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CONTINUITY OF SOLUTIONS OF PARABOLIC AND 


ELLIPTIC EQUATIONS." 


Introduction. Successful treatment of non-linear partial differential 
equations generally depends on "a  priori" estimates controlling the behavior 
of solutions. These estimates are themselves theorems about linear equations 
with variable coefficients, and they can give a certain compactness to the class 
of possible solutions. Some such compactness is necessary for iterative or 
fixed-point techniques, such as the Schauder-Leray methods. Alternatively, 
the a priori estimates may establish continuity or smoothness of generalized 
solutions. The strongest estimates give quantitative information on the con- 
tinuity of solutions without making quantitative assumptions about the con- 
tinuity of the coefficients. 

The theory of non-linear elliptic equations in two independent variables 
is fairly well developed. (See [I] for a survey and bibliography.) An 
essential part is the a priori 13b;lder continuity estimate for solutions of uni- 
formly elliptic equations, first proved by Morreg in 1938. All methods used 
to obtain this estimate have been quite special to two dimensions, utilizing, 
for example, complex analysis and quasi-conformal mappings (see [2]). The 
restriction to two variables has been due to this use of such special methods; 
except for the crucial a priori estimate, the theory is extensible (and in  large 
part has been extended) to n dimensions and to parabolic equations. Our 
results fill this gap, and i t  should now be possible to build a general theory of 
non-linear parabolic and elliptic equations, free of dimension restrictions. 
Strictly speaking, our work needs some generalization to cover equations with 
lower order terms, systems, etc. This generalization can probably be accom- 
plished fairly quickly. 

In  this paper, we consider linear parabolic equations of the form 
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11here the C,, form a symmetric real matrix C(X, t )  for each point x and 
time i. 11-e assume there are universal bounds c, 2 c, > 0 on the eigenvalues 
of C so that any eigenvalue 0, satisfies c, (= 0, c,. This is the standard 
'' uniform ellipticity " assumption. The continuity estimate for a solution 
T(x.  t )  of ( I )  satisfying 1 T 1 5 B and defined for t >= to is 

where t , 2 t ,  > to. Here A and a are a priori constants which depend only 
on c, and c, and the space dimension n. As a corollary of our results on 
parabolic equations, we obtain a continuity estimate for solutions of elliptic 
equations. If T ( z )  satisfies V .  ( C ( x ) .  V T )  = O  in a region R and the 
wme bounds c, and c, limit the eigenvalues of C ( z ) ,  then 

where a is the a of ( 2 )  and 8' is an a priori constant d'(n,c,, c,) ,  and where 

1 T I B in R and d(xl,z,)  is the lesser of the distances of the points 2, 
and x, from the boundary of R. 

Our paper is arranged in six parts, each concluding with the attainment 
of a result significant in itself. Detailed proofs are given and all the results 
presented in [I41 are covered. An appendix states further results, including 
continuity at  the boundary in the Dirichlet problem, a Harnack inequality. 
and other results, stated without detailed proofs. 

General remarks. The open problems in the area of non-linear partial 
differential equations are very relevant to applied mathematics and science as 
a whole, perhaps more so than the open problems in any other area of mathe- 
matics, and this field seems poised for rapid development. I t  seems clear. 
however, that fresh methods must be employed. We hope this paper con-
tributes significantly in this way and also that the new methods used in our 
previous paper, reference [lo], will be of value. 

Little is known about the existence, uniqueness and smoothness of solu- 
tions of the general equations of flow for a viscous, compressible, and heat 
conducting fluid. These are a non-linear parabolic system of equations. 
Also the relationship between this continuum description of a fluid (gas) and 
the more physically valid statistical mechanical description is not well uncles- 
stood. (See [Ill, [12], and [13]). An interest in these questions led us 
to undertake this work. It became clear that nothing could be done about 
the continuum description of general fluid flow without the ability to handle 



non-linear parabolic equations ancl that this in turn required an x priori 
estimate of continuity, such as ( 2 ) .  

Probably one should first try to prove a conditional existence and unique- 
ness theorem for the flow equations. This should give existence, smoothness, 
and unique continuation (in time) of flows, conditional on the non-appearance 
of certain gross types of singularity, such as infinities of temperature or 
density. (A gross singularity could arise, for example, from a converging 
spherical shock wave.) A result of this kind woulcl clarify the turbulence 
problem. 

The methods used here were inspired by physical intuition, but the ritual 
of mathematical exposition tends to hide this natural basis. For parabolic 
equations, diffusion, Brownian movement, and flow of heat or electrical charges 
all provide heIpful interpretations. Moreover, to us, parabolic equations seem 
more natural than elliptic ones. It is certainly true in principle that the 
theory of parabolic equations includes elliptic equations as a specialization, 
and in applications an elliptic equation typically arises as the description of 
the steady state of a system which in general is described by a parabolic 
equation. 

I n  our work, no difference a t  all appears between dimensions two and 
three. Only in one dimension would the situation simplify. The key result 
seems to be the moment bound (13) ; i t  opens the door to the other results. 
We had to work hard to get (13), then the rest followed quickly. 

R e  are indebted to several persons and institutions in connection with 
tllis work, including Bers, Reurling, Browder, Carleson, ],ax, Levinson, 
Morrey, Newman, Sirenberg, Stein and Wiener, the Alfred P. Sloan Founda- 
t1011. the Institute for Advanced Study. M. 1. T.. K.17.1'.,and the Office of 
S a ~ a lResearch. 

Part I: The Moment Bound. 

illore than enough is linown about linear parabolic equations with variable 
(oeliielents to aqsure the existence of well behaved solutions for equations of 
the  form (1 )  IC me make strong (qualitative) restrictions on the C,, and 
restrict the class of solutions to be consiclered. (See [3] through [Y].) There-

-
fore we asiume : ( a )  The C,(x, t )  are uniformly C",  (b) C,,(x, t )  = q c , c ,  6,, 
(Kroneclier delta) for 1 x 1 z r , ,  some large constant. We consider only 
solutions T ( x ,t )  bounded in x for each t for which the solution is defined. 
i. e., max I T (z, t )  1 is finite. 

d 



Under these restrictions, any bounded measurable function T(x, to) of 
:c given at  an initial time to determines a unique continuation T(x, t )  defined 
for all t 2 to and Cm for t > to. Moreover, T(z ,  t )  += T(z ,  to)  almost every- 
where as t += to, and max I T (x, t )  1 is non-increasing in t. It is also known 

Z 

that fundamental solutions, which we discuss below, exist and have the 
general properties we state. (See [4], [ 7 ] .) 

After the a priori results are established, a passage to the limit can 
remove the restrictions on the Cdj. This is a standard device in the use of 
a priori estimates. The Holder continuity ( 2 )  makes the family of solutions 
equicontinuous and forces a continuous limit (generalized) solution to exist'. 
Furthermore, the maximum principle remains valid and with it the unique 
continuability of solutions bounded in space. The final result requires only 
measurability for the Cij, plus the uniform ellipticity condition; and the a 
priori estimates then hold for the generalized solutions. 

The use of fundamental solutions is very helpful with equations of the 
lorn1 (1 ) .  Our work is built around step by step control of the properties 
of fundamental solutions and most of the results concern them directly. 
Lliundamelltal solution T (x, t )  has a "source point" xo and "starting time " 
1, and is defined and positive for t > to. Also, J T ( z ,  t )  dx =1 for every 
t > to, where dn: is the volume element in 11-space. L\S t + to, the  fundamental 
solution concentrates around ite source point ; lim T (:c: t )  is zero unless-x =x,,, 
in which case it is +a. Physically, a fundamental solution represents the 
concentration of a diffusant spreading from an initial concentration of unit 
weight at  xo at  time to. 

All fundamental solutions are conveniently unified in a "characterizing 
function" S(x,  t, 2, f). For fixed Z and t and as a function of n: and t, X is 
a fundamental solution of (1) with source point 2 and starting time 5. Dually, 
for fixed x and t, S is a fundamental solution of the adjoint equation: 
V;. [C (2, t )  . V;X] =-aX/i?t, where time runs backwards. This duality 
enables us to use estimates for fundamental solutions in two ways on 8. 

The dependence of a bounded solution T(x, t )  on bounded initial data 
T ( x ,to)  is expressible through X : 

in particular, 

These are standard relations. (5)  reveals a reproductive property of Punda-
mental solutions. 
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Now consider a special fundamental solution T =T(x, t ) =S ( x , t,0,O) 
with source a t  the origin alid starting time zero. Let 

by integration by parts. For ally vector V , we have c, 1 V l 2  5 V .C . V 
Ic, I V / ; therefore-

With (6 )  and a lower bound for J I V T  l 2  dx in terms of E, we shall be 
able to bound B above, obtaining our first a priori estimate. To bound 
f / V T I dx we employ a general inequality valid for' any function u (x) in 
11-space. For our purposes, we assume u is smooth and well behaved a t  
infinity. E. 11. Stein gave us the quick proof which follows below. 

The Fourier transform of u ( x )  is 

v(y)  = -n/2Jeix %(x)  d r .( 2 ~ )  

Thi? has the familiar property 

( 1  v I2dy= J /u I2dx. 

The trailsforin of du/dxk is iykv ; hence 

J / du/axk / d~ = j y k 2 1 v l 2  dy,
and 

J /V U / ~ ~ Z = ~ S ( ~ U / ~ . Z . ~ ) ~ ~ ~ = S / ~i l 2 l V l 2 d y .  

Finally, 
1 v 5 1 e i . 8  ( . ( 11 1 dx == (2x)-42.( 1 ?( / dz;1 ( ~ T ) - ~ / ~ J  

therefore, lor any p > 0, we have 

uriiig the formula for the volume of an 11-sphcrc. 011 the other hand, 

If we choose the value of p minimizing the sum of the two bounds ( a )  and 
(b), we obtain a bound on in terms of J I ~ / ~ d y = J I u 1 ~ d x  J I u / d x  and 

.f / V u  1 '  dx. Solved for f 1 V u  1 '  dx, this is 



Applying the above inequality with ZL =T, remembering that f Tdx =1: 

me obtain from (6 )  
-Et2 kE1+2/11, 

This is the first use of a convention we now establish that k is a generic symbol 
for a priori constants which depend only on n, c,, and c,. Any two instances 
of lc should be presumed to be different constants. Thus, from the above 
inequality, (E-2/n) 2 k ; hence E-2/n 2 kt and 

We used above the qualitative fact lim E =cc. 
t+O 

From this first bound (7 )  and the identity ( 5 ) )  we obtain 

T ( x , t )  = J X ( X , ~ , ~ , ~ / ~ ) S ( ~ , ~ / R , O , O ) ~ B ,  
whence 

Therefore 

(8)  


which is a pointwise bound, stronger than 
 ( I ? ) .  

The key estimate controls the "moment" of a fundamental solutioll 

To prove 41 5 kt2 is our first major goal. This is dimensionally the only 
possible form for a bound on Ill. The moment bound is essential to all 
subsequent parts of this paper. 

We also define an "entropy." 

(9)  

From (8) )  
Q = - J T l o g T d z .  

hence 

Q 2 S m i n [- log TI  (Tdx) 2 -log 
G 

ST dx, 

(10) 

because S T  dx =1. The sharp result Q 2 i n  log(hec,t)  is obtainable from 
a more sophisticated argument. 
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Our derivation of a bound on &I requires a lower bound on M in terms 
of 0 as a lemma. This inequality, which is N 2 keQln, depends only on the 
facts T 2 0, ST dx =1. First observe that for any fixed A, 

Let h=ar + b, where T = I x I and a and b are any constants, and integrate 
orer space, obtaining 

$ [T log T $- (n r+ b) T I  dx  2-e-b-I $e-ar dx, 
or 

-Q +aM + b 2-e-b-la-"D n7 

where U ,  is the well known constant 2 n ~ & ( n - l )[i( n-1)] ! related to the 
gamma-function and the surface of the ( n-1)-sphere. Now set a =n/M 
and e-b =(e/D,) .an. Then -Q +n +b 2-1 or n +1>,Q + log(n/Dn) 
+ log (n/&l); thus n log JI +n >Q +n log n-log D,, finally, 

This ingenious proof, due to L. Carleson, gives an optimal constant. 

The next inequality is a "dynamic" one, connecting the rates of change 
with time of A1 and Q. Differentiating (9 ) ,  

after integration by parts. This can be rewritten 

Since in general V .c,C . V 2 V . C 2 .V =I C . V / 2, where V is a vector, we 
have 

c z Q t 2  $ / C . V ( ~ O ~ T ) / ~ ( T ~ X )1 [ $ I C . v l o g T I ( T d x ) I 2  

2 [$ I  C . V T  1 dxI2 .  

* 1 1 

Here we used the Schwan inequality in the form f 2  du 2[Sf du]' with 
0 0 

dzi corresponding to T dx. 

Ry analogous manipulations, 

J f t = - $ V r . C . ~ T d x  and j M t / s $ I V r j  / C . v T / d s ,  

hence. 


/&It 1s $ 1  C . V T 1 dx.  



Combining inequalities, 

(12) czQt 2 (Mt) '. 
This is a powerful inequality. Q is defined as i t  is in order to obtain (12) .  

The three inequalities 

Q Z i r k + + n l o g t  

M 2 IceQln 

c2Qt 1 (Mt) * 
and the qualitative fact lim M =0, as t +0, suffice by themselves to bound 
above and below both 31 and Q, as functions of time. No further reference 
to the differential equation is needed. 

From iM(0) =0 and (12))  

ahence 

Kow define nR =Q T k -$n log t in such a way that R 2 0 corresponds 
to (10).  Then Qt =nRt +n/2t, and we obtain 

k t W  M 5 (nc,)i (1/2t +Rt)a dt. 1' 

When a and a 4-b are positive (a +b ) a s a a + b/2a4, hence 

Here we used integration by parts and R 2 0 in the second and third steps. 
Applying this result, 

Clearly keR increases faster in R than 25(1+ 4R) so that R must be bourltlcd 
above. Therefore M / t a  is bounded both above and below: 
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If we use best possible constants in (10) and ( l l ) ,  we can obtain 

where 
bn= (n/2t)*{d/[*(n- 1 ) ]  !)lln 2 2-lIzn 

and 
x =-&log (c,/c,) -log b, 5 (l /2n)log 2 ++ log(c,/cl). 

Thus h is relatively small. Since bn+  1 as n +oo, the bounds sharpen with 
increasing a ;  indeed, they seem surprisingly sharp. For comparison, 
Jf = (2nct)a in the simple heat equation where Cij =csBg and c, =c, =c. 

Part 11: The G Bound. 

Here we obtain a result limiting the extent to which a fundamental 
solution can be very small over a large volume of space near its source point. 
From this result, we can show there is some overlap, defined as Smin(T,, T,)dx, 
of two fundamental solutions with nearby source points, starting simul-
taneously. 

Let T be S ( x ,t, 0,O) and let 

(14) Ti(,$, t )  = t"/,T(t&t, t ) .  

This coordinate transformation and renormalization makes $U d [ =  1; 
where d[ is the volume element. Furthermore, if p is the constant such that 
?ilzpte, we have S / [ I U d[ 5 p. For U, equation (1)  transforms to 

( 15) 2 t U t = n G + ( .  V7i + 2 V .  ( C . VCT) 

Let 

(16) G =  Sexp(- / 6 /2)10g(l i+6)dt ,  

where 8 is a small positive constant. G is sensitive to areas where / [ / is not 
large and U is small. These tend to make G strongly negative. We later 
obtain a lower bound on G of the form 

valid for sufliciently small 8. This bound limits the possibility for U to be 
small in a large portion of the region where I , $  I is not large. From U > 0 
the weak lower bound G > anI2logs follows immediately. 

Differentiating (16) with respect to time and using (15), we obtain 

2 t Q t = H l +  H z +  H,, 



940 J. XASH. 

where 

H , = n J e x p ( - / t j 2 ) U / ( U + 6 ) d t 2 0 ,  

by integration by parts, so that  

H 2 = - S e x ~ ( - j t 1 ~ ) ( V . t ) 1 0 g ( U + 6 ) d t  

+ S e x p ( - j t I 2 ) ( 2  It1 V 161) . t l o g ( U + 6 ) d t  

=--nG+2Jexp(-- jt j2)1 t 12[logS+log(l+ U/a)ldt ,  

hence, 

H 2 ~ - n G + 2 1 0 g 6 J / ~ / 2 e x p ( - I ~ 1 2 ) d ~ ~ - n G + n x 1 L / 2 1 0 g S ;  


finally 

H3=2Jexp(--j t I 2 ) V .  ( C . V U ) / ( U + 6 ) d t  

=-2SV[exp(-jtj2)/(U+6)l.C.VUdt 


=4$(exp(-I t l 2 ) [ 1 t (  V I t I . C . V U l / ( U + 6 ) d t  

+2Jexp(- It 12) [ V U ' C ' V U l / ( U + s ) 2 d t  

=HQ' + H3", 
where 

H3r=4Sexp(-It/2)t.C.Vlog(U+S)dt, 


H3rr=2Sexp(- j  t j 2 ) V 1 o g ( U + 6 )  . C . V l o g ( U + 6 ) d t .  

From the Schwarz inequality, 

( 4 ~ ~ .  4nc2ni"H/.$nxin) . 2H3" = 

Hence 
-== k (H,") a.lH3 / =  

Furthermore, 

( 1 7 )  H3"2  2c,jexp(- j t 12)1 V log(U + 6) l 2  d t  

Combining the lower bounds available for H I , Hz,and H:, we obtain 



PARABOLIC AND ELLIPTIC EQUATIONS. 

(18) 	 2 t G t z H , + H 2 + H , " - j H i j  

2 0 + (- nG +nahn log 6) +H," -16 (H,"): 

When we bound H3/' below in terms of Cr, ( I S )  will yield a lower bound 
on G. 

A function f ([) =f ([,, tz,. . . ,t n )  may be expanded in products of 
Hermite polynomials, of the form flHuci,( t i ) ,  where the polynomials are 

defined and orthonormalized so that exp (- s2)H, (s)HA(s)  ds =6,~. The 11" 

identity dH,(s)/ds = (2v)*H,-, (s)  obtains, and the coefficients of these 
products in the similar expansion of, say, af/a& depend very simply on the 
coefficients in the expansion of f .  If Jexp (- / [ 1 ? )f d,t ='0, the coefficient of 
flHo(ti)  is zero and we obtain 

Applying the above, with f= log(U +6) -T-"/~G, to ( l 7 ) ,  we obtain 

The quantity U-l [log (U +6) -T - ~ / ~ G ]2, related to the integrand in 
(19), is large for very small U, then decreases to zero, rises from zero to a 
local maximum at U =U,, say, and finally decreases monotonically as U +co 

for U 2 U,. (We know l0g6-a-n/~G < 0.) The equation for the maximum 
point U ,  is log (U, +6) - T - ~ / ~ G  =2UC/ (UC +S ) ,  from which U, < Uo 
=exp (2 +T-"/~G). Therefore the quantity under discussion is decreasing 
for U 2 U, The bound ( a ) ,  T 5 kt-@, corresponds to U 5 lc. Hence the 
quantity has a lower bound of the form E[log ( k  +6) -kG] "or U 2_ Uo. 
Applying this to (19), we may say 

where U*= U for U > U, and U* =0 for U 5 U,. Thus we are ignoring 
the contribution to (19) of the region where U 5 U, and taking the worst 
case, U as large as possible, in the remaining -region. For sufficiently 
negative G, the expression log(k +6) -kG will remain positive when 6 is 
omitted, so that [log k -kGI2< [log (k $6) -kGI2, and we can simplify 
the above inequality on H," to the form 

(20) H," 2 (lc- kG)2Jexp(- j [ 12) U* d[. 

Let =J U* dz and observe that J 1 [ ( U* d,t 5 $ I 6 1 I;i d t  5 p. There-
fore 



hence, 

1 U* d[ and so S u * d [ ~x - ~ A = + x  
lSIZzs/A lElS2~/h 

This result can be applied to (20) and yields 

(21) H," )= (k -kG) 2 .  exp (- (2p/A) 2,  ($A). 

This is not effective unless we can bouncl h below, or bound 50d[ =1-h 
above, where 6=U -U* so that 0=0 unless U 5 U,, in which case 0=U. 
Of course, we know J 1 [ 1 6 d[ 5 p because i? 5 U. Under the moment 
constraint and the constraint 5 U,, the maximum of 5 0 d[ is clearly 
realized by having 0=U ,  for / t / 5 p and i? =0 for 1 [ 1 > p, where p is 
such that 

This makes 

1-A = Jr:' d[ = !]pnUo,[ ~ ~ / ~ / ( n / 2 )  


I -h 5 U, (kp/TJo) n/(n+l) or 1-h 5- ? ~ U ~ l / ( ~ + l ) .  


If Uo, which is exp(2 +n-"I2G), is small enough, then 1-h is small and h 
is bounded below. Thus h )= 4,say, for all sufficiently large -G. Now from 
(21),  we have 

H3"2 (k -kG) 

for sufEciently large -G. 
Returning to inequality (18) controlling Gt and applying the above 

result, we can state that f o r  sufficiently negative G, 

Let G1(cl, c,, n) be the number such that wlien G 5 GI, we know G is small 
enough to make (22) valid. Let G, (c,, c,, n, 6) =-k (- log 6)h be the 
largest number such that k 1 G l 2  +k log8 > 0 for all G < G2. Then 
min(Gl, G,) =G3 is the smallest possible value of G. If we had G(tl) =Gs-C, 

we would have dG/d(logt) z e *  for all t 5 t,, and consequently G ( t )  
5 G(tl )  -r* log(t,/t), which implies G+ -co as t +0. But since 
G 2 rrnI2log 8, the hypothesis G(t,) =G3- E  is impossible. Our corlclusion 
is G 2 G,, or 

(2.3) Gz-Ic(-log6)* 
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for all s.u.fficiently small values of 6, because G , s  G, and 

when 6 is small enough. 

Part 111: The Overlap Estimate 

Let 2', and T ,  be two fundamental solutions S(x, t, x,, 0) and S(x, t, x2, 0) 
wlth nearby sources. Change coordinates, defining U, = tn/2Tl(t%[, t )  and 
11, = tnl2T2 (tst, t ) .  Let [,=x,/t* and [,=x2/t*. Here the source of the 
(renormallzed) fundamental solution Ut is (, rather than the origin, which 
n-a5 the source of U in Par t  11. Taking this into account, we apply (23), 
ohtaming 

[exp(- It-[, /"log(U, + 6)d[= G,>,-k(-logs)$, 

.ilhcle z =1or 2 and 6 must be sufficiently small. We may add the inequalities 
ni~obe and obtain 

in which nre Iorm two integrals with sum at least as large as the sun1 of the 
orjgirial integrals. We abbreviate the above to 

S f "  log(U,,, + 6)d(+  ~f log(U, , , ,  + S)d [  2 - is(-log6);. 

For the first integral, we observe (assuming 6 5 1) 

S f *  log(Umax + 6)d&5 Jf*(Ui  + Uz)dt 5 S(U1+ U2)dt =2 .  

For the second integral, 

j'? log(Umin + 6) d t  5 log 657 d l  + mas [f]Slog(1+ lJ,,iin/s) dt  

-5 w log 6 + 6-I J U,,, d[, 
Tvhcl.(~ 

w =  Jmin[exp(- I [--t, I2),exp(- I t-t2 l2)1dt. 

Therefore we obtain 

2 + w log 6 f 6-Ismin (U1, Uz) d t  2-k (- log 6)*, 
or 

(24) Jmin(Tl, T,)dx = fmin(U,, U2)dt >= 6[- 2 -w log6- k(-log6)$]. 



This is valid for sufficiently small 6, say for 6 5 61. Also, there is a value 
6,(w) such that for 6 < S,(w), the bracketed expression is positive. If we 

set 6 =& min (a,, 6,), the right member of (24) is definitely positive, and 
we may conclude 

(25) J m i n ( T l , T 2 ) d z 2 + ( I  [ , - t 2  1) 2 + ( /  xl-2, l/ts) 

because zu is a function of I [,-[,1. The function + is decreasing but always 
positive. It is an a priori function, determined only by c,, c,, and n. This 
inequality (25) is our first estimate on the overlap of fundamental solutions. 
Its weakness is that we know little about the function 4. 

Part IV: Continuity in Space. 

V e  can obtain a stronger inequality by iterative use of (25).  Observe 
that 

(26) 	 + $ I  TI-T, I d x = ~ j [ T , + T , - 2min(T1,T2)]dz 

5- I-+(/  x1-xz l/ti) =$(I $1-x2 l/th) 

ill which we define the function $, which is increasing but always less than 
one. 

Let T,=max(T,-T2,0) and Tb=max(T2-T,,O) so that T ,+T,  
= I TI-T, I and S(T , -Tb)dx= S(Tl-T,)dx=O. Then 

defining A ( t ) . Let 

X ( ~ , ~ L . ,t ) =Ta(x)Tb(Z)/A ( t ) .  

Let T,*(x', t', t )  be the bounded solution in d and t' of (1) defined for 
t' 2 t and having the initial value T,"(z, t, t )  =T,(x, t ) .  Define Thb 
similarly. Then from (4) ,  

T,* (x', t', t )  = JS (x', t', x, t )  T,(x, t )  dx 

= j J s ( x ' , t ' , x , t ) X ( x , ~ , t ) d x d z ,  
and 

TI (z', Z') -T2 (x', t') =T," -Tb* 

=SJ [(x', f , x ,  t )  -X(x', t',Z, t ) Ix (x ,  2, t )dx dZ 

by the superposition principle (T, -T, and Ta" -Tb* are both solutions of 

(1) for t ' z  t, and by definition, To*- Ti," =T I-T, at t'= t , ) .  Tnte-
grating this over dd ,  we obtain 
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$ J 1 T, (z', t') -T, (z', t') I dx' 

I- J J J I  S(z',t ' ,x,t) -S(x',t',Z,t)j d ~ ' ~ ( x , ~ , t ) d x d Z ,  
whence 

(27) A(t') 5 J J  $(I z-5 l / ( t ' - t ) ~ ) x ( x . 5 , t ) d x d ~  

by application of (26).  Incidentally, the right member above is 

thus (t') (= A ( t )  when t' 2 t. This inequality (27) is the key to the 
iterative argument which strengthens (25) and (26). 

To begin the iterative argument, we choose any specific number d and 
let € = + ( a )  =1-$(a) .  (If we were trying to get an explicit formula 
for the exponent cc in (2) ,  we would choose d with l'egard to an explicit 
formula for + (d )  so as to optimize the result.) Let a =1-4 4 .  For each 
integer V ,  let t ,  be the time (or the least time) at  which A ( t )  = A  (t ,) =uV, 

if t, exists. This is in reference to a specific pair, T, and T,, of fundamental 
solutions. We know, for example, that t, < T, where T= 1 2,-x, I2/d2, 
because A(7) s $ ( /  x1-x2 / / ~ h ) = $ ( d )=I-< and a=1-e /4>  1-E, SO 

that A ( T )  < A (t,) =a. 

Let Ma ( t  ) =J / x -x, I Tad$, where x, is 4 (x, + x,), the midpoint of 
the line segment joining the source points x1 and x, of the fundamental.solu- 
tions T1 and T,. Define J i b  similarly and let i&f,=max[dla(t,), M b(t,)]. 
We decompose T u  into nearer and farther parts T,' and T,- T d  at each time 
t ,  as follows : for / x -so / define T,' =T,; otherwise T,' =0. Then 5 ~ C - ~ M , ,  
~V-~M,J(T,-T,') d x 5  J j  z-x, )(T,--T,') d x z  J j z-X, 1 Tad%( M,, 
and consequently, J (Ta- T i )dx 5+avand ST,' dx 2 $av. Define T{ simi-
larly and define Xi(5, Z) =U-~T,' (x)  T{ (5). Now, applying (27) with t = t,, 
we can say 

-4(t') 5 J J$(( x -2 /)/(t' -t,)h[{X(x, 5, t,) -Xi(x, 5)) + x:(x, Z)] dxd5 

5- JJ {X- d ~ d Z+ +(4u-~Jl,/(t' -t,)a)J Jx: d ~ d b ,  

because when x,,' > 0, we know both T,' > 0 and Tbr > 0 SO that both I x-x, / 
and / Z -so I are 5 2u-Ydl,, and consequently, / x -Z 1 j4 ~ - ~ d l , ,and we 
also know that x 2 and $ < 1. Proceeding further, 
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We now set t'= t, + 1 6 ~ - ~ v ( M , ) ~ d - ~ ,  	 above becomes d.and the argument of t,b 

Then since $I (d)  --1-r, we obtain 

A (t') 5 5 ~ [ 3 / 4+1/4 ( 1  -e ) ] =a' ( 1-6 4 )  =uVt1. 
Hence 

(28) 	 tVtl5 t' = (My)t, + 1 6 ~ - ' ~  'd-'. 

This will bound the sequence {t,) of times after we obtain a bound on 
the sequence {&I,) of moments. 

Observe that 

Ta(xr, t') =max (TI  (x', t') -T, (x', t'), 0) 

=max(Ta*(x', t', t )  -Tb*(xr? t', t ) ,  0)  5 Ta*(d ,  t', t )  

= JS (x', t', x, t )  T,(x, t )  dx. 

Therefore 

Ma (t') =J I x' -2, 1 T, (x', t') dx' 

5- J J [ 1  2'-x 1 + 1 X-x0 /]S(x',t',x,t)Ta(x,t)dxdx'; 

hence 

Ma(tr) J /X-xo I T a ( ~ , t ) J S ( ~ ' , t ' , ~ , t ) d ~ ' d ~  

+ STa(x, t ) j ' l  5'-x I S(x',t',x,t)dx'dx: 
or 

Jf,(tr) 	5 J /x-x, I T,(~,t)dx+~(t'-t)*ST,(x,t)dx 

5Ma(t) + A  ( t )p(f- t ) ' .  


Now let t and t' be t, and t,,,, use a similar estimate for iMb and the 
definition M, =max(Ma(t,), Mb( tv)  ), and obtain, by (28), 

Now to =0 and Mo =Ma(to)=Ma ( to )=4 I x1-x2 I, because T1 and Tz  
concentrate a t  x1 and x, as t-0, and 1 2,-so I = I XZ-xo I = &  1x1-$2 I 
since x, =+ (x, +x,) . Therefore we have 

Jl,S3 I x1-xz I ( 1 +  4 ~ / d ) ~ .  

With this and (28), the sequence {t,) can be bounded: 
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Summing this geometrical series, 

(definition of [,7).  S o w  for any time t, define ~ ( t )  to  be either zero or the 
integer such that  

[rlv(t) 5 t/l 2, -x2 I Z < [17v(t)tl 

if' this integer exists. Then tV(t)  5 t and A ( t )  5 A ( t v ( t ) )  = d t ) .  Also, 

From these observations, we conclude 

where +a =-log c~/log 7. 

Both CJ and 7 are determined by d. Specifically, a =1-& ( d )  -and 

7 = [a-2( 1  + 4/*/d)]" An optimal choice of d in  relation to  4 (d )  would 
maximize a. We may choose d arbitrarily as, d2=c,, say; this will make a a 
function of p and c,/cl (proof omitted). I n  any case, even if we set d =1, 
we obtain the estimate 

where A, and a are a priori corlstants depending only on tz, c, and c,. Also, 
for the dual adjoint equation, 

\Vith (30) ,  we obtain the estimate for the continuity in space of a bounded 
solution of (1). If  T (x, t )  satisfies (1)  and I T I 5 B for t 2 to, then 

I T ( x l ; t ) - - T ( ~ ? , t ) / _ I  1 ~ [ S ( X ~ , ~ , X O , ~ ) - S ( X ~ ~ ~ ~ X O , ~ O ) I T ( X ~ , ~ O ) ~ X O I  

5B J I S(x,, t, XO, to) -fl(x2, t, $0, to) ( dzo. 
Hence, 

(31) 1 T(xl, t )  -T(x, , t )I  SBAI((XI--X, I / ( t - - t ~ ) ~ ) ~ .  



Part  V: Time Continuity. 

(31) gives half of ( 2 )  ; the remaining part, time continuity, can be 
derived from (31) and the moment bound (13). Let T ( z ,  t )  be a solution of 
( I )  with I T I 2 B for t 2 to. Then for t' > t > to we have 

since ('8d? =1. Therefore, I T (x, t )  -T(x, t') I 5 

Sow we separate this integral into two parts, in terms of a radius p ;  one 
where I y 1 5 p a n d o n e . w h e r e  / y j > p .  Thus I T ( x , t ) - T ( x , t ' ) l ~ I l + I , ,  
where 

(because JS dy = I ) ,  and 

the two inequalities, 

and if we choose p so as to minimize the sum, then 

aA,plta =2p(t'- t ) $ ( t-to)ha, 

and we obtain 

(32) I T(x,  t )  -T(Z,  t') I 5 BA,[l(t '-t)/(t - t0)1 '~ ' (~ '~) ,  

where A, = (1+ a )  A, ( 2 ~ / a A , )  This result (32),  combined with (31 ) 
yields (2 ) ,  with A =max (A,, A,). 
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Par t  V I  : Elliptic Problems. 

We treat elliptlc problems as a special type of parabolic problem, one 
in which the coefficients of the equation are time independent and a time 
independent solution is sought. The Holder continuity of solutions of unl- 
formly elliptic equations of the form V . ( C .  V T )  =0 appears as a corollary 
of the result for the parabolic case. There inay exist another proof of our 
result (3 ) .  P. R. Garabedian writes from London of a manuscript by Ennio 
de Giorgi containing such a result. See de Giorgi's note, reference [9]. 

Let  9 be a domain in space-time defined by the constraints 1 x 1 5 (r 

and t >0. Then 9 is a solid semi-infinite spherical cylinder. Call 8 the 
points of the cylindrical surface or boundary of 9, where I x I =U. Let 9, 
be the points of the base of 9,where t =0. Define 8 *  as the total boundary 
of 9, the union 8 U 9,, of the base and cylindrical surfaces. 

A "Dirichlet parabolic boundary value problem" is given when values 
of T are specified on 8" and we ask for a solution of (1) in 9 assuming 
these specified values on 8. The solution of the problem must depend 
linearly on the boundary values; also, the maximuin and minimum principles 
must hold. These facts require that  the solution T(x,  t )  be determined in 
this way : 

( 33 )  T ( x , t )  = J T ( t ) d p ( t ; x . t ) .  

Ilere (x, 2 )  is a poilit of 9, f is any point of 8",ancl dp([; r, t )  is a positive 
measure, associated with t, which has Sdp  =1and which vanishes for t ( t )  > t. 
The time and space coordinates of the point ( are called t ( ( )  and x ( t ) .  
ST'? cannot pause here for a detailed justification of (33),  but refer the 
reader to the literature. 

We can define a boundary value problem for which we know the solution 
in advance by setting T ( t )  =S(x ( t ) ,  t ( t ) ,  zo, to)  if to < 0. Then the solu- 

tion of the problem is S (x ,  t, x,, t o ) ,  and from (33),  

This is a powerful identity; i t  enables us to convert information on funda-
mental solutions into information on clp, and in particular, we can obtain a 
moment bound for dp. Multiplying (34) by I .r-x, I and integrating, we 
have 



so tha t  

Since JS dxo=1, and from the moment bound (13) again, we obtain 

Yow d p  vanishes unless t ( < )  5 t, and to can be as near to zero as desired; 
also, $dp =I. Hence we can simplify the above to  

This inolnent bound (35) on dp enables us to control the relative sizes of 
the effects of the two parts of the boundary in  determining T(x ,  t ) ,  where 
(x, t )  is  in 9. Thus 

S o w  let T ( 2 )  be a solution in a region aZ of: n-space of V . (G'(z) . V T )  
=0, where C ( z )  satisfies tlre uniform ellipticity condition wit11 bounds c, 

and 6,. If we introduce time and define T ( z ,  l )  =T ( s ) ,  then T ( x ,  t )  
satisfies V .  ( C .  V T )  =Tt, which is of our form ( 1 ) .  Suppose z, and z, 
are two points of and let d(:cl, 2,) be the smaller of d (x l )  and d (x,), the 
clistarices froin the boundary of aZ of x1 and x, (of course, d(z l ,  a.,) may be 
illfinite). For  any u < d(x,, x,), we can define 9, as the set of points (x: t )  
in space-time where 1 2-x1 1 5 0 and t 2 0 ; also, 9, can be defined for x,, 

and the boundaries a,, a,, etc. can be defined in the obvious way. T(x ,  1) 
can be regarded as a solution of a parabolic boundary value problem either 
in 9, or 9,.Another problem with solution T'(x, t )  can be defined a t  
first as an initial value problem in all space by setting T'(z, 0 )  =T ( z )  for 
all a where min(1 x-x, 1 ,  I x-x, I) so,that  is, T ' (x , t )  = T ( x )  when 
(x, t )  E BloU 9,,, and setting T'(x, 0) =0 for all other x values. If B ( o )  
=max I T (x )  I over the set of x values where min ( I x -z, 1 ,  I x -x, I ) ((T 

the11 j T'(x, 0 )  1 5 B ( v )  ; furthermore, the solution T'(z, t )  satisfies 1 T' 1 



$, a)is time independent, and on 

I'ARBUOLIC AND ELLIPTIC EQUATIONS. 951 

5B ( u )  for all t 2 0 by the maximum principle. We can also regard T'(x, t )  
as a solution of a boundary ~ a l u e  problem, either in 9, or in  a),, where the 
bou~ldary values are just the values T'(x((), t ( 6 ) )  assumed there anyway. 

By (33), for any (x, t )  E a%, 

where dpi is the 'nieasure associated with a)i, and i=1,2. Now T(x, t) =T(x) 
we have T(x, t )  =T'(x, t )  =T(x)  . There-

fore, 

and 

by use of (36).  With our I3older continuity estimate ( 2 )  for solutions of 
V . ( G .  V T )  =T t  in free space, we can bound I T'(xl, t )  -T'(x,, t ) I. This, 
with the inequality above yields 

valid for any positive t. Choice of the optimal t value gives a n  inequality 
of the form 

t f  I / d(xl,x,) and obtain (3 )~ ( x )5 B in E,we may set c r =  

Appendix. 

The methods used a b o ~ e  can give inore explicit results, such as an 
explicit lower bound for the Holder exponent a. This takes the form 
z=exp [- a, ( p 2 / ~ , )n + l ] ,  where n, depends only on the dimension n. How-
ever, a sharper estimate for a might take a quite different form. Nuinerical 
calculation of extreinal examples might give a better picture. 

The moment bound (13) serves to control the rate of dispersal of funda- 
~iiental  solutions. An iterat,ive argument based on (33) and (35) obtains 
stronger results from (13) .  I n  this argument, a fundamental solution is 
treated as the solution of an  array of parabolic boundary value problems, the 
boundaries being a sequence of spheres centered a t  the source of the funda- 
mental solution. The result is as follows : let v = [p/Zp(t, -t,)a], the largest 
integer not greater than p/2p(tz- tl)*, then 



With (38), the reproductive identity (5 ) ,  and the bound ( 7 ) , we obtain a 

pointwise upper bound of the form 

On the other hand, we obtain from (5)  and (23) (or alternatively, from (38) 
and an analogue of ( 2 5 ) ) ,  by an argument resembling that which gave (25),  
the lower bound 

where +* is an a priori function determined by c,. c,, and n. The inerluality 

S (2,) t2, %I, tl ) 2PaPbPc,where 

P ,=minS(x , , t2 ,Z ,&( t l+ t2) )  for 1 E-X, / Sf, 
P b = m i n S ( 2 , + ( t 1 + t 2 ) , ~ 1 , t 1 )for I Z - - x , I 5 p ,  

P c = j d 2 ,  where / 2-xl 1 and I 2-x2 1 5 p ,  

can be used in a iterative argument to strengthen (40) .  For any 6 > 0,  we 

obtain 

where k, and k, depend on r (and on cl, c,, and n). 

With (38), (41) and (35), we can estimate the speed of convergence 
to  assigned boundary values of the solution of an elliptic boundary value 
problem, provided the boundary is "tame " enough. A point 6 on the boun- 
dary a3 of a region aZ is called regz~larif there are two positive numbers p 

and e such that any sphere with radius s p  and centered a t  [ has at  least 
the fraction e of its volume not within 8. Then there are constants D, (T, and 
,8 determined by E, c,/c,; and n such that for any n: in with 1.7:-6 1 5 ap, 
IF-r have 
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(2 represents a variable point on the boundary if?). 
From (42),  i t  follows that the solution of an elliptic boundary value 

pl.oblem is continuous a t  the boundary if continuous values were assigned on 
tile boundary and all boundary points are regular. With Hiilder continuous 
boundary values, the solution is Holder continuous in the region and at  the 
boundary. 

From the estimates above, we can fairly easily derive a "Harnack 
iriequality " for parabolic equations : 

provided 0 T 5B for t 2 to. F is an a priori function, determined by 
c,, c, and n. For the elliptic case where T is non-negative in a sphere of 
radius r centered at  the origin, the result takes the form 

(44) 1 log(T(x')/T ($1) I S H ( r [ r - m a x ( I  x I ,  I xr I)]-l, I 3-x' I / +  
The a priori function H is determined by c,/c, and n. This result is less 
(laeily obtained than (43).  

Parabolic or elliptic problems with Neumann boundary conditions can 
aparently be handled by a relatively straightforward rederivation of the esti- 
mates of this paper in the context of the Neumann boundary, obtaining 
ultimately the Hiilder continuity of the solution for any typical boundary 
shape. 
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