
MS58: Approaches to Reducing Communication in
Krylov Subspace Methods

Organizers: Laura Grigori (INRIA) and Erin Carson (NYU)

Talks:

1. The s-Step Lanczos Method and its Behavior in Finite
Precision (Erin Carson, James W. Demmel)

2. Enlarged Krylov Subspace Methods for Reducing
Communication (Sophie M. Moufawad, Laura Grigori,
Frederic Nataf)

3. Preconditioning Communication-Avoiding Krylov Methods
(Siva Rajamanickam, Ichitaro Yamazaki, Andrey Prokopenko,
Erik G. Boman, Michael Heroux, Jack J. Dongarra)

4. Sparse Approximate Inverse Preconditioners for
Communication-Avoiding Bicgstab Solvers (Maryam Mehri
Dehnavi, Erin Carson, Nicholas Knight, James W. Demmel,
David Fernandez)

1

The s-Step Lanczos Method
and its Behavior in Finite

Precision

Erin Carson, NYU

James Demmel, UC Berkeley

SIAM LA ‘15

October 30, 2015

Why Avoid “Communication”?

• Algorithms have two costs: computation and communication

• Communication : moving data between levels of memory hierarchy
(sequential), between processors (parallel)

• On today’s computers, communication is expensive, computation is cheap,
in terms of both time and energy!

2

Sequential Parallel

CPU
Cache

CPU
DRAM

DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

Future Exascale Systems

Petascale
Systems (2009)

Predicted Exascale
Systems*

Factor
Improvement

System Peak 2 ⋅ 1015 flops 1018 flops ~1000

Node Memory
Bandwidth

25 GB/s 0.4-4 TB/s ~10-100

Total Node Interconnect
Bandwidth

3.5 GB/s 100-400 GB/s ~100

Memory Latency 100 ns 50 ns ~1

Interconnect Latency 1 𝜇s 0.5 𝜇s ~1

3

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Future Exascale Systems

Petascale
Systems (2009)

Predicted Exascale
Systems*

Factor
Improvement

System Peak 2 ⋅ 1015 flops 1018 flops ~1000

Node Memory
Bandwidth

25 GB/s 0.4-4 TB/s ~10-100

Total Node Interconnect
Bandwidth

3.5 GB/s 100-400 GB/s ~100

Memory Latency 100 ns 50 ns ~1

Interconnect Latency 1 𝜇s 0.5 𝜇s ~1

3

• Gaps between communication/computation cost only growing larger in
future systems

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Future Exascale Systems

Petascale
Systems (2009)

Predicted Exascale
Systems*

Factor
Improvement

System Peak 2 ⋅ 1015 flops 1018 flops ~1000

Node Memory
Bandwidth

25 GB/s 0.4-4 TB/s ~10-100

Total Node Interconnect
Bandwidth

3.5 GB/s 100-400 GB/s ~100

Memory Latency 100 ns 50 ns ~1

Interconnect Latency 1 𝜇s 0.5 𝜇s ~1

3

• Gaps between communication/computation cost only growing larger in
future systems

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

• Avoiding communication will be essential for applications at exascale!

Krylov Subspace Methods

4

• In each iteration,

• Add a dimension to the Krylov subspace 𝒦𝑚

• Orthogonalize (with respect to some ℒ𝑚)

• Examples: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum
Residual (GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc.

• Projection process onto the expanding Krylov subspace

𝒦𝑚 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑚−1𝑟0

• General class of iterative solvers: used for linear systems, eigenvalue problems,
singular value problems, least squares, etc.

ℒ

𝑟new

𝐴𝛿

𝑟0

0

Krylov Solvers: Limited by Communication
In terms of communication:

5

Krylov Solvers: Limited by Communication
In terms of communication:

5

“Add a dimension to 𝒦𝑚”
 Sparse Matrix-Vector Multiplication (SpMV)
• Parallel: comm. vector entries w/ neighbors
• Sequential: read 𝐴/vectors from slow memory

×

Krylov Solvers: Limited by Communication
In terms of communication:

5

“Add a dimension to 𝒦𝑚”
 Sparse Matrix-Vector Multiplication (SpMV)
• Parallel: comm. vector entries w/ neighbors
• Sequential: read 𝐴/vectors from slow memory

“Orthogonalize (with respect to some ℒ𝑚)”
 Inner products

Parallel: global reduction (All-Reduce)
Sequential: multiple reads/writes to slow
memory

×

×

Krylov Solvers: Limited by Communication
In terms of communication:

Dependencies between communication-bound kernels
in each iteration limit performance!

SpMV

orthogonalize

5

“Add a dimension to 𝒦𝑚”
 Sparse Matrix-Vector Multiplication (SpMV)
• Parallel: comm. vector entries w/ neighbors
• Sequential: read 𝐴/vectors from slow memory

“Orthogonalize (with respect to some ℒ𝑚)”
 Inner products

Parallel: global reduction (All-Reduce)
Sequential: multiple reads/writes to slow
memory

×

×

Given: initial vector 𝑣1 with 𝑣1 2
= 1

𝑢1 = 𝐴𝑣1

for 𝑖 = 1, 2, … , until convergence do

𝛼𝑖 = 𝑣𝑖
𝑇𝑢𝑖

𝑤𝑖 = 𝑢𝑖 − 𝛼𝑖𝑣𝑖

𝛽𝑖+1 = 𝑤𝑖 2

𝑣𝑖+1 = 𝑤𝑖/𝛽𝑖+1

𝑢𝑖+1 = 𝐴𝑣𝑖+1 − 𝛽𝑖+1𝑣𝑖

end for

6

The Classical Lanczos Method

Given: initial vector 𝑣1 with 𝑣1 2
= 1

𝑢1 = 𝐴𝑣1

for 𝑖 = 1, 2, … , until convergence do

𝛼𝑖 = 𝑣𝑖
𝑇𝑢𝑖

𝑤𝑖 = 𝑢𝑖 − 𝛼𝑖𝑣𝑖

𝛽𝑖+1 = 𝑤𝑖 2

𝑣𝑖+1 = 𝑤𝑖/𝛽𝑖+1

𝑢𝑖+1 = 𝐴𝑣𝑖+1 − 𝛽𝑖+1𝑣𝑖

end for

6

SpMV

The Classical Lanczos Method

Given: initial vector 𝑣1 with 𝑣1 2
= 1

𝑢1 = 𝐴𝑣1

for 𝑖 = 1, 2, … , until convergence do

𝛼𝑖 = 𝑣𝑖
𝑇𝑢𝑖

𝑤𝑖 = 𝑢𝑖 − 𝛼𝑖𝑣𝑖

𝛽𝑖+1 = 𝑤𝑖 2

𝑣𝑖+1 = 𝑤𝑖/𝛽𝑖+1

𝑢𝑖+1 = 𝐴𝑣𝑖+1 − 𝛽𝑖+1𝑣𝑖

end for

The Classical Lanczos Method

6

SpMV

Inner products

Communication-Avoiding KSMs

7

• Idea: Compute blocks of 𝑠 iterations at once

• Communicate every 𝑠 iterations instead of every iteration

• Reduces communication cost by 𝑶(𝒔)!

• (latency in parallel, latency and bandwidth in sequential)

Communication-Avoiding KSMs

7

• Idea: Compute blocks of 𝑠 iterations at once

• Communicate every 𝑠 iterations instead of every iteration

• Reduces communication cost by 𝑶(𝒔)!

• (latency in parallel, latency and bandwidth in sequential)

• An idea rediscovered many times…
• First related work: s-dimensional steepest descent - Khabaza

(‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68):
• Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see,

e.g., Van Rosendale, 1983; Chronopoulos and Gear, 1989
• Goals: increasing parallelism, avoiding I/O, increasing

“convergence rate”

Communication-Avoiding KSMs

7

• Idea: Compute blocks of 𝑠 iterations at once

• Communicate every 𝑠 iterations instead of every iteration

• Reduces communication cost by 𝑶(𝒔)!

• (latency in parallel, latency and bandwidth in sequential)

• An idea rediscovered many times…
• First related work: s-dimensional steepest descent - Khabaza

(‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68):
• Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see,

e.g., Van Rosendale, 1983; Chronopoulos and Gear, 1989
• Goals: increasing parallelism, avoiding I/O, increasing

“convergence rate”

• Resurgence of interest in recent years due to growing problem
sizes; growing relative cost of communication

Communication-Avoiding KSMs: CA-Lanczos

8

• Main idea: Unroll iteration loop by a factor of 𝑠; split iteration loop into an outer
loop (k) and an inner loop (j)

• Key observation: starting at some iteration 𝑖 ≡ 𝑠𝑘 + 𝑗,

𝑣𝑠𝑘+𝑗 , 𝑢𝑠𝑘+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑣𝑠𝑘+1 + 𝒦𝑠+1 𝐴, 𝑢𝑠𝑘+1 for 𝑗 ∈ 1, … , 𝑠 + 1

Communication-Avoiding KSMs: CA-Lanczos

8

Expand solution space 𝒔 dimensions at once
• Compute “basis matrix” 𝒴𝑘 with columns spanning

𝒦𝑠+1 𝐴, 𝑣𝑠𝑘+1 + 𝒦𝑠+1 𝐴, 𝑢𝑠𝑘+1

• Requires reading 𝑨/communicating vectors only once
• Using “matrix powers kernel”

Orthogonalize all at once
• Compute/store block of inner products between basis vectors in

Gram matrix:

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

• Communication cost of one global reduction

Outer loop 𝒌: Communication step

• Main idea: Unroll iteration loop by a factor of 𝑠; split iteration loop into an outer
loop (k) and an inner loop (j)

• Key observation: starting at some iteration 𝑖 ≡ 𝑠𝑘 + 𝑗,

𝑣𝑠𝑘+𝑗 , 𝑢𝑠𝑘+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑣𝑠𝑘+1 + 𝒦𝑠+1 𝐴, 𝑢𝑠𝑘+1 for 𝑗 ∈ 1, … , 𝑠 + 1

9

Perform 𝑠 iterations of updates
• Using 𝒴𝑘 and 𝒢𝑘, this requires no communication!
• Represent 𝑛-vectors by their 𝑂 𝑠 coordinates in 𝒴𝑘:

𝑣𝑠𝑘+𝑗 = 𝒴𝑘𝑣𝑘,𝑗
′ , 𝑢𝑠𝑘+𝑗 = 𝒴𝑘𝑢𝑘,𝑗

′ , 𝑤𝑠𝑘+𝑗 = 𝒴𝑘𝑤𝑗
′

Inner loop:
Computation

steps, no
communication!

Communication-Avoiding KSMs: CA-Lanczos

9

Communication-Avoiding KSMs: CA-Lanczos

𝐴𝑣𝑖+1

×𝑛

𝑛

Perform 𝑠 iterations of updates
• Using 𝒴𝑘 and 𝒢𝑘, this requires no communication!
• Represent 𝑛-vectors by their 𝑂 𝑠 coordinates in 𝒴𝑘:

𝑣𝑠𝑘+𝑗 = 𝒴𝑘𝑣𝑘,𝑗
′ , 𝑢𝑠𝑘+𝑗 = 𝒴𝑘𝑢𝑘,𝑗

′ , 𝑤𝑠𝑘+𝑗 = 𝒴𝑘𝑤𝑗
′

Inner loop:
Computation

steps, no
communication!

9

→

ℬ𝑘𝑣𝑘,𝑗+1
′

𝑂(𝑠)

𝑂(𝑠)

×

Communication-Avoiding KSMs: CA-Lanczos

𝐴𝑣𝑖+1

×𝑛

𝑛

Perform 𝑠 iterations of updates
• Using 𝒴𝑘 and 𝒢𝑘, this requires no communication!
• Represent 𝑛-vectors by their 𝑂 𝑠 coordinates in 𝒴𝑘:

𝑣𝑠𝑘+𝑗 = 𝒴𝑘𝑣𝑘,𝑗
′ , 𝑢𝑠𝑘+𝑗 = 𝒴𝑘𝑢𝑘,𝑗

′ , 𝑤𝑠𝑘+𝑗 = 𝒴𝑘𝑤𝑗
′

Inner loop:
Computation

steps, no
communication!

9

→

ℬ𝑘𝑣𝑘,𝑗+1
′

𝑂(𝑠)

𝑂(𝑠)

×

Communication-Avoiding KSMs: CA-Lanczos

𝑣𝑖
𝑇𝑢𝑖

×

𝐴𝑣𝑖+1

×𝑛

𝑛

Perform 𝑠 iterations of updates
• Using 𝒴𝑘 and 𝒢𝑘, this requires no communication!
• Represent 𝑛-vectors by their 𝑂 𝑠 coordinates in 𝒴𝑘:

𝑣𝑠𝑘+𝑗 = 𝒴𝑘𝑣𝑘,𝑗
′ , 𝑢𝑠𝑘+𝑗 = 𝒴𝑘𝑢𝑘,𝑗

′ , 𝑤𝑠𝑘+𝑗 = 𝒴𝑘𝑤𝑗
′

Inner loop:
Computation

steps, no
communication!

9

→

→

ℬ𝑘𝑣𝑘,𝑗+1
′

𝑂(𝑠)

𝑂(𝑠)

×

× ×

𝑣𝑘,𝑖
′𝑇 𝒢𝑘𝑢𝑘,𝑖

′

Communication-Avoiding KSMs: CA-Lanczos

𝑣𝑖
𝑇𝑢𝑖

×

𝐴𝑣𝑖+1

×𝑛

𝑛

Perform 𝑠 iterations of updates
• Using 𝒴𝑘 and 𝒢𝑘, this requires no communication!
• Represent 𝑛-vectors by their 𝑂 𝑠 coordinates in 𝒴𝑘:

𝑣𝑠𝑘+𝑗 = 𝒴𝑘𝑣𝑘,𝑗
′ , 𝑢𝑠𝑘+𝑗 = 𝒴𝑘𝑢𝑘,𝑗

′ , 𝑤𝑠𝑘+𝑗 = 𝒴𝑘𝑤𝑗
′

Inner loop:
Computation

steps, no
communication!

Given: initial vector 𝑣1 with 𝑣1 2
= 1

𝑢1 = 𝐴𝑣1

for 𝑘 = 0, 1, … , until convergence do
Compute 𝒴𝑘 , compute 𝒢𝑘 = 𝒴𝑘

𝑇𝒴𝑘

Let 𝑣𝑘,1
′ = 𝑒1, 𝑢𝑘,1

′ = 𝑒𝑠+2

for 𝑗 = 1, … , 𝑠 do

𝛼𝑠𝑘+𝑗 = 𝑣𝑘,𝑗
′𝑇 𝒢𝑘𝑢𝑘,𝑗

′

𝑤𝑘,𝑗
′ = 𝑢𝑘,𝑗

′ − 𝛼𝑠𝑘+𝑗𝑣𝑘,𝑗
′

𝛽𝑠𝑘+𝑗+1 = 𝑤𝑘,𝑗
′𝑇 𝒢𝑘𝑤𝑘,𝑗

′ 1/2

𝑣𝑘,𝑗+1
′ = 𝑤𝑘,𝑗

′ / 𝛽𝑠𝑘+𝑗+1

𝑢𝑘,𝑗+1
′ = ℬ𝑘𝑣𝑘,𝑗+1

′ − 𝛽𝑠𝑘+𝑗+1𝑣𝑘,𝑗
′

end for
Compute 𝑣𝑠𝑘+𝑠+1 = 𝒴𝑘𝑣𝑘,𝑠+1

′ , 𝑢𝑠𝑘+𝑠+1 = 𝒴𝑘𝑢𝑘,𝑠+1
′

end for

10

The CA-Lanczos Method

via CA Matrix
Powers Kernel

Global reduction

to compute 𝒢𝑘

10

Given: initial vector 𝑣1 with 𝑣1 2
= 1

𝑢1 = 𝐴𝑣1

for 𝑘 = 0, 1, … , until convergence do
Compute 𝒴𝑘 , compute 𝒢𝑘 = 𝒴𝑘

𝑇𝒴𝑘

Let 𝑣𝑘,1
′ = 𝑒1, 𝑢𝑘,1

′ = 𝑒𝑠+2

for 𝑗 = 1, … , 𝑠 do

𝛼𝑠𝑘+𝑗 = 𝑣𝑘,𝑗
′𝑇 𝒢𝑘𝑢𝑘,𝑗

′

𝑤𝑘,𝑗
′ = 𝑢𝑘,𝑗

′ − 𝛼𝑠𝑘+𝑗𝑣𝑘,𝑗
′

𝛽𝑠𝑘+𝑗+1 = 𝑤𝑘,𝑗
′𝑇 𝒢𝑘𝑤𝑘,𝑗

′ 1/2

𝑣𝑘,𝑗+1
′ = 𝑤𝑘,𝑗

′ / 𝛽𝑠𝑘+𝑗+1

𝑢𝑘,𝑗+1
′ = ℬ𝑘𝑣𝑘,𝑗+1

′ − 𝛽𝑠𝑘+𝑗+1𝑣𝑘,𝑗
′

end for
Compute 𝑣𝑠𝑘+𝑠+1 = 𝒴𝑘𝑣𝑘,𝑠+1

′ , 𝑢𝑠𝑘+𝑠+1 = 𝒴𝑘𝑢𝑘,𝑠+1
′

end for

The CA-Lanczos Method

via CA Matrix
Powers Kernel

Global reduction

to compute 𝒢𝑘

10

Local
computations: no
communication!

Given: initial vector 𝑣1 with 𝑣1 2
= 1

𝑢1 = 𝐴𝑣1

for 𝑘 = 0, 1, … , until convergence do
Compute 𝒴𝑘 , compute 𝒢𝑘 = 𝒴𝑘

𝑇𝒴𝑘

Let 𝑣𝑘,1
′ = 𝑒1, 𝑢𝑘,1

′ = 𝑒𝑠+2

for 𝑗 = 1, … , 𝑠 do

𝛼𝑠𝑘+𝑗 = 𝑣𝑘,𝑗
′𝑇 𝒢𝑘𝑢𝑘,𝑗

′

𝑤𝑘,𝑗
′ = 𝑢𝑘,𝑗

′ − 𝛼𝑠𝑘+𝑗𝑣𝑘,𝑗
′

𝛽𝑠𝑘+𝑗+1 = 𝑤𝑘,𝑗
′𝑇 𝒢𝑘𝑤𝑘,𝑗

′ 1/2

𝑣𝑘,𝑗+1
′ = 𝑤𝑘,𝑗

′ / 𝛽𝑠𝑘+𝑗+1

𝑢𝑘,𝑗+1
′ = ℬ𝑘𝑣𝑘,𝑗+1

′ − 𝛽𝑠𝑘+𝑗+1𝑣𝑘,𝑗
′

end for
Compute 𝑣𝑠𝑘+𝑠+1 = 𝒴𝑘𝑣𝑘,𝑠+1

′ , 𝑢𝑠𝑘+𝑠+1 = 𝒴𝑘𝑢𝑘,𝑠+1
′

end for

The CA-Lanczos Method

Complexity Comparison

11

Flops Words Moved Messages

SpMV Orth. SpMV Orth. SpMV Orth.

Classical
CG

𝑠𝑛

𝑝

𝑠𝑛

𝑝 𝑠 𝑛 𝑝 𝑠 log2 𝑝 𝑠 𝑠 log2 𝑝

CA-CG
𝑠𝑛

𝑝
𝑠2𝑛

𝑝
𝑠 𝑛 𝑝 𝑠2 log2 𝑝 1 log2 𝑝

Example of parallel (per processor) complexity for 𝑠 iterations of Classical
Lanczos vs. CA-Lanczos for a 2D 9-point stencil:

(Assuming each of 𝑝 processors owns 𝑛/𝑝 rows of the matrix and 𝑠 ≤ 𝑛/𝑝)

All values in the table meant in the Big-O sense (i.e., lower order terms
and constants not included)

Complexity Comparison

11

Flops Words Moved Messages

SpMV Orth. SpMV Orth. SpMV Orth.

Classical
CG

𝑠𝑛

𝑝

𝑠𝑛

𝑝 𝑠 𝑛 𝑝 𝑠 log2 𝑝 𝑠 𝑠 log2 𝑝

CA-CG
𝑠𝑛

𝑝
𝑠2𝑛

𝑝
𝑠 𝑛 𝑝 𝑠2 log2 𝑝 1 log2 𝑝

All values in the table meant in the Big-O sense (i.e., lower order terms
and constants not included)

Example of parallel (per processor) complexity for 𝑠 iterations of Classical
Lanczos vs. CA-Lanczos for a 2D 9-point stencil:

(Assuming each of 𝑝 processors owns 𝑛/𝑝 rows of the matrix and 𝑠 ≤ 𝑛/𝑝)

Complexity Comparison

11

Flops Words Moved Messages

SpMV Orth. SpMV Orth. SpMV Orth.

Classical
CG

𝑠𝑛

𝑝

𝑠𝑛

𝑝 𝑠 𝑛 𝑝 𝑠 log2 𝑝 𝑠 𝑠 log2 𝑝

CA-CG
𝑠𝑛

𝑝
𝑠2𝑛

𝑝
𝑠 𝑛 𝑝 𝑠2 log2 𝑝 1 log2 𝑝

All values in the table meant in the Big-O sense (i.e., lower order terms
and constants not included)

Example of parallel (per processor) complexity for 𝑠 iterations of Classical
Lanczos vs. CA-Lanczos for a 2D 9-point stencil:

(Assuming each of 𝑝 processors owns 𝑛/𝑝 rows of the matrix and 𝑠 ≤ 𝑛/𝑝)

From Theory to Practice

• Parameter 𝑠 is limited by machine parameters and matrix
sparsity structure

• We can auto-tune to find the best 𝑠 based on these properties

• That is, find 𝑠 that gives the fastest speed per iteration

12

From Theory to Practice

• Parameter 𝑠 is limited by machine parameters and matrix
sparsity structure

• We can auto-tune to find the best 𝑠 based on these properties

• That is, find 𝑠 that gives the fastest speed per iteration

• In practice, we don’t just care about speed per iteration, but
also the number of iterations

Runtime = (time/iteration) x (# iterations)

12

From Theory to Practice

• Parameter 𝑠 is limited by machine parameters and matrix
sparsity structure

• We can auto-tune to find the best 𝑠 based on these properties

• That is, find 𝑠 that gives the fastest speed per iteration

• In practice, we don’t just care about speed per iteration, but
also the number of iterations

Runtime = (time/iteration) x (# iterations)

• We also need to consider how convergence rate and accuracy
are affected by choice of 𝑠!

12

From Theory to Practice

13

• CA-KSMs are mathematically equivalent to classical KSMs

From Theory to Practice

13

• CA-KSMs are mathematically equivalent to classical KSMs

• But can behave much differently in finite precision!

From Theory to Practice

13

• CA-KSMs are mathematically equivalent to classical KSMs

• Roundoff error bounds generally grow with increasing 𝑠

• But can behave much differently in finite precision!

From Theory to Practice

13

• CA-KSMs are mathematically equivalent to classical KSMs

• Roundoff error bounds generally grow with increasing 𝑠

• But can behave much differently in finite precision!

• Two effects of roundoff error:

From Theory to Practice

13

• CA-KSMs are mathematically equivalent to classical KSMs

• Roundoff error bounds generally grow with increasing 𝑠

• But can behave much differently in finite precision!

• Two effects of roundoff error:

1. Decrease in accuracy → Tradeoff: increasing blocking factor
𝑠 past a certain point: accuracy limited

From Theory to Practice

13

• CA-KSMs are mathematically equivalent to classical KSMs

• Roundoff error bounds generally grow with increasing 𝑠

• But can behave much differently in finite precision!

• Two effects of roundoff error:

1. Decrease in accuracy → Tradeoff: increasing blocking factor
𝑠 past a certain point: accuracy limited

2. Delay of convergence → Tradeoff: increasing blocking factor
𝑠 past a certain point: no speedup expected

From Theory to Practice

13

• CA-KSMs are mathematically equivalent to classical KSMs

• Roundoff error bounds generally grow with increasing 𝑠

• But can behave much differently in finite precision!

• Two effects of roundoff error:

Runtime = (time/iteration) x (# iterations)

1. Decrease in accuracy → Tradeoff: increasing blocking factor
𝑠 past a certain point: accuracy limited

2. Delay of convergence → Tradeoff: increasing blocking factor
𝑠 past a certain point: no speedup expected

From Theory to Practice

13

• CA-KSMs are mathematically equivalent to classical KSMs

• Roundoff error bounds generally grow with increasing 𝑠

• But can behave much differently in finite precision!

• Two effects of roundoff error:

Runtime = (time/iteration) x (# iterations)

1. Decrease in accuracy → Tradeoff: increasing blocking factor
𝑠 past a certain point: accuracy limited

2. Delay of convergence → Tradeoff: increasing blocking factor
𝑠 past a certain point: no speedup expected

Paige’s Results for Classical Lanczos

• Using bounds on local rounding errors in Lanczos, Paige showed that

1. The computed Ritz values always lie between the extreme
eigenvalues of 𝐴 to within a small multiple of machine
precision.

2. At least one small interval containing an eigenvalue of 𝐴 is
found by the 𝑛th iteration.

3. The algorithm behaves numerically like Lanczos with full
reorthogonalization until a very close eigenvalue
approximation is found.

4. The loss of orthogonality among basis vectors follows a
rigorous pattern and implies that some Ritz values have
converged.

14

Paige’s Results for Classical Lanczos

• Using bounds on local rounding errors in Lanczos, Paige showed that

1. The computed Ritz values always lie between the extreme
eigenvalues of 𝐴 to within a small multiple of machine
precision.

2. At least one small interval containing an eigenvalue of 𝐴 is
found by the 𝑛th iteration.

3. The algorithm behaves numerically like Lanczos with full
reorthogonalization until a very close eigenvalue
approximation is found.

4. The loss of orthogonality among basis vectors follows a
rigorous pattern and implies that some Ritz values have
converged.

Do the same statements hold for CA-Lanczos?

14

Finite precision Lanczos process: (𝐴 is 𝑛 × 𝑛 with at most 𝑁 nonzeros per row)

𝐴 𝑉𝑚 = 𝑉𝑚
 𝑇𝑚 + 𝛽𝑚+1 𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿 𝑉𝑚

 𝑉𝑚 = 𝑣1, … , 𝑣𝑚 , 𝛿 𝑉𝑚 = 𝛿 𝑣1, … , 𝛿 𝑣𝑚 , 𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱ 𝛽𝑚

 𝛽𝑚 𝛼𝑚

Paige’s Lanczos Convergence Analysis

15

Finite precision Lanczos process: (𝐴 is 𝑛 × 𝑛 with at most 𝑁 nonzeros per row)

𝐴 𝑉𝑚 = 𝑉𝑚
 𝑇𝑚 + 𝛽𝑚+1 𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿 𝑉𝑚

 𝑉𝑚 = 𝑣1, … , 𝑣𝑚 , 𝛿 𝑉𝑚 = 𝛿 𝑣1, … , 𝛿 𝑣𝑚 , 𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱ 𝛽𝑚

 𝛽𝑚 𝛼𝑚

Paige’s Lanczos Convergence Analysis

for 𝑖 ∈ {1, … , 𝑚},
𝛿 𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1
2 + 𝛼𝑖

2 + 𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

15

where 𝜎 ≡ 𝐴 2, and
𝜃𝜎 ≡ 𝐴 2

Finite precision Lanczos process: (𝐴 is 𝑛 × 𝑛 with at most 𝑁 nonzeros per row)

𝐴 𝑉𝑚 = 𝑉𝑚
 𝑇𝑚 + 𝛽𝑚+1 𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿 𝑉𝑚

 𝑉𝑚 = 𝑣1, … , 𝑣𝑚 , 𝛿 𝑉𝑚 = 𝛿 𝑣1, … , 𝛿 𝑣𝑚 , 𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱ 𝛽𝑚

 𝛽𝑚 𝛼𝑚

Paige’s Lanczos Convergence Analysis

Classic Lanczos (Paige, 1976):

for 𝑖 ∈ {1, … , 𝑚},
𝛿 𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1
2 + 𝛼𝑖

2 + 𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

15

where 𝜎 ≡ 𝐴 2, and
𝜃𝜎 ≡ 𝐴 2

𝜀0 = 𝑂 𝜀𝑛

𝜀1 = 𝑂 𝜀𝑁𝜃

Finite precision Lanczos process: (𝐴 is 𝑛 × 𝑛 with at most 𝑁 nonzeros per row)

𝐴 𝑉𝑚 = 𝑉𝑚
 𝑇𝑚 + 𝛽𝑚+1 𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿 𝑉𝑚

 𝑉𝑚 = 𝑣1, … , 𝑣𝑚 , 𝛿 𝑉𝑚 = 𝛿 𝑣1, … , 𝛿 𝑣𝑚 , 𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱ 𝛽𝑚

 𝛽𝑚 𝛼𝑚

Paige’s Lanczos Convergence Analysis

Classic Lanczos (Paige, 1976):

for 𝑖 ∈ {1, … , 𝑚},
𝛿 𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1
2 + 𝛼𝑖

2 + 𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

15

where 𝜎 ≡ 𝐴 2, and
𝜃𝜎 ≡ 𝐴 2

CA-Lanczos:

𝜀0 = 𝑂 𝜀𝑛

𝜀1 = 𝑂 𝜀𝑁𝜃

𝜀0 = 𝑂 𝜀𝑛𝚪𝟐

𝜀1 = 𝑂 𝜀𝑁𝜃𝚪

Finite precision Lanczos process: (𝐴 is 𝑛 × 𝑛 with at most 𝑁 nonzeros per row)

𝐴 𝑉𝑚 = 𝑉𝑚
 𝑇𝑚 + 𝛽𝑚+1 𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿 𝑉𝑚

 𝑉𝑚 = 𝑣1, … , 𝑣𝑚 , 𝛿 𝑉𝑚 = 𝛿 𝑣1, … , 𝛿 𝑣𝑚 , 𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱ 𝛽𝑚

 𝛽𝑚 𝛼𝑚

Paige’s Lanczos Convergence Analysis

Classic Lanczos (Paige, 1976):

for 𝑖 ∈ {1, … , 𝑚},
𝛿 𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1
2 + 𝛼𝑖

2 + 𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

15

where 𝜎 ≡ 𝐴 2, and
𝜃𝜎 ≡ 𝐴 2

CA-Lanczos:

𝜀0 = 𝑂 𝜀𝑛

𝜀1 = 𝑂 𝜀𝑁𝜃

𝜀0 = 𝑂 𝜀𝑛𝚪𝟐

𝜀1 = 𝑂 𝜀𝑁𝜃𝚪

Γ ≤ max
ℓ≤𝑘

𝒴ℓ
+

2 ∙ 𝒴ℓ 2 ≤ 2𝑠+1 ∙ max
ℓ≤𝑘

𝜅 𝒴ℓ

• Roundoff errors in CA variant follow same pattern as classical variant, but
amplified by factor of Γ or Γ2

• Theoretically confirms empirical observations on importance of basis
conditioning (dating back to late ‘80s)

• A loose bound for the amplification term:

Γ ≤ max
ℓ≤𝑘

𝒴ℓ
+

2 ∙ 𝒴ℓ 2 ≤ 2𝑠+1 ∙ max
ℓ≤𝑘

𝜅 𝒴ℓ

• What we really need: 𝒴 |𝑦′| 2 ≤ Γ 𝒴𝑦′ 2 to hold for the computed basis 𝒴
and coordinate vector 𝑦′ in every bound.

• Tighter bound on 𝚪 possible; requires some light bookkeeping

• Example: for bounds on 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 and 𝑣𝑖+1

𝑇 𝑣𝑖+1 − 1 , we can use the
definition

Γ𝑘,𝑗 ≡ max
𝑥∈{ 𝑤𝑘,𝑗

′ , 𝑢𝑘,𝑗
′ , 𝑣𝑘,𝑗

′ , 𝑣𝑘,𝑗−1
′ }

 𝒴𝑘 𝑥
2

 𝒴𝑘𝑥
2

The Amplification Term Γ

16

Problem: 2D Poisson,
𝑛 = 256,
random starting vector

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

Computed value

Bound
Amplification factor Γ2

𝒔 = 𝟒

Problem: 2D Poisson,
𝑛 = 256,
random starting vector

Computed value

Bound
Amplification factor Γ

𝒔 = 𝟖

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

𝒔 = 𝟏𝟐

Problem: 2D Poisson,
𝑛 = 256,
random starting vector

Computed value

Bound
Amplification factor Γ2

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

Results for CA-Lanczos

18

• Back to our question: Do Paige’s results, e.g.,
loss of orthogonality  eigenvalue convergence

hold for CA-Lanczos?

• The answer is YES!

Results for CA-Lanczos

18

…but

• Back to our question: Do Paige’s results, e.g.,
loss of orthogonality  eigenvalue convergence

hold for CA-Lanczos?

• Only if:

• 𝜀0 ≡ 2𝜀 𝑛+11𝑠+15 Γ2 ≤
1

12

• i.e., Γ ≤ 24𝜖 𝑛 + 11𝑠 + 15
− 1 2

= 𝑂 𝑛𝜖 −1/2

• Otherwise, e.g., can lose orthogonality due to computation with
(numerically) rank-deficient basis

• The answer is YES!

Results for CA-Lanczos

18

…but

• Back to our question: Do Paige’s results, e.g.,
loss of orthogonality  eigenvalue convergence

hold for CA-Lanczos?

• Only if:

• 𝜀0 ≡ 2𝜀 𝑛+11𝑠+15 Γ2 ≤
1

12

• i.e., Γ ≤ 24𝜖 𝑛 + 11𝑠 + 15
− 1 2

= 𝑂 𝑛𝜖 −1/2

• Otherwise, e.g., can lose orthogonality due to computation with
(numerically) rank-deficient basis

• The answer is YES!

Results for CA-Lanczos

18

…but

• Back to our question: Do Paige’s results, e.g.,
loss of orthogonality  eigenvalue convergence

hold for CA-Lanczos?

• Take-away: we can use this bound on Γ to design a better algorithm!
• Mixed precision, selective reorthogonalization, dynamic basis size, etc.

Problem: Diagonal matrix with 𝑛 = 100 with
evenly spaced eigenvalues between 𝜆𝑚𝑖𝑛 = 0.1
and 𝜆𝑚𝑎𝑥 = 100; random starting vector

Top plots:

Computed Γ2

24(𝜖(𝑛 + 11𝑠 + 15) −1

Bottom Plots:

𝒔 = 𝟐

Computed Ritz values True eigenvalues

Bounds on range of computed Ritz values

𝒔 = 𝟒

Bottom Plots:

Problem: Diagonal matrix with 𝑛 = 100 with
evenly spaced eigenvalues between 𝜆𝑚𝑖𝑛 = 0.1
and 𝜆𝑚𝑎𝑥 = 100; random starting vector

Top plots:

Computed Γ2

24(𝜖(𝑛 + 11𝑠 + 15) −1

Computed Ritz values True eigenvalues

Bounds on range of computed Ritz values

𝒔 = 𝟏𝟐

Bottom Plots:

Problem: Diagonal matrix with 𝑛 = 100 with
evenly spaced eigenvalues between 𝜆𝑚𝑖𝑛 = 0.1
and 𝜆𝑚𝑎𝑥 = 100; random starting vector

Top plots:

Computed Γ2

24(𝜖(𝑛 + 11𝑠 + 15) −1

Computed Ritz values True eigenvalues

Bounds on range of computed Ritz values

Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

Measure of loss
of orthogonality

Measure of Ritz
value convergence

Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

Extending the results of Greenbaum (1989):

21

Eigenvalue approximations generated at each step by a perturbed
Lanczos recurrence for 𝐴 are equal to those generated by exact
Lanczos applied a larger matrix whose eigenvalues lie within
intervals about the eigenvalues of 𝐴.

𝜆

Extending the results of Greenbaum (1989):

21

Eigenvalue approximations generated at each step by a perturbed
Lanczos recurrence for 𝐴 are equal to those generated by exact
Lanczos applied a larger matrix whose eigenvalues lie within
intervals about the eigenvalues of 𝐴.

𝜆

𝑂(𝜖𝑛3 𝐴)

Classical Lanczos

Extending the results of Greenbaum (1989):

21

Eigenvalue approximations generated at each step by a perturbed
Lanczos recurrence for 𝐴 are equal to those generated by exact
Lanczos applied a larger matrix whose eigenvalues lie within
intervals about the eigenvalues of 𝐴.

𝜆

𝑂(𝜖𝑛3 𝐴)

𝑂(𝜖𝑛3 𝐴 𝚪𝟐)

Classical Lanczos

CA-Lanczos

Extending the results of Greenbaum (1989):

Eigenvalue approximations generated at each step by a perturbed
Lanczos recurrence for 𝐴 are equal to those generated by exact
Lanczos applied a larger matrix whose eigenvalues lie within
intervals about the eigenvalues of 𝐴.

21

𝜆

𝑂(𝜖𝑛3 𝐴)

𝑂(𝜖𝑛3 𝐴 𝚪𝟐)

Classical Lanczos

CA-Lanczos

Extending the results of Greenbaum (1989):

Ongoing work…

21

Eigenvalue approximations generated at each step by a perturbed
Lanczos recurrence for 𝐴 are equal to those generated by exact
Lanczos applied a larger matrix whose eigenvalues lie within
intervals about the eigenvalues of 𝐴.

Future Directions

22

• New Algorithms/Applications
• Application of communication-avoiding ideas and solvers to new

computational science domains

• Design of new high-performance preconditioners

• Improving Usability
• Automating parameter selection via “numerical auto-tuning”

• Finite-Precision Analysis
• Bounds on stability and convergence for other Krylov methods

(particularly in the nonsymmetric case)

• Extension of “Backwards-like” error analyses

Broad research agenda: Design methods for large-scale problems that
optimize performance subject to application-specific numerical constraints

Thank you!

contact: erinc@cims.nyu.edu
http://www.cims.nyu.edu/~erinc/

