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Outline

The aim: digraphs with interesting polymorphisms

Results:

the list of interesting polymorphisms of all digraphs up to 5 vertices
(by means of massive computation)

the smallest digraph with currently unknown complexity of the
retraction problem

Outline of the talk:

1 Motivation = introduction to the complexity of CSP

2 Results of the computation
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CSP: a computer science description

INPUT: variables, domain, constraints
OUTPUT: assign domain elements to the variables so that the constraints
are satisfied

Examples:

SAT: assign 0,1 to variables so that given clauses are satisfied

k-coloring: assign colors to vertices so that no adjacent ones have the
same color

solving equations over finite fields: assign elements to variables so
that given equations are satisfied

industry: scheduling, etc.

Complexity:

NP-complete

if constraints are restricted, may fall into P
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CSP(B): a combinatorial description

Fix a finite relational structure B.

INPUT: relational structure A
OUTPUT: find a homomorphism A→ B

Examples:

3-SAT: B = ({0, 1}, ρ000, . . . , ρ111) where ρijk = {0, 1}3 r {(i , j , k)}
k-coloring: B = Kk (complete graph)

linear equations over Zp: B = ({0, . . . , p − 1}, ρ, {1}) where
(a, b, c) ∈ ρ iff a + b = c

Complexity:
Dichotomy Conjecture (Feder, Vardi, 1999):
For every B, CSP(B) is in P, or is NP-complete

A technical remark: CSP(B)=CSP(core of B).
From now on, all structures are assumed to be cores.
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The algebraic approach to complexity of CSP

The complexity of CSP(B) depends on idempotent polymorphisms of B.

f is a polymorphism of B = (B,R), if f preserves every ρ ∈ R.
Equivalently, f is a homomorphism Bn → B.

f is idempotent, if f (x , . . . , x) = x .

Complexity:
Algebraic Dichotomy Conjecture (Bulatov, Jeavons, Krokhin, 2005):
B has nice idempotent polymorphisms ⇒ CSP(B) is in P
B has no nice idempotent polymorphisms ⇒ CSP(B) is NP-complete

the former has been confirmed for many special cases (e.g., smooth
digraphs, or 3-element structures)

the latter is a theorem

Fact: The nicer polymorphisms B has, the easier CSP(B) is.
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Polymorphism conditions

Some nice polymorphisms:

weak near-unanimity:
f (yxx . . . x) = f (xyx . . . x) = · · · = f (xxx . . . xy)

near-unanimity polymorphism:
f (yxx . . . x) = f (xyx . . . x) = · · · = f (xxx . . . xy) = x

edge: f (yyxx . . . x) = f (yxyx . . . x) = x and
f (xxyx . . . x) = f (xxxyx . . . x) = · · · = f (xxx . . . xy) = x

totally symmetric: f (x1, x2, . . . , xn) = f (y1, y2, . . . , yn) whenever
{x1, . . . , xn} = {y1, . . . , yn}
semilattice: f (x , y) = f (y , x) and f (f (x , y), z) = f (x , f (y , z))

2-semilattice f (x , y) = f (y , x) and f (f (x , y), x) = f (x , y)

The weakest polymorphism conditions:

(Maróti, McKenzie) n-ary WNU for some n

(Barto, Kozik) n-ary cyclic polymorphism for some n

(Siggers) a polymorphism satisfying f (x , y , y , z) = f (y , x , z , x)
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Poset of polymorphism conditionsvsiggers = ∃n wnu n
(in P ???)
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Our setting

Reductions

(Feder, Vardi) For every B, there is a digraph G such that CSP(B) is
poly-equivalent to CSP(G).

we can add constants, i.e., consider Ḡ = (V ,E , {v} : v ∈ V )

it has the same clone of polymorphisms
it is a core
CSP(Ḡ) = retraction problem for G,
for cores it is poly-equivalent to CSP(G)

Our job:
to determine interesting polymorphism conditions for

all digraphs with 2 to 5 vertices,

many random digraphs on up to 8 vertices

Note: it is sufficient to determine minimal conditions.
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Interesting polymorphisms s siggers
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2-element digraphs

# table minimal conditions

01 00 00 malcev sml
02 01 00 malcev sml
03 01 10 malcev
04 00 01 malcev sml
05 01 01 malcev sml
06 00 11 malcev sml
07 01 11 nu3 sml
08 10 01 malcev sml
09 11 01 nu3 sml
10 11 11 malcev sml

(Interested in tables for larger digraphs? See our website!)
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The number of digraphs with given minimal condition

condition size 2 size 3 size 4 size 5

NONE 0 7 765 155151

malcev 8 29 118 471
nu3 2 63 1572 60056
nu4 0 0 46 8916
nu5 0 0 1 1388
edge4 0 0 0 0
edge5 0 0 0 0
bw 0 0 29 3475
sml 9 90 2178 130870
2sml 0 1 12 1639
ts4 0 0 6 1559
ts3 0 0 0 0
wnu2,3,4,5 0 0 0 0
siggers 0 0 0 0

TOTAL 10 104 3044 291968
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The number of digraphs with given minimal conditions

conditions size 2 size 3 size 4 size 5

malcev sml 7 24 92 358
nu3 sml 2 61 1532 59281
malcev 1 4 22 89
sml 0 5 507 60931
nu3 0 2 38 745
malcev 2sml 0 1 4 23
nu4 sml 0 0 46 8914
bw 0 0 29 3475
2sml ts4 0 0 6 1556
nu5 sml 0 0 1 1386
nu3 2sml 0 0 2 30
2sml 0 0 0 25
nu5 2sml ts4 0 0 0 2
nu4 2sml 0 0 0 2
malcev 2sml ts4 0 0 0 1

NONE 0 7 765 155151
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Conclusions

On ≤ 5 vertices, each digraph is either NP-complete, or has bounded
width (and thus is in P).

On 6 vertices: consider the sea devil graph:

q
q
q

q q qj- � �
�

�
�+

6

Q
Q
Qk

�
�
�+

Q
Q
Qs

It has 3-ary and 5-ary WNU, but no 4-ary WNU.
Hence, conjecturally is in P, but fails bounded width.

Open problem:

is sea devil in P ?
(the smallest digraph with currently unknown complexity of CSP)

particularly, is sea devil solvable by few subpowers?
(we computed: no edge polymorphism up to arity 7)
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