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Why Avoid “Communication”?

• Algorithms have two costs: computation and communication

• Communication : moving data between levels of memory hierarchy 
(sequential), between processors (parallel)

• On today’s computers, communication is expensive, computation is cheap, 
in terms of both time and energy!
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Future Exascale Systems

Petascale
Systems (2009)

Predicted Exascale
Systems*

Factor 
Improvement

System Peak 2 ⋅ 1015 flops 1018 flops ~1000

Node Memory 
Bandwidth

25 GB/s 0.4-4 TB/s ~10-100

Total Node Interconnect 
Bandwidth

3.5 GB/s 100-400 GB/s ~100

Memory Latency 100 ns 50 ns ~1

Interconnect Latency 1 𝜇s 0.5 𝜇s ~1
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*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL) 
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• Gaps between communication/computation cost only growing larger in 
future systems

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL) 

• Avoiding communication will be essential for applications at exascale!



Krylov Subspace Methods
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• In each iteration, 

• Add a dimension to the Krylov subspace 𝒦𝑚

• Orthogonalize (with respect to some ℒ𝑚)

• Examples: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum 
Residual (GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc. 

• Projection process onto the expanding Krylov subspace

𝒦𝑚 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑚−1𝑟0

• General class of iterative solvers: used for linear systems, eigenvalue problems, 
singular value problems, least squares, etc. 
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Krylov Solvers: Limited by Communication
In terms of communication:
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Krylov Solvers: Limited by Communication
In terms of communication:

Dependencies between communication-bound kernels 
in each iteration limit performance!

SpMV

orthogonalize
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Given: initial vector 𝑣1 with 𝑣1 2
= 1

𝑢1 = 𝐴𝑣1

for 𝑖 = 1, 2, … , until convergence do

𝛼𝑖 = 𝑣𝑖
𝑇𝑢𝑖

𝑤𝑖 = 𝑢𝑖 − 𝛼𝑖𝑣𝑖

𝛽𝑖+1 = 𝑤𝑖 2

𝑣𝑖+1 = 𝑤𝑖/𝛽𝑖+1

𝑢𝑖+1 = 𝐴𝑣𝑖+1 − 𝛽𝑖+1𝑣𝑖

end for
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The Classical Lanczos Method
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The Classical Lanczos Method

6

SpMV

Inner products



Communication-Avoiding KSMs
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• Idea: Compute blocks of 𝑠 iterations at once 

• Communicate every 𝑠 iterations instead of every iteration

• Reduces communication cost by 𝑶(𝒔)! 

• (latency in parallel, latency and bandwidth in sequential)
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• First related work: s-dimensional steepest descent - Khabaza

(‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68): 
• Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, 

e.g., Van Rosendale, 1983;   Chronopoulos and Gear, 1989
• Goals: increasing parallelism, avoiding I/O, increasing 

“convergence rate”

• Resurgence of interest in recent years due to growing problem 
sizes; growing relative cost of communication



Communication-Avoiding KSMs: CA-Lanczos
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• Main idea: Unroll iteration loop by a factor of 𝑠; split iteration loop into an outer 
loop (k) and an inner loop (j)

• Key observation: starting at some iteration 𝑖 ≡ 𝑠𝑘 + 𝑗,

𝑣𝑠𝑘+𝑗 , 𝑢𝑠𝑘+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑣𝑠𝑘+1 + 𝒦𝑠+1 𝐴, 𝑢𝑠𝑘+1 for    𝑗 ∈ 1, … , 𝑠 + 1



Communication-Avoiding KSMs: CA-Lanczos
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Expand solution space 𝒔 dimensions at once
• Compute “basis matrix” 𝒴𝑘 with columns spanning

𝒦𝑠+1 𝐴, 𝑣𝑠𝑘+1 + 𝒦𝑠+1 𝐴, 𝑢𝑠𝑘+1

• Requires reading 𝑨/communicating vectors only once
• Using “matrix powers kernel”

Orthogonalize all at once
• Compute/store block of inner products between basis vectors in 

Gram matrix:

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

• Communication cost of one global reduction

Outer loop 𝒌: Communication step

• Main idea: Unroll iteration loop by a factor of 𝑠; split iteration loop into an outer 
loop (k) and an inner loop (j)

• Key observation: starting at some iteration 𝑖 ≡ 𝑠𝑘 + 𝑗,

𝑣𝑠𝑘+𝑗 , 𝑢𝑠𝑘+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑣𝑠𝑘+1 + 𝒦𝑠+1 𝐴, 𝑢𝑠𝑘+1 for    𝑗 ∈ 1, … , 𝑠 + 1
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Perform 𝑠 iterations of updates
• Using 𝒴𝑘 and 𝒢𝑘, this requires no communication!
• Represent 𝑛-vectors by their 𝑂 𝑠 coordinates in 𝒴𝑘:

𝑣𝑠𝑘+𝑗 = 𝒴𝑘𝑣𝑘,𝑗
′ , 𝑢𝑠𝑘+𝑗 = 𝒴𝑘𝑢𝑘,𝑗

′ , 𝑤𝑠𝑘+𝑗 = 𝒴𝑘𝑤𝑗
′

Inner loop:
Computation 

steps, no 
communication!

Communication-Avoiding KSMs: CA-Lanczos



9

Communication-Avoiding KSMs: CA-Lanczos

𝐴𝑣𝑖+1

×𝑛

𝑛

Perform 𝑠 iterations of updates
• Using 𝒴𝑘 and 𝒢𝑘, this requires no communication!
• Represent 𝑛-vectors by their 𝑂 𝑠 coordinates in 𝒴𝑘:

𝑣𝑠𝑘+𝑗 = 𝒴𝑘𝑣𝑘,𝑗
′ , 𝑢𝑠𝑘+𝑗 = 𝒴𝑘𝑢𝑘,𝑗

′ , 𝑤𝑠𝑘+𝑗 = 𝒴𝑘𝑤𝑗
′

Inner loop:
Computation 

steps, no 
communication!



9

→

ℬ𝑘𝑣𝑘,𝑗+1
′

𝑂(𝑠)

𝑂(𝑠)

×

Communication-Avoiding KSMs: CA-Lanczos

𝐴𝑣𝑖+1

×𝑛

𝑛

Perform 𝑠 iterations of updates
• Using 𝒴𝑘 and 𝒢𝑘, this requires no communication!
• Represent 𝑛-vectors by their 𝑂 𝑠 coordinates in 𝒴𝑘:

𝑣𝑠𝑘+𝑗 = 𝒴𝑘𝑣𝑘,𝑗
′ , 𝑢𝑠𝑘+𝑗 = 𝒴𝑘𝑢𝑘,𝑗

′ , 𝑤𝑠𝑘+𝑗 = 𝒴𝑘𝑤𝑗
′

Inner loop:
Computation 

steps, no 
communication!



9

→

ℬ𝑘𝑣𝑘,𝑗+1
′

𝑂(𝑠)

𝑂(𝑠)

×

Communication-Avoiding KSMs: CA-Lanczos

𝑣𝑖
𝑇𝑢𝑖

×

𝐴𝑣𝑖+1

×𝑛

𝑛

Perform 𝑠 iterations of updates
• Using 𝒴𝑘 and 𝒢𝑘, this requires no communication!
• Represent 𝑛-vectors by their 𝑂 𝑠 coordinates in 𝒴𝑘:

𝑣𝑠𝑘+𝑗 = 𝒴𝑘𝑣𝑘,𝑗
′ , 𝑢𝑠𝑘+𝑗 = 𝒴𝑘𝑢𝑘,𝑗

′ , 𝑤𝑠𝑘+𝑗 = 𝒴𝑘𝑤𝑗
′

Inner loop:
Computation 

steps, no 
communication!



9

→

→

ℬ𝑘𝑣𝑘,𝑗+1
′

𝑂(𝑠)

𝑂(𝑠)

×

× ×

𝑣𝑘,𝑖
′𝑇 𝒢𝑘𝑢𝑘,𝑖

′

Communication-Avoiding KSMs: CA-Lanczos

𝑣𝑖
𝑇𝑢𝑖

×

𝐴𝑣𝑖+1

×𝑛

𝑛

Perform 𝑠 iterations of updates
• Using 𝒴𝑘 and 𝒢𝑘, this requires no communication!
• Represent 𝑛-vectors by their 𝑂 𝑠 coordinates in 𝒴𝑘:

𝑣𝑠𝑘+𝑗 = 𝒴𝑘𝑣𝑘,𝑗
′ , 𝑢𝑠𝑘+𝑗 = 𝒴𝑘𝑢𝑘,𝑗

′ , 𝑤𝑠𝑘+𝑗 = 𝒴𝑘𝑤𝑗
′

Inner loop:
Computation 

steps, no 
communication!



Given: initial vector 𝑣1 with 𝑣1 2
= 1

𝑢1 = 𝐴𝑣1

for 𝑘 = 0, 1, … , until convergence do
Compute 𝒴𝑘 ,      compute 𝒢𝑘 = 𝒴𝑘

𝑇𝒴𝑘

Let 𝑣𝑘,1
′ = 𝑒1, 𝑢𝑘,1

′ = 𝑒𝑠+2

for 𝑗 = 1, … , 𝑠 do

𝛼𝑠𝑘+𝑗 = 𝑣𝑘,𝑗
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′

𝑤𝑘,𝑗
′ = 𝑢𝑘,𝑗

′ − 𝛼𝑠𝑘+𝑗𝑣𝑘,𝑗
′

𝛽𝑠𝑘+𝑗+1 = 𝑤𝑘,𝑗
′𝑇 𝒢𝑘𝑤𝑘,𝑗

′ 1/2

𝑣𝑘,𝑗+1
′ = 𝑤𝑘,𝑗

′ / 𝛽𝑠𝑘+𝑗+1

𝑢𝑘,𝑗+1
′ = ℬ𝑘𝑣𝑘,𝑗+1

′ − 𝛽𝑠𝑘+𝑗+1𝑣𝑘,𝑗
′

end for
Compute 𝑣𝑠𝑘+𝑠+1 = 𝒴𝑘𝑣𝑘,𝑠+1

′ , 𝑢𝑠𝑘+𝑠+1 = 𝒴𝑘𝑢𝑘,𝑠+1
′

end for
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via CA Matrix 
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to compute 𝒢𝑘
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Local 
computations: no 
communication!
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Complexity Comparison
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Flops Words Moved Messages

SpMV Orth. SpMV Orth. SpMV Orth.

Classical 
CG

𝑠𝑛

𝑝

𝑠𝑛

𝑝 𝑠  𝑛 𝑝 𝑠 log2 𝑝 𝑠 𝑠 log2 𝑝

CA-CG
𝑠𝑛

𝑝
𝑠2𝑛

𝑝
𝑠  𝑛 𝑝 𝑠2 log2 𝑝 1 log2 𝑝

Example of parallel (per processor) complexity for 𝑠 iterations of  Classical 
Lanczos vs. CA-Lanczos for a 2D 9-point stencil:

(Assuming each of 𝑝 processors owns 𝑛/𝑝 rows of the matrix and 𝑠 ≤ 𝑛/𝑝)

All values in the table meant in the Big-O sense (i.e., lower order terms 
and constants not included)
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From Theory to Practice

• Parameter 𝑠 is limited by machine parameters and matrix 
sparsity structure
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• That is, find 𝑠 that gives the fastest speed per iteration

• In practice, we don’t just care about speed per iteration, but 
also the number of iterations

Runtime = (time/iteration) x (# iterations)

• We also need to consider how convergence rate and accuracy 
are affected by choice of 𝑠!
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Paige’s Results for Classical Lanczos

• Using bounds on local rounding errors in Lanczos, Paige showed that

1. The computed Ritz values always lie between the extreme 
eigenvalues of 𝐴 to within a small multiple of machine 
precision.

2. At least one small interval containing an eigenvalue of 𝐴 is 
found by the 𝑛th iteration.

3. The algorithm behaves numerically like Lanczos with full 
reorthogonalization until a very close eigenvalue 
approximation is found.

4. The loss of orthogonality among basis vectors follows a 
rigorous pattern and implies that some Ritz values have 
converged.
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3. The algorithm behaves numerically like Lanczos with full 
reorthogonalization until a very close eigenvalue 
approximation is found.

4. The loss of orthogonality among basis vectors follows a 
rigorous pattern and implies that some Ritz values have 
converged.

Do the same statements hold for CA-Lanczos?
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Finite precision Lanczos process: (𝐴 is 𝑛 × 𝑛 with at most 𝑁 nonzeros per row)
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𝑇 + 𝛿  𝑉𝑚

 𝑉𝑚 =  𝑣1, … ,  𝑣𝑚 ,       𝛿  𝑉𝑚 = 𝛿  𝑣1, … , 𝛿  𝑣𝑚 ,          𝑇𝑚 =
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 𝛽2
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⋱ ⋱  𝛽𝑚

 𝛽𝑚  𝛼𝑚
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• Roundoff errors in CA variant follow same pattern as classical variant, but 
amplified by factor of Γ or Γ2

• Theoretically confirms empirical observations on importance of basis 
conditioning (dating back to late ‘80s)

• A loose bound for the amplification term:

Γ ≤ max
ℓ≤𝑘

𝒴ℓ
+

2 ∙ 𝒴ℓ 2 ≤ 2𝑠+1 ∙ max
ℓ≤𝑘

𝜅 𝒴ℓ

• What we really need: 𝒴 |𝑦′| 2 ≤ Γ 𝒴𝑦′ 2 to hold for the computed basis 𝒴
and coordinate vector 𝑦′ in every bound.

• Tighter bound on 𝚪 possible; requires some light bookkeeping 

• Example: for bounds on  𝛽𝑖+1  𝑣𝑖
𝑇  𝑣𝑖+1 and  𝑣𝑖+1

𝑇  𝑣𝑖+1 − 1 , we can use the 
definition

Γ𝑘,𝑗 ≡ max
𝑥∈{  𝑤𝑘,𝑗

′ , 𝑢𝑘,𝑗
′ ,  𝑣𝑘,𝑗

′ ,  𝑣𝑘,𝑗−1
′ }

 𝒴𝑘 𝑥
2

 𝒴𝑘𝑥
2

The Amplification Term Γ

16



Problem: 2D Poisson, 
𝑛 = 256, 
random starting vector 
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• The answer is YES!

Results for CA-Lanczos

18

…but

• Back to our question: Do Paige’s results, e.g.,
loss of orthogonality  eigenvalue convergence

hold for CA-Lanczos?

• Take-away: we can use this bound on Γ to design a better algorithm!
• Mixed precision, selective reorthogonalization, dynamic basis size, etc. 
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Extending the results of Greenbaum (1989):

Ongoing work…
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Eigenvalue approximations generated at each step by a perturbed 
Lanczos recurrence for 𝐴 are equal to those generated by exact 
Lanczos applied a larger matrix whose eigenvalues lie within 
intervals about the eigenvalues of 𝐴. 



Future Directions

22

• New Algorithms/Applications
• Application of communication-avoiding ideas and solvers to new 

computational science domains

• Design of new high-performance preconditioners

• Improving Usability
• Automating parameter selection via “numerical auto-tuning” 

• Finite-Precision Analysis
• Bounds on stability and convergence for other Krylov methods 

(particularly in the nonsymmetric case)

• Extension of “Backwards-like” error analyses 

Broad research agenda: Design methods for large-scale problems that 
optimize performance subject to application-specific numerical constraints



Thank you!

contact: erinc@cims.nyu.edu
http://www.cims.nyu.edu/~erinc/


