by b/a and y by a\b. (For finite A each row and each column of the multiplication table of * contains every element of A exactly once, hence the name.) A quasigroup is an algebra (A, *, \, /) of type (2, 2, 2), which satisfies the identities:

$$y \approx x * (x \setminus y) \approx x \setminus (x * y) \approx (y/x) * x \approx (y * x)/x.$$

Let A be a fixed set. Prove that the map Φ that assigns to every latin square (A, *) the algebra $(A, *, \backslash, /)$ as above, and the map Ψ that forgets the operations $\backslash, /$ are mutually inverse bijections between the set of latin squares and the quasigroups (with universe A).

- 2. (10 points) Let \mathbb{R}^n be the *n*-dimensional euclidean space and \mathcal{C} be the set of all its (topologically) closed subsets. Show that $(\mathcal{C}, \cap, \cup)$ is a complete lattice and describe \bigwedge and \bigvee . What are the compact elements of this lattice? Is it an algebraic lattice?
- 3. (10 points) A map $f: L_1 \to L_2$ between two lattices is called *monotone* if $x \leq y$ implies $f(x) \leq f(y)$. Let L be a complete lattice, and $f: L \to L$ an monotone map. Prove that there is a fixpoint a of f, i.e. a point $a \in L$ such that f(a) = a.