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Outline

The aim: digraphs with interesting polymorphisms

Results:
@ the list of interesting polymorphisms of all digraphs up to 5 vertices

(by means of massive computation)
@ the smallest digraph with currently unknown complexity of the

retraction problem

Outline of the talk:
@ Motivation = introduction to the complexity of CSP

@ Results of the computation
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CSP: a computer science description

INPUT: variables, domain, constraints
OUTPUT: assign domain elements to the variables so that the constraints

are satisfied

Examples:
@ SAT: assign 0,1 to variables so that given clauses are satisfied
@ k-coloring: assign colors to vertices so that no adjacent ones have the
same color
@ solving equations over finite fields: assign elements to variables so
that given equations are satisfied
@ industry: scheduling, etc.
Complexity:
@ NP-complete
@ if constraints are restricted, may fall into P
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CSP(B): a combinatorial description

Fix a finite relational structure B.

INPUT: relational structure A
OUTPUT: find a homomorphism A — B

Examples:
o 3-SAT: B = ({0,1}, pooo; - - - » p111) where pj = {0,133~ {(/,j, k)}
@ k-coloring: B = Ky (complete graph)
o linear equations over Z,: B = ({0,...,p — 1}, p, {1}) where

(a,b,c)epiffatb=c

Complexity:

Dichotomy Conjecture (Feder, Vardi, 1999):

For every B, CSP(B) is in P, or is NP-complete
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CSP(B): a combinatorial description

Fix a finite relational structure B.

INPUT: relational structure A
OUTPUT: find a homomorphism A — B

Examples:
e 3-SAT: B = ({0, 1}, pooo, - - - » p111) Where pjix = {0,133~ {(i,j, k)}
@ k-coloring: B = Ky (complete graph)
o linear equations over Z,: B = ({0,...,p — 1}, p, {1}) where
(a,b,c)epiffatb=c

Complexity:
Dichotomy Conjecture (Feder, Vardi, 1999):
For every B, CSP(B) is in P, or is NP-complete

A technical remark: CSP(B)=CSP(core of B).
From now on, all structures are assumed to be cores.
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The algebraic approach to complexity of CSP

The complexity of CSP(B) depends on idempotent polymorphisms of B.
e f is a polymorphism of B = (B, R), if f preserves every p € R.
Equivalently, f is a homomorphism B" — B.
e f is idempotent, if f(x,...,x) = x.

Complexity:
Algebraic Dichotomy Conjecture (Bulatov, Jeavons, Krokhin, 2005):

B has nice idempotent polymorphisms = CSP(B) is in P
B has no nice idempotent polymorphisms = CSP(B) is NP-complete

o the former has been confirmed for many special cases (e.g., smooth
digraphs, or 3-element structures)
o the latter is a theorem

Fact: The nicer polymorphisms B has, the easier CSP(B) is.
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Polymorphism conditions

Some nice polymorphisms:
@ weak near-unanimity:

fyxx...x)=f(xyx...x) =+ =f(xxx...xy)

@ near-unanimity polymorphism:
flyxx...x)=f(xyx...x) = =f(xxx...xy) =x

@ edge: f(yyxx...x)=f(yxyx...x)=x and
f(xxyx...x)=f(xxxyx...x) = =f(xxx...xy) =x

e totally symmetric: f(x1,x2,...,xn) = f(y1,¥2,...,Yn) whenever

{x1, .. sxn} ={v1,-- -, ¥n}
e semilattice: f(x,y) = f(y,x) and f(f(x,y),z) = f(x,f(y, z))
@ 2-semilattice f(x,y) = f(y,x) and f(f(x,y),x) = f(x,y)
The weakest polymorphism conditions:
o (Maréti, McKenzie) n-ary WNU for some n
e (Barto, Kozik) n-ary cyclic polymorphism for some n
o (Siggers) a polymorphism satisfying f(x,y,y, z) = f(y, x, z, x)
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Poset of polymorphism conditions
siggers = dn wnu n

2= 2
bw =Vn >3 wnun ts whd

(bounded width)

dn edge n
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dn nu
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nu 4

Vntsn
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nu 3

edge 3 = malcev
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Our setting

Reductions
o (Feder, Vardi) For every B, there is a digraph G such that CSP(B)
poly-equivalent to CSP(G).
@ we can add constants, i.e., consider G = (V,E,{v} : v € V)

e it has the same clone of polymorphisms
e itis a core

o CSP(G) = retraction problem for G,
for cores it is poly-equivalent to CSP(G)

Our job:
to determine interesting polymorphism conditions for

o all digraphs with 2 to 5 vertices,

@ many random digraphs on up to 8 vertices
Note: it is sufficient to determine minimal conditions.
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Interesting polymorphisms
siggers

2

= ts2

ts3

ts4

edge 3 = malcev
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2-element digraphs

(Interested in tables for larger digraphs? See our website!)

David Stanovsky (Prague)

# | table | minimal conditions
01 | 00 00 | malcev sml
02 | 01 00 | malcev sml
03 | 01 10 | malcev

04 | 00 01 | malcev sml
05 | 01 01 | malcev sml
06 | 00 11 | malcev sml
07 | 01 11 | nu3 sml
08 | 10 01 | malcev sml
09 | 11 01 | nu3 sml

10 | 11 11 | malcev sml
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The number of digraphs with given minimal condition

condition size 2 size3 sized size 5
NONE 0 7 765 155151
malcev 8 29 118 471
nu3 2 63 1572 60056
nu4 0 0 46 8916
nub 0 0 1 1388
edged 0 0 0 0
edgeb 0 0 0 0
bw 0 0 29 3475
sml 9 90 2178 130870
2sml 0 1 12 1639
ts4 0 0 6 1559
ts3 0 0 0 0
wnu?2,3,4,5 0 0 0 0
siggers 0 0 0 0
TOTAL 10 104 3044 291968
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The number of digraphs with given minimal conditions

conditions size 2 size 3 sized size 5
malcev sml 7 24 92 358
nu3 sml 2 61 1532 59281
malcev 1 4 22 89
sml 0 5 507 60931
nu3 0 2 38 745
malcev 2sml 0 1 4 23
nu4 sml 0 0 46 8914
bw 0 0 29 3475
2sml ts4 0 0 6 1556
nu5 sml 0 0 1 1386
nu3 2sml 0 0 2 30
2sml| 0 0 0 25
nub 2sml ts4 0 0 0 2
nu4 2sml 0 0 0 2
malcev 2sml ts4 0 0 0 1
NONE 0 7 765 155151
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Conclusions

On <5 vertices, each digraph is either NP-complete, or has bounded
width (and thus is in P).

On 6 vertices: consider the sea devil graph:
< >.%.%o

It has 3-ary and 5-ary WNU, but no 4-ary WNU.
Hence, conjecturally is in P, but fails bounded width.
Open problem:
@ is sea devil in P 7?7
(the smallest digraph with currently unknown complexity of CSP)
@ particularly, is sea devil solvable by few subpowers?
(we computed: no edge polymorphism up to arity 7)
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