MS58: Approaches to Reducing Communication in Krylov Subspace Methods

Organizers: Laura Grigori (INRIA) and Erin Carson (NYU)

Talks:

1. The s-Step Lanczos Method and its Behavior in Finite Precision (Erin Carson, James W. Demmel)
2. Enlarged Krylov Subspace Methods for Reducing Communication (Sophie M. Moufawad, Laura Grigori, Frederic Nataf)
3. Preconditioning Communication-Avoiding Krylov Methods (Siva Rajamanickam, Ichitaro Yamazaki, Ändrey Prokopenko, Erik G. Boman, Michael Heroux, Jack J. Dongarra)
4. Sparse Approximate Inverse Preconditioners for Communication-Avoiding Bicgstab Solvers (Maryam Mehri Dehnavi, Erin Carson, Nicholas Knight, James W. Demmel, David Fernandez)

The s-Step Lanczos Method and its Behavior in Finite Precision

Erin Carson, NYU
 James Demmel, UC Berkeley

SIAM LA '15
October 30, 2015

Why Avoid "Communication"?

- Algorithms have two costs: computation and communication
- Communication : moving data between levels of memory hierarchy (sequential), between processors (parallel)

- On today's computers, communication is expensive, computation is cheap, in terms of both time and energy!

Future Exascale Systems

	Petascale Systems (2009)	Predicted Exascale Systems*	Factor Improvement
System Peak	$2 \cdot 10^{15}$ flops	$10^{18} \mathrm{flops}$	~ 1000
Node Memory Bandwidth	$25 \mathrm{~GB} / \mathrm{s}$	$0.4-4 \mathrm{~TB} / \mathrm{s}$	$\sim 10-100$
Total Node Interconnect Bandwidth	$3.5 \mathrm{~GB} / \mathrm{s}$	$100-400 \mathrm{~GB} / \mathrm{s}$	~ 100
Memory Latency	100 ns	50 ns	~ 1
Interconnect Latency	$1 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	~ 1

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Future Exascale Systems

	Petascale Systems (2009)	Predicted Exascale Systems*	Factor Improvement
System Peak	$2 \cdot 10^{15}$ flops	10^{18} flops	~ 1000
Node Memory Bandwidth	25 GB/s	0.4-4 TB/s	~10-100
Total Node Interconnect Bandwidth	3.5 GB/s	100-400 GB/s	~100
Memory Latency	100 ns	50 ns	~ 1
Interconnect Latency	$1 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	~ 1

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

- Gaps between communication/computation cost only growing larger in future systems

Future Exascale Systems

	Petascale Systems (2009)	Predicted Exascale Systems*	Factor Improvement
System Peak	$2 \cdot 10^{15}$ flops	10^{18} flops	~ 1000
Node Memory Bandwidth	25 GB/s	0.4-4 TB/s	~10-100
Total Node Interconnect Bandwidth	$3.5 \mathrm{~GB} / \mathrm{s}$	100-400 GB/s	~100
Memory Latency	100 ns	50 ns	~1
Interconnect Latency	$1 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	~ 1

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

- Gaps between communication/computation cost only growing larger in future systems
- Avoiding communication will be essential for applications at exascale!

Krylov Subspace Methods

- General class of iterative solvers: used for linear systems, eigenvalue problems, singular value problems, least squares, etc.
- Examples: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum Residual (GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc.
- Projection process onto the expanding Krylov subspace

$$
\mathcal{K}_{m}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{m-1} r_{0}\right\}
$$

- In each iteration,
- Add a dimension to the Krylov subspace \mathcal{K}_{m}
- Orthogonalize (with respect to some \mathcal{L}_{m})

Krylov Solvers: Limited by Communication

In terms of communication:

Krylov Solvers: Limited by Communication

In terms of communication:
"Add a dimension to \mathcal{K}_{m} "
\rightarrow Sparse Matrix-Vector Multiplication (SpMV)

- Parallel: comm. vector entries w/ neighbors
- Sequential: read $A /$ vectors from slow memory

Krylov Solvers: Limited by Communication

In terms of communication:
"Add a dimension to \mathcal{K}_{m} "
\rightarrow Sparse Matrix-Vector Multiplication (SpMV)

- Parallel: comm. vector entries w/ neighbors
- Sequential: read $A /$ vectors from slow memory
"Orthogonalize (with respect to some \mathcal{L}_{m})"
\rightarrow Inner products
Parallel: global reduction (All-Reduce) Sequential: multiple reads/writes to slow
 memory

Krylov Solvers: Limited by Communication

In terms of communication:
"Add a dimension to \mathcal{K}_{m} "
\rightarrow Sparse Matrix-Vector Multiplication (SpMV)

- Parallel: comm. vector entries w/ neighbors
- Sequential: read $A /$ vectors from slow memory
"Orthogonalize (with respect to some \mathcal{L}_{m})"
\rightarrow Inner products
Parallel: global reduction (All-Reduce)
Sequential: multiple reads/writes to slow
 memory

Dependencies between communication-bound kernels in each iteration limit performance!

The Classical Lanczos Method

Given: initial vector v_{1} with $\left|\mid v_{1} \|_{2}=1\right.$
$u_{1}=A v_{1}$
for $i=1,2, \ldots$, until convergence do

$$
\begin{aligned}
& \alpha_{i}=v_{i}^{T} u_{i} \\
& w_{i}=u_{i}-\alpha_{i} v_{i} \\
& \beta_{i+1}=| | w_{i} \|_{2} \\
& v_{i+1}=w_{i} / \beta_{i+1} \\
& u_{i+1}=A v_{i+1}-\beta_{i+1} v_{i}
\end{aligned}
$$

end for

The Classical Lanczos Method

Given: initial vector v_{1} with $\left|\mid v_{1} \|_{2}=1\right.$
$u_{1}=A v_{1}$
for $i=1,2, \ldots$, until convergence do

$$
\begin{aligned}
& \alpha_{i}=v_{i}^{T} u_{i} \\
& w_{i}=u_{i}-\alpha_{i} v_{i} \\
& \beta_{i+1}=\left|\left|w_{i}\right|\right|_{2} \\
& v_{i+1}=w_{i} / \beta_{i+1} \\
& u_{i+1}=A v_{i+1}-\beta_{i+1} v_{i}
\end{aligned}
$$

end for

The Classical Lanczos Method

Given: initial vector v_{1} with $\left|\mid v_{1} \|_{2}=1\right.$
$u_{1}=A v_{1}$
for $i=1,2, \ldots$, until convergence do

$$
\begin{aligned}
& \alpha_{i}=v_{i}^{T} u_{i} \\
& w_{i}=u_{i}-\alpha_{i} v_{i} \\
& \beta_{i+1}=\left\|w_{i}\right\|_{2} \\
& v_{i+1}=w_{i} / \beta_{i+1} \\
& u_{i+1}=A v_{i+1}-\beta_{i+1} v_{i}
\end{aligned}
$$

end for

Communication-Avoiding KSMs

- Idea: Compute blocks of s iterations at once
- Communicate every s iterations instead of every iteration
- Reduces communication cost by $\mathbf{O}(s)$!
- (latency in parallel, latency and bandwidth in sequential)

Communication-Avoiding KSMs

- Idea: Compute blocks of s iterations at once
- Communicate every s iterations instead of every iteration
- Reduces communication cost by $\mathbf{O}(s)$!
- (latency in parallel, latency and bandwidth in sequential)
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent - Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68):
- Flurry of work on s-step Krylov methods in '80s/early '90s: see, e.g., Van Rosendale, 1983; Chronopoulos and Gear, 1989
- Goals: increasing parallelism, avoiding I/O, increasing "convergence rate"

Communication-Avoiding KSMs

- Idea: Compute blocks of s iterations at once
- Communicate every s iterations instead of every iteration
- Reduces communication cost by $\mathbf{O}(s)$!
- (latency in parallel, latency and bandwidth in sequential)
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent - Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68):
- Flurry of work on s-step Krylov methods in '80s/early '90s: see, e.g., Van Rosendale, 1983; Chronopoulos and Gear, 1989
- Goals: increasing parallelism, avoiding I/O, increasing "convergence rate"
- Resurgence of interest in recent years due to growing problem sizes; growing relative cost of communication

Communication-Avoiding KSMs: CA-Lanczos

- Main idea: Unroll iteration loop by a factor of s; split iteration loop into an outer loop (k) and an inner loop (j)
- Key observation: starting at some iteration $i \equiv s k+j$,

$$
v_{s k+j}, u_{s k+j} \in \mathcal{K}_{s+1}\left(A, v_{s k+1}\right)+\mathcal{K}_{s+1}\left(A, u_{s k+1}\right) \quad \text { for } j \in\{1, \ldots, s+1\}
$$

Communication-Avoiding KSMs: CA-Lanczos

- Main idea: Unroll iteration loop by a factor of s; split iteration loop into an outer loop (k) and an inner loop (j)
- Key observation: starting at some iteration $i \equiv s k+j$,

$$
v_{s k+j}, u_{s k+j} \in \mathcal{K}_{s+1}\left(A, v_{s k+1}\right)+\mathcal{K}_{s+1}\left(A, u_{s k+1}\right) \text { for } j \in\{1, \ldots, s+1\}
$$

Outer loop k : Communication step

Expand solution space s dimensions at once

- Compute "basis matrix" Y_{k} with columns spanning

$$
\mathcal{K}_{s+1}\left(A, v_{s k+1}\right)+\mathcal{K}_{s+1}\left(A, u_{s k+1}\right)
$$

- Requires reading A /communicating vectors only once
- Using "matrix powers kernel"

Orthogonalize all at once

- Compute/store block of inner products between basis vectors in Gram matrix:

$$
\mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k}
$$

- Communication cost of one global reduction

Communication-Avoiding KSMs: CA-Lanczos

Inner loop:
Computation steps, no communication!

Perform s iterations of updates

- Using \mathcal{Y}_{k} and \mathcal{G}_{k}, this requires no communication!
- Represent n-vectors by their $O(s)$ coordinates in \mathcal{Y}_{k} : $v_{s k+j}=y_{k} v_{k, j}^{\prime}, \quad u_{s k+j}=y_{k} u_{k, j}^{\prime}, \quad w_{s k+j}=y_{k} w_{j}^{\prime}$

Communication-Avoiding KSMs: CA-Lanczos

Inner loop: Perform s iterations of updates

Computation steps, no communication!

- Using \mathcal{Y}_{k} and \mathcal{G}_{k}, this requires no communication!
- Represent n-vectors by their $O(s)$ coordinates in \mathcal{Y}_{k} : $v_{s k+j}=y_{k} v_{k, j}^{\prime}, \quad u_{s k+j}=y_{k} u_{k, j}^{\prime}, \quad w_{s k+j}=y_{k} w_{j}^{\prime}$

Communication-Avoiding KSMs: CA-Lanczos

Inner loop:
Computation steps, no communication!

Perform s iterations of updates

- Using \mathcal{Y}_{k} and \mathcal{G}_{k}, this requires no communication!
- Represent n-vectors by their $O(s)$ coordinates in \mathcal{Y}_{k} : $v_{s k+j}=\mathcal{Y}_{k} v_{k, j}^{\prime}, \quad u_{s k+j}=\mathcal{Y}_{k} u_{k, j}^{\prime}, \quad w_{s k+j}=\mathcal{Y}_{k} w_{j}^{\prime}$

Communication-Avoiding KSMs: CA-Lanczos

Inner loop:
Computation steps, no communication!

Perform s iterations of updates

- Using \mathcal{Y}_{k} and \mathcal{G}_{k}, this requires no communication!
- Represent n-vectors by their $O(s)$ coordinates in \mathcal{Y}_{k} : $v_{s k+j}=\mathcal{Y}_{k} v_{k, j}^{\prime}, \quad u_{s k+j}=\mathcal{Y}_{k} u_{k, j}^{\prime}, \quad w_{s k+j}=\mathcal{Y}_{k} w_{j}^{\prime}$

Communication-Avoiding KSMs: CA-Lanczos

Inner loop:
Computation steps, no communication!

Perform s iterations of updates

- Using \mathcal{Y}_{k} and \mathcal{G}_{k}, this requires no communication!
- Represent n-vectors by their $O(s)$ coordinates in \mathcal{Y}_{k} : $v_{s k+j}=\mathcal{Y}_{k} v_{k, j}^{\prime}, \quad u_{s k+j}=\mathcal{Y}_{k} u_{k, j}^{\prime}, \quad w_{s k+j}=\mathcal{Y}_{k} w_{j}^{\prime}$
$\mathcal{B}_{k} v_{k, j+1}^{\prime}$

$v_{i}^{T} u_{i}$

The CA-Lanczos Method

Given: initial vector v_{1} with $\left|\mid v_{1} \|_{2}=1\right.$
$u_{1}=A v_{1}$
for $k=0,1, \ldots$, until convergence do
Compute \mathcal{Y}_{k}, \quad compute $\mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k}$
Let $v_{k, 1}^{\prime}=e_{1}, u_{k, 1}^{\prime}=e_{s+2}$
for $j=1, \ldots, s$ do

$$
\begin{aligned}
& \alpha_{s k+j}=v_{k, j}^{\prime T} \mathcal{G}_{k} u_{k, j}^{\prime} \\
& w_{k, j}^{\prime}=u_{k, j}^{\prime}-\alpha_{s k+j} v_{k, j}^{\prime} \\
& \beta_{s k+j+1}=\left(w_{k, j}^{\prime T} \mathcal{G}_{k} w_{k, j}^{\prime}\right)^{1 / 2} \\
& v_{k, j+1}^{\prime}=w_{k, j}^{\prime} / \beta_{s k+j+1} \\
& u_{k, j+1}^{\prime}=\mathcal{B}_{k} v_{k, j+1}^{\prime}-\beta_{s k+j+1} v_{k, j}^{\prime}
\end{aligned}
$$

end for
Compute $v_{s k+s+1}=\mathcal{Y}_{k} v_{k, s+1}^{\prime}, u_{s k+s+1}=\mathcal{Y}_{k} u_{k, s+1}^{\prime}$
end for

The CA-Lanczos Method

Given: initial vector v_{1} with $\left|\mid v_{1} \|_{2}=1\right.$ $u_{1}=A v_{1}$

via CA Matrix Powers Kernel

for $k=0,1, \ldots$, until convergence do
Compute $\mathcal{Y}_{k}, \leftarrow$ compute $\mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k}$
Let $v_{k, 1}^{\prime}=e_{1}, u_{k, 1}^{\prime}=e_{s+2}$
for $j=1, \ldots, s$ do

$$
\begin{aligned}
& \alpha_{s k+j}=v_{k, j}^{\prime T} \mathcal{G}_{k} u_{k, j}^{\prime} \\
& w_{k, j}^{\prime}=u_{k, j}^{\prime}-\alpha_{s k+j} v_{k, j}^{\prime} \\
& \beta_{s k+j+1}=\left(w_{k, j}^{\prime T} \mathcal{G}_{k} w_{k, j}^{\prime}\right)^{1 / 2} \\
& v_{k, j+1}^{\prime}=w_{k, j}^{\prime} / \beta_{s k+j+1} \\
& u_{k, j+1}^{\prime}=\mathcal{B}_{k} v_{k, j+1}^{\prime}-\beta_{s k+j+1} v_{k, j}^{\prime}
\end{aligned}
$$

end for
Compute $v_{s k+s+1}=y_{k} v_{k, s+1}^{\prime}, u_{s k+s+1}=y_{k} u_{k, s+1}^{\prime}$
end for

The CA-Lanczos Method

Given: initial vector v_{1} with $\left|\mid v_{1} \|_{2}=1\right.$
$u_{1}=A v_{1}$
for $k=0,1, \ldots$, until convergence do

via CA Matrix Powers Kernel

Compute $\mathcal{Y}_{k}, \leftarrow$ compute $\mathcal{G}_{k}=\mathcal{Y}_{k}^{T} \mathcal{Y}_{k}$
Let $v_{k, 1}^{\prime}=e_{1}, u_{k, 1}^{\prime}=e_{s+2}$ for $j=1, \ldots, s$ do

$$
\begin{aligned}
& \alpha_{s k+j}=v_{k, j}^{\prime T} \mathcal{G}_{k} u_{k, j}^{\prime} \\
& w_{k, j}^{\prime}=u_{k, j}^{\prime}-\alpha_{s k+j} v_{k, j}^{\prime} \\
& \beta_{s k+j+1}=\left(w_{k, j}^{\prime T} \mathcal{G}_{k} w_{k, j}^{\prime}\right)^{1 / 2} \\
& v_{k, j+1}^{\prime}=w_{k, j}^{\prime} / \beta_{s k+j+1} \\
& u_{k, j+1}^{\prime}=\mathcal{B}_{k} v_{k, j+1}^{\prime}-\beta_{s k+j+1} v_{k, j}^{\prime}
\end{aligned}
$$

end for
Compute $v_{s k+s+1}=\mathcal{Y}_{k} v_{k, s+1}^{\prime}, u_{s k+s+1}=\mathcal{Y}_{k} u_{k, s+1}^{\prime}$
end for

Complexity Comparison

Example of parallel (per processor) complexity for s iterations of Classical Lanczos vs. CA-Lanczos for a 2D 9-point stencil:
(Assuming each of p processors owns n / p rows of the matrix and $s \leq \sqrt{n / p}$)

	Flops		Words Moved		Messages	
	SpMV	Orth.	SpMV	Orth.	SpMV	Orth.
Classical CG	$\frac{s n}{p}$	$\frac{s n}{p}$	$s \sqrt{n / p}$	$s \log _{2} p$	s	$s \log _{2} p$
CA-CG	$\frac{s n}{p}$	$\frac{s^{2} n}{p}$	$s \sqrt{n / p}$	$s^{2} \log _{2} p$	1	$\log _{2} p$

All values in the table meant in the Big-O sense (i.e., lower order terms and constants not included)

Complexity Comparison

Example of parallel (per processor) complexity for s iterations of Classical Lanczos vs. CA-Lanczos for a 2D 9-point stencil:
(Assuming each of p processors owns n / p rows of the matrix and $s \leq \sqrt{n / p}$)

	Flops		Words Moved		Messages	
	SpMV	Orth.	SpMV	Orth.	SpMV	Orth.
Classical CG	$\frac{s n}{p}$	$\frac{s n}{p}$	$s \sqrt{n / p}$	$s \log _{2} p$	s	$s \log _{2} p$
CA-CG	$\frac{s n}{p}$	$\frac{s^{2} n}{p}$	$s \sqrt{n / p}$	$s^{2} \log _{2} p$	1	$\log _{2} p$

All values in the table meant in the Big-O sense (i.e., lower order terms and constants not included)

Complexity Comparison

Example of parallel (per processor) complexity for s iterations of Classical Lanczos vs. CA-Lanczos for a 2D 9-point stencil:
(Assuming each of p processors owns n / p rows of the matrix and $s \leq \sqrt{n / p}$)

	Flops		Words Moved		Messages	
	SpMV	Orth.	SpMV	Orth.	SpMV	Orth.
Classical CG	$\frac{s n}{p}$	$\frac{s n}{p}$	$s \sqrt{n / p}$	$s \log _{2} p$	s	$s \log _{2} p$
CA-CG	$\frac{s n}{p}$	$\frac{s^{2} n}{p}$	$s \sqrt{n / p}$	$s^{2} \log _{2} p$	1	$\log _{2} p$

All values in the table meant in the Big-O sense (i.e., lower order terms and constants not included)

From Theory to Practice

- Parameter s is limited by machine parameters and matrix sparsity structure
- We can auto-tune to find the best s based on these properties
- That is, find s that gives the fastest speed per iteration

From Theory to Practice

- Parameter s is limited by machine parameters and matrix sparsity structure
- We can auto-tune to find the best s based on these properties
- That is, find s that gives the fastest speed per iteration
- In practice, we don't just care about speed per iteration, but also the number of iterations
Runtime = (time/iteration) x (\# iterations)

From Theory to Practice

- Parameter s is limited by machine parameters and matrix sparsity structure
- We can auto-tune to find the best s based on these properties
- That is, find s that gives the fastest speed per iteration
- In practice, we don't just care about speed per iteration, but also the number of iterations
Runtime = (time/iteration) x (\# iterations)
- We also need to consider how convergence rate and accuracy are affected by choice of s !

From Theory to Practice

- CA-KSMs are mathematically equivalent to classical KSMs

From Theory to Practice

- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!

From Theory to Practice

- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!
- Roundoff error bounds generally grow with increasing s

From Theory to Practice

- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!
- Roundoff error bounds generally grow with increasing s
- Two effects of roundoff error:

From Theory to Practice

- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!
- Roundoff error bounds generally grow with increasing s
- Two effects of roundoff error:

1. Decrease in accuracy \rightarrow Tradeoff: increasing blocking factor s past a certain point: accuracy limited

From Theory to Practice

- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!
- Roundoff error bounds generally grow with increasing s
- Two effects of roundoff error:

1. Decrease in accuracy \rightarrow Tradeoff: increasing blocking factor s past a certain point: accuracy limited
2. Delay of convergence \rightarrow Tradeoff: increasing blocking factor s past a certain point: no speedup expected

From Theory to Practice

- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!
- Roundoff error bounds generally grow with increasing s
- Two effects of roundoff error:

1. Decrease in accuracy \rightarrow Tradeoff: increasing blocking factor s past a certain point: accuracy limited
2. Delay of convergence \rightarrow Tradeoff: increasing blocking factor s past a certain point: no speedup expected

From Theory to Practice

- CA-KSMs are mathematically equivalent to classical KSMs
- But can behave much differently in finite precision!
- Roundoff error bounds generally grow with increasing s
- Two effects of roundoff error:

1. Decrease in accuracy \rightarrow Tradeoff: increasing blocking factor s past a certain point: accuracy limited
2. Delay of convergence \rightarrow Tradeoff: increasing blocking factor s past a certain point: no speedup expected

Runtime $=$ (time/iteration) \times (\# iterations)

Paige's Results for Classical Lanczos

- Using bounds on local rounding errors in Lanczos, Paige showed that

1. The computed Ritz values always lie between the extreme eigenvalues of A to within a small multiple of machine precision.
2. At least one small interval containing an eigenvalue of A is found by the nth iteration.
3. The algorithm behaves numerically like Lanczos with full reorthogonalization until a very close eigenvalue approximation is found.
4. The loss of orthogonality among basis vectors follows a rigorous pattern and implies that some Ritz values have converged.

Paige's Results for Classical Lanczos

- Using bounds on local rounding errors in Lanczos, Paige showed that

1. The computed Ritz values always lie between the extreme eigenvalues of A to within a small multiple of machine precision.
2. At least one small interval containing an eigenvalue of A is found by the nth iteration.
3. The algorithm behaves numerically like Lanczos with full reorthogonalization until a very close eigenvalue approximation is found.
4. The loss of orthogonality among basis vectors follows a rigorous pattern and implies that some Ritz values have converged.

Do the same statements hold for CA-Lanczos?

Paige's Lanczos Convergence Analysis

Finite precision Lanczos process: (A is $n \times n$ with at most N nonzeros per row)

$$
\begin{gathered}
A \hat{V}_{m}=\hat{V}_{m} \hat{T}_{m}+\hat{\beta}_{m+1} \hat{v}_{m+1} e_{m}^{T}+\delta \hat{V}_{m} \\
\hat{V}_{m}=\left[\hat{v}_{1}, \ldots, \hat{v}_{m}\right], \quad \delta \hat{V}_{m}=\left[\delta \hat{v}_{1}, \ldots, \delta \hat{v}_{m}\right], \quad \hat{T}_{m}=\left[\begin{array}{cccc}
\hat{\alpha}_{1} & \hat{\beta}_{2} & & \\
\hat{\beta}_{2} & \ddots & \ddots & \\
& \ddots & \ddots & \hat{\beta}_{m} \\
& & \hat{\beta}_{m} & \hat{\alpha}_{m}
\end{array}\right]
\end{gathered}
$$

Paige's Lanczos Convergence Analysis

Finite precision Lanczos process: (A is $n \times n$ with at most N nonzeros per row)

$$
\begin{gathered}
A \hat{V}_{m}=\hat{V}_{m} \hat{T}_{m}+\hat{\beta}_{m+1} \hat{v}_{m+1} e_{m}^{T}+\delta \hat{V}_{m} \\
\hat{V}_{m}=\left[\hat{v}_{1}, \ldots, \hat{v}_{m}\right], \quad \delta \hat{V}_{m}=\left[\delta \hat{v}_{1}, \ldots, \delta \hat{v}_{m}\right], \quad \hat{T}_{m}=\left[\begin{array}{cccc}
\hat{\alpha}_{1} & \hat{\beta}_{2} & \\
\hat{\beta}_{2} & \ddots & \ddots & \\
& \ddots & \ddots & \hat{\beta}_{m} \\
& & \hat{\beta}_{m} & \hat{\alpha}_{m}
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
\text { for } i \in\{1, \ldots, m\}, \quad\left\|\delta \hat{v}_{i}\right\|_{2} \leq \varepsilon_{1} \sigma \\
\hat{\beta}_{i+1}\left|\hat{v}_{i}^{T} \hat{v}_{i+1}\right| \leq 2 \varepsilon_{0} \sigma \\
\left|\hat{v}_{i+1}^{T} \hat{v}_{i+1}-1\right| \leq \varepsilon_{0} / 2 \\
\left|\hat{\beta}_{i+1}^{2}+\hat{\alpha}_{i}^{2}+\hat{\beta}_{i}^{2}-\left\|A \hat{v}_{i}\right\|_{2}^{2}\right| \leq 4 i\left(3 \varepsilon_{0}+\varepsilon_{1}\right) \sigma^{2}
\end{gathered}
$$

where $\sigma \equiv\|A\|_{2}$, and $\theta \sigma \equiv\||A|\|_{2}$

Paige's Lanczos Convergence Analysis

Finite precision Lanczos process: (A is $n \times n$ with at most N nonzeros per row)

$$
\begin{gathered}
A \hat{V}_{m}=\hat{V}_{m} \hat{T}_{m}+\hat{\beta}_{m+1} \hat{v}_{m+1} e_{m}^{T}+\delta \hat{V}_{m} \\
\hat{V}_{m}=\left[\hat{v}_{1}, \ldots, \hat{v}_{m}\right], \quad \delta \hat{V}_{m}=\left[\delta \hat{v}_{1}, \ldots, \delta \hat{v}_{m}\right], \quad \hat{T}_{m}=\left[\begin{array}{cccc}
\hat{\alpha}_{1} & \hat{\beta}_{2} & \\
\hat{\beta}_{2} & \ddots & \ddots & \\
& \ddots & \ddots & \hat{\beta}_{m} \\
& & \hat{\beta}_{m} & \hat{\alpha}_{m}
\end{array}\right]
\end{gathered}
$$

$$
\text { for } i \in\{1, \ldots, m\} \text {, }
$$

$$
\left\|\delta \hat{v}_{i}\right\|_{2} \leq \varepsilon_{1} \sigma
$$

$$
\hat{\beta}_{i+1}\left|\hat{v}_{i}^{T} \hat{v}_{i+1}\right| \leq 2 \varepsilon_{0} \sigma
$$

$$
\left|\hat{v}_{i+1}^{T} \hat{v}_{i+1}-1\right| \leq \varepsilon_{0} / 2
$$

where $\sigma \equiv\|A\|_{2}$, and $\theta \sigma \equiv\||A|\|_{2}$

$$
\left|\hat{\beta}_{i+1}^{2}+\hat{\alpha}_{i}^{2}+\hat{\beta}_{i}^{2}-\left\|A \hat{v}_{i}\right\|_{2}^{2}\right| \leq 4 i\left(3 \varepsilon_{0}+\varepsilon_{1}\right) \sigma^{2}
$$

Classic Lanczos (Paige, 1976):

$$
\begin{aligned}
& \varepsilon_{0}=O(\varepsilon n) \\
& \varepsilon_{1}=O(\varepsilon N \theta)
\end{aligned}
$$

Paige's Lanczos Convergence Analysis

Finite precision Lanczos process: (A is $n \times n$ with at most N nonzeros per row)

$$
\begin{gathered}
A \hat{V}_{m}=\hat{V}_{m} \hat{T}_{m}+\hat{\beta}_{m+1} \hat{v}_{m+1} e_{m}^{T}+\delta \hat{V}_{m} \\
\hat{V}_{m}=\left[\hat{v}_{1}, \ldots, \hat{v}_{m}\right], \quad \delta \hat{V}_{m}=\left[\delta \hat{v}_{1}, \ldots, \delta \hat{v}_{m}\right], \quad \hat{T}_{m}=\left[\begin{array}{cccc}
\hat{\alpha}_{1} & \hat{\beta}_{2} & \\
\hat{\beta}_{2} & \ddots & \ddots & \\
& \ddots & \ddots & \hat{\beta}_{m} \\
& & \hat{\beta}_{m} & \hat{\alpha}_{m}
\end{array}\right]
\end{gathered}
$$

for $i \in\{1, \ldots, m\}$,

$$
\begin{gathered}
\left\|\delta \hat{v}_{i}\right\|_{2} \leq \varepsilon_{1} \sigma \\
\hat{\beta}_{i+1}\left|\hat{v}_{i}^{T} \hat{v}_{i+1}\right| \leq 2 \varepsilon_{0} \sigma \\
\left|\hat{v}_{i+1}^{T} \hat{v}_{i+1}-1\right| \leq \varepsilon_{0} / 2 \\
\left|\hat{\beta}_{i+1}^{2}+\hat{\alpha}_{i}^{2}+\hat{\beta}_{i}^{2}-\left\|A \hat{v}_{i}\right\|_{2}^{2}\right| \leq 4 i\left(3 \varepsilon_{0}+\varepsilon_{1}\right) \sigma^{2}
\end{gathered}
$$

where $\sigma \equiv\|A\|_{2}$, and $\theta \sigma \equiv\||A|\|_{2}$

Classic Lanczos (Paige, 1976):

$$
\begin{aligned}
& \varepsilon_{0}=O(\varepsilon n) \\
& \varepsilon_{1}=O(\varepsilon N \theta)
\end{aligned}
$$

CA-Lanczos:

$$
\begin{aligned}
& \varepsilon_{0}=O\left(\varepsilon n \Gamma^{2}\right) \\
& \varepsilon_{1}=O(\varepsilon N \theta \Gamma)
\end{aligned}
$$

Paige’s Lanczos Convergence Analysis

Finite precision Lanczos process: (A is $n \times n$ with at most N nonzeros per row)

$$
\begin{gathered}
A \hat{V}_{m}=\hat{V}_{m} \hat{T}_{m}+\hat{\beta}_{m+1} \hat{v}_{m+1} e_{m}^{T}+\delta \hat{V}_{m} \\
\hat{V}_{m}=\left[\hat{v}_{1}, \ldots, \hat{v}_{m}\right], \quad \delta \hat{V}_{m}=\left[\delta \hat{v}_{1}, \ldots, \delta \hat{v}_{m}\right], \quad \hat{T}_{m}=\left[\begin{array}{cccc}
\hat{\alpha}_{1} & \hat{\beta}_{2} & \\
\hat{\beta}_{2} & \ddots & \ddots & \\
& \ddots & \ddots & \hat{\beta}_{m} \\
& & \hat{\beta}_{m} & \hat{\alpha}_{m}
\end{array}\right]
\end{gathered}
$$

for $i \in\{1, \ldots, m\}$,

$$
\begin{gathered}
\left\|\delta \hat{v}_{i}\right\|_{2} \leq \varepsilon_{1} \sigma \\
\hat{\beta}_{i+1}\left|\hat{v}_{i}^{T} \hat{v}_{i+1}\right| \leq 2 \varepsilon_{0} \sigma \\
\left|\hat{v}_{i+1}^{T} \hat{v}_{i+1}-1\right| \leq \varepsilon_{0} / 2 \\
\left|\hat{\beta}_{i+1}^{2}+\hat{\alpha}_{i}^{2}+\hat{\beta}_{i}^{2}-\left\|A \hat{v}_{i}\right\|_{2}^{2}\right| \leq 4 i\left(3 \varepsilon_{0}+\varepsilon_{1}\right) \sigma^{2}
\end{gathered}
$$

where $\sigma \equiv\|A\|_{2}$, and $\theta \sigma \equiv\||A|\|_{2}$

Classic Lanczos (Paige, 1976):
CA-Lanczos:

$$
\begin{array}{ll}
\varepsilon_{0}=O(\varepsilon n) & \varepsilon_{0}=O\left(\varepsilon n \Gamma^{2}\right) \\
\varepsilon_{1}=O(\varepsilon N \theta) & \varepsilon_{1}=O(\varepsilon N \theta \Gamma)
\end{array}
$$

$$
\Gamma \leq \max _{\ell \leq k}\left\|\mathcal{Y}_{\ell}^{+}\right\|_{2} \cdot\left\|\left|\mathcal{Y}_{\ell}\right|\right\|_{2} \leq(2 s+1) \cdot \max _{\ell \leq k} \kappa\left(\mathcal{Y}_{\ell}\right)
$$

The Amplification Term Γ

- Roundoff errors in CA variant follow same pattern as classical variant, but amplified by factor of Γ or Γ^{2}
- Theoretically confirms empirical observations on importance of basis conditioning (dating back to late '80s)
- A loose bound for the amplification term:

$$
\Gamma \leq \max _{\ell \leq k}\left\|\mathcal{Y}_{\ell}^{+}\right\|_{2} \cdot\left\|\left|\mathcal{Y}_{\ell}\right|\right\|_{2} \leq(2 s+1) \cdot \max _{\ell \leq k} \kappa\left(\mathcal{Y}_{\ell}\right)
$$

- What we really need: $\left\|\left|\mathcal{Y}\left\|y^{\prime} \mid\right\|_{2} \leq \Gamma\left\|\mathcal{Y} y^{\prime}\right\|_{2}\right.\right.$ to hold for the computed basis \mathcal{Y} and coordinate vector y^{\prime} in every bound.
- Tighter bound on Γ possible; requires some light bookkeeping
- Example: for bounds on $\hat{\beta}_{i+1}\left|\hat{v}_{i}^{T} \hat{v}_{i+1}\right|$ and $\left|\hat{v}_{i+1}^{T} \hat{v}_{i+1}-1\right|$, we can use the definition

$$
\Gamma_{k, j} \equiv \max _{x \in\left\{\left\{_{k, j}^{\prime} \hat{u}_{k, j}^{\prime} \hat{v}_{k, j}^{\prime}, \hat{v}_{k, j-1}^{\prime}\right\}\right.} \frac{\left\|\hat{y}_{k}\right\| x \mid \|_{2}}{\left\|\hat{y}_{k} x\right\|_{2}}
$$

Problem: 2D Poisson, $n=256$,
random starting vector

- Computed value
- Bound
- Amplification factor Γ^{2}

$$
\begin{gathered}
\left|\hat{v}_{i+1}^{T} \hat{v}_{i+1}-1\right| \leq \varepsilon_{0} / 2 \\
\hat{\beta}_{i+1}\left|\hat{v}_{i}^{T} \hat{v}_{i+1}\right| \leq 2 \varepsilon_{0} \sigma
\end{gathered}
$$

$s=4$

Problem: 2D Poisson, $n=256$,
random starting vector

- Computed value
- Bound
- Amplification factor Γ

$$
\begin{gathered}
\left|\hat{v}_{i+1}^{T} \hat{v}_{i+1}-1\right| \leq \varepsilon_{0} / 2 \\
\hat{\beta}_{i+1}\left|\hat{v}_{i}^{T} \hat{v}_{i+1}\right| \leq 2 \varepsilon_{0} \sigma
\end{gathered}
$$

$s=8$

Problem: 2D Poisson, $n=256$,
random starting vector

- Computed value
- Bound
- Amplification factor Γ^{2}

$$
\begin{gathered}
\left|\hat{v}_{i+1}^{T} \hat{v}_{i+1}-1\right| \leq \varepsilon_{0} / 2 \\
\hat{\beta}_{i+1}\left|\hat{v}_{i}^{T} \hat{v}_{i+1}\right| \leq 2 \varepsilon_{0} \sigma
\end{gathered}
$$

$s=12$

Results for CA-Lanczos

- Back to our question: Do Paige's results, e.g., loss of orthogonality \rightarrow eigenvalue convergence hold for CA-Lanczos?

Results for CA-Lanczos

- Back to our question: Do Paige's results, e.g., loss of orthogonality \rightarrow eigenvalue convergence hold for CA-Lanczos?
- The answer is YES! ...but

Results for CA-Lanczos

- Back to our question: Do Paige's results, e.g., loss of orthogonality \rightarrow eigenvalue convergence hold for CA-Lanczos?
- The answer is YES! ...but
- Only if:
- $\varepsilon_{0} \equiv 2 \varepsilon(n+11 s+15) \Gamma^{2} \leq \frac{1}{12}$
- i.e., $\Gamma \leq(24 \epsilon(n+11 s+15))^{-1 / 2}=O(n \epsilon)^{-1 / 2}$
- Otherwise, e.g., can lose orthogonality due to computation with (numerically) rank-deficient basis

Results for CA-Lanczos

- Back to our question: Do Paige's results, e.g., loss of orthogonality \rightarrow eigenvalue convergence hold for CA-Lanczos?
- The answer is YES! ...but
- Only if:
- $\varepsilon_{0} \equiv 2 \varepsilon(n+11 s+15) \Gamma^{2} \leq \frac{1}{12}$
- i.e., $\Gamma \leq(24 \epsilon(n+11 s+15))^{-1 / 2}=O(n \epsilon)^{-1 / 2}$
- Otherwise, e.g., can lose orthogonality due to computation with (numerically) rank-deficient basis
- Take-away: we can use this bound on Γ to design a better algorithm!
- Mixed precision, selective reorthogonalization, dynamic basis size, etc.

Problem: Diagonal matrix with $n=100$ with evenly spaced eigenvalues between $\lambda_{\text {min }}=0.1$ and $\lambda_{\text {max }}=100$; random starting vector

$$
s=2
$$

Top plots:

- Computed Γ^{2}
$\left(24(\epsilon(n+11 s+15))^{-1}\right.$

Bottom Plots:

- Computed Ritz values

Bounds on range of computed Ritz values

Problem: Diagonal matrix with $n=100$ with evenly spaced eigenvalues between $\lambda_{\text {min }}=0.1$ and $\lambda_{\text {max }}=100$; random starting vector

$$
s=4
$$

Top plots:

- Computed Γ^{2}
$\cdots\left(24(\epsilon(n+11 s+15))^{-1}\right.$

Bottom Plots:

- Computed Ritz values

十 True eigenvalues
Bounds on range of computed Ritz values

Problem: Diagonal matrix with $n=100$ with evenly spaced eigenvalues between $\lambda_{\text {min }}=0.1$ and $\lambda_{\text {max }}=100$; random starting vector

$$
s=12
$$

Top plots:

-	Computed Γ^{2}
\cdots	$\left(24(\epsilon(n+11 s+15))^{-1}\right.$

- Computed Ritz values

Bottom Plots:

Bounds on range of computed Ritz values

Problem: Diagonal matrix with $n=100$ with evenly spaced eigenvalues between $\lambda_{\text {min }}=0.1$ and $\lambda_{\max }=100$; random starting vector

$$
\begin{aligned}
& -\max _{i}\left|z_{i}^{(m) T} \hat{v}_{m+1}\right| \\
& -\min _{i} \hat{\beta}_{m+1} \eta_{m, i}^{(m)}
\end{aligned}
$$

Problem: Diagonal matrix with $n=100$ with evenly spaced eigenvalues between $\lambda_{\text {min }}=0.1$ and $\lambda_{\max }=100$; random starting vector

Measure of Ritz

value convergence \longrightarrow	$-\max _{i}\left\|z_{i}^{(m) T} \hat{v}_{m+1}\right\|$
$\min _{i} \hat{\beta}_{m+1} \eta_{m, i}^{(m)}$	\(\longleftarrow \quad \begin{aligned} \& Measure of loss

\& of orthogonality\end{aligned}\)

Problem: Diagonal matrix with $n=100$ with evenly spaced eigenvalues between $\lambda_{\text {min }}=0.1$ and $\lambda_{\max }=100$; random starting vector

$$
\begin{aligned}
& -\max _{i}\left|z_{i}^{(m) T} \hat{v}_{m+1}\right| \\
& -\min _{i} \hat{\beta}_{m+1} \eta_{m, i}^{(m)}
\end{aligned}
$$

Problem: Diagonal matrix with $n=100$ with evenly spaced eigenvalues between $\lambda_{\text {min }}=0.1$ and $\lambda_{\max }=100$; random starting vector

$$
\begin{aligned}
& -\max _{i}\left|z_{i}^{(m) T} \hat{v}_{m+1}\right| \\
& -\min _{i} \hat{\beta}_{m+1} \eta_{m, i}^{(m)}
\end{aligned}
$$

Problem: Diagonal matrix with $n=100$ with evenly spaced eigenvalues between $\lambda_{\text {min }}=0.1$ and $\lambda_{\max }=100$; random starting vector

$$
\begin{aligned}
& -\max _{i}\left|z_{i}^{(m) T} \hat{v}_{m+1}\right| \\
& -\min _{i} \hat{\beta}_{m+1} \eta_{m, i}^{(m)}
\end{aligned}
$$

Problem: Diagonal matrix with $n=100$ with evenly spaced eigenvalues between $\lambda_{\text {min }}=0.1$ and $\lambda_{\max }=100$; random starting vector

$$
\begin{aligned}
& -\max _{i}\left|z_{i}^{(m) T} \hat{v}_{m+1}\right| \\
& -\min _{i} \hat{\beta}_{m+1} \eta_{m, i}^{(m)}
\end{aligned}
$$

Extending the results of Greenbaum (1989):

Eigenvalue approximations generated at each step by a perturbed Lanczos recurrence for A are equal to those generated by exact Lanczos applied a larger matrix whose eigenvalues lie within intervals about the eigenvalues of A.

Extending the results of Greenbaum (1989):

Eigenvalue approximations generated at each step by a perturbed Lanczos recurrence for A are equal to those generated by exact Lanczos applied a larger matrix whose eigenvalues lie within intervals about the eigenvalues of A.

Extending the results of Greenbaum (1989):

Eigenvalue approximations generated at each step by a perturbed Lanczos recurrence for A are equal to those generated by exact Lanczos applied a larger matrix whose eigenvalues lie within intervals about the eigenvalues of A.

Extending the results of Greenbaum (1989):

Eigenvalue approximations generated at each step by a perturbed Lanczos recurrence for A are equal to those generated by exact Lanczos applied a larger matrix whose eigenvalues lie within intervals about the eigenvalues of A.

Extending the results of Greenbaum (1989):

Eigenvalue approximations generated at each step by a perturbed Lanczos recurrence for A are equal to those generated by exact Lanczos applied a larger matrix whose eigenvalues lie within intervals about the eigenvalues of A.

Ongoing work...

Future Directions

Broad research agenda: Design methods for large-scale problems that optimize performance subject to application-specific numerical constraints

- New Algorithms/Applications
- Application of communication-avoiding ideas and solvers to new computational science domains
- Design of new high-performance preconditioners
- Finite-Precision Analysis
- Bounds on stability and convergence for other Krylov methods (particularly in the nonsymmetric case)
- Extension of "Backwards-like" error analyses
- Improving Usability
- Automating parameter selection via "numerical auto-tuning"

Thank you!

contact: erinc@cims.nyu.edu http://www.cims.nyu.edu/~erinc/

