next up previous contents index
Next: New examples 2 Up: New examples Previous: Semicircle Continuum

Boxes Continuum

Boxes Continuum is a nice continuum.

Let $A = \{(x,2^{-n+1})\in \Bbb R^2: 0 \le x \le 1\}$;

for each $n=0,1,2,\cdots$ and each $m=0,\cdots, 2^{n+1}$, let

B_{n,m} = \left \{(m\cdot 2^{-n-1},y)\in \Bbb R^2: 0\le y
\le2^{-n}\right \};

finally, let

X = \left [\bigcup_{n=1}^\infty A_n\right ]
\left [\big...
...infty \left ( \bigcup_{m=0}^{2^{n+1}} B_{n,m}\right
)\right ].

1) X is an example of an non-hlc continuum which is not regular.

2) X is the union of two regular continua.

See Nadler 10.38, p.186.

Figure ( A ) Union of two dendrites, a non-hlc Boxes Continuum

Source files: a.eps . a.gif . a.mws . a.txt . latex.tex . title.txt .

Here you can read Notes or write to Notes.

Janusz J. Charatonik, Pawel Krupski and Pavel Pyrih