NMAG 405 - Universal Algebra 1 - fall semester 2020/21

Homework 4

Deadline 17.12.2020, 9:00

- 1. (10 points) Let \mathbf{R} be a fixed ring (with 1), and let \mathcal{V} be the variety of (left)-modules over \mathbf{R} . Prove that the free \mathbf{R} -module is isomorphic to $R^{(X)} = \{(u_x)_{x \in X} \in R^X | \text{ only finitely many } u_x \text{ are not 0}\}$. Use the universal algebraic characterization of free algebras as "terms modulo identities", do not use the categorical/module-theoretical definition of freeness.
- 2. (10 points) Let V be the variety of algebras (A, \cdot, l, r) of type (2, 1, 1) that satisfy the identities

$$l(x \cdot y) \approx x$$
, $r(x \cdot y) \approx y$, $l(x) \cdot r(x) \approx x$.

- (a) Show that every non-trivial member of \mathcal{V} is infinite.
- (b) Prove that, if $\mathbf{A} \in \mathcal{V}$ is generated by $\{a_1, a_2, \dots, a_n\}$, then it is already generated by $\{(a_1 \cdot a_2), a_3, \dots, a_n\}$
- (c) Prove that $\mathbf{F}_{\mathcal{V}}(n) = \mathbf{F}_{\mathcal{V}}(m)$ for all positive integers n, m.
- 3. (10 points) Let **A** be the semigroup given by the following multiplication table:

•	0	1	2	3
0	0	0	0	0
1	0	0	0	1
2	0	0	1	2
3	0	0 0 0 1	2	3

Prove that the variety generated by **A** is exactly the variety of commutative semigroups satisfying $x^3 \approx x^4$.