Prague Strategies

Libor Barto

joint work with Marcin Kozik

Department of Algebra
Faculty of Mathematics and Physics
Charles University in Prague
Czech Republic

NSAC 2009
The Prague Theorem

<table>
<thead>
<tr>
<th>Theorem (Barto, Kozik 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let \mathbf{A} be an idempotent algebra. TFAE</td>
</tr>
<tr>
<td>- \mathbf{A} is an $SD(\land)$ algebra</td>
</tr>
<tr>
<td>($=\text{lies in a variety omitting 1 and 2}$)</td>
</tr>
<tr>
<td>- Every Prague strategy over \mathbf{A} has a solution</td>
</tr>
</tbody>
</table>
The Prague Theorem

Theorem (Barto, Kozik 2009)

Let A be an idempotent algebra. TFAE

- A is an $SD(\land)$ algebra
 ($= \text{lies in a variety omitting 1 and 2}$)
- Every Prague strategy over A has a solution

Plan:

- k-intersection property
- $SD(\land)$
- $CSP(A)$
- (k, l)-minimal instance
- Prague strategy
Warning

All algebras are finite and idempotent
k-intersection property

Definition (k-equal relations)

$R_1, R_2 \subseteq A^n$ are \textit{k-equal}, if $\forall J \subseteq [n], |J| \leq k$, the projections of R_1 and R_2 to J are equal.
Definition (k-equal relations)

\(R_1, R_2 \subseteq A^n \) are \textit{k-equal}, if \(\forall J \subseteq [n], |J| \leq k \), the projections of \(R_1 \) and \(R_2 \) to \(J \) are equal.

Definition (k-intersection property, Valeriote)

A finite algebra \(A \) satisfies the \textit{k-intersection property}, if \(\forall n \) every collection of pairwise k-equal non-empty subuniverses \(R_1, \ldots, R_m \leq A^n \) has nonempty intersection.
Definition (k-equal relations)

$R_1, R_2 \subseteq A^n$ are **k-equal**, if $\forall J \subseteq [n], |J| \leq k$, the projections of R_1 and R_2 to J are equal.

Definition (k-intersection property, Valeriote)

A finite algebra A satisfies the **k-intersection property**, if $\forall n$ every collection of pairwise k-equal non-empty subuniverses $R_1, \ldots, R_m \subseteq A^n$ has nonempty intersection.

Observation

$B \in \text{HSP}(A)$. Then A has the k-intersection property $\Rightarrow B$ has the k-intersection prop.
Observation

If A is a reduct of a module and $|A| > 1$, then A fails the k-intersection property for every k.

Proof.

For $a \in A$, let $R_a = \{ (a_1, \ldots, a_{k+1}) : a_1 + a_2 + \cdots + a_{k+1} = a \}$. Clearly R_a is a subuniverse of A_{k+1}, and any projection to less than $k+1$ coordinates is full. If $a \neq b$ then $R_a \cap R_b = \emptyset$.

Observation

If A is a reduct of a module and $|A| > 1$, then A fails the k-intersection property for every k.

Proof.

For $a \in A$ let

$$R_a = \{(a_1, \ldots, a_{k+1}) : a_1 + a_2 + \cdots + a_{k+1} = a\}$$

Clearly

- R_a is a subuniverse of A^{k+1}
- any projection to less than $k + 1$ coordinates is full
- if $a \neq b$ then $R_a \cap R_b = \emptyset$
Observation

\(B \in \text{HSP}(A) \). Then

\(A \) has the \(k \)-intersection property \(\implies B \) has the \(k \)-intersection prop.

Observation

If \(A \) is a reduct of a module and \(|A| > 1 \), then \(A \) fails the \(k \)-intersection property for every \(k \).
Observation

If \(B \in HSP(A) \). Then

\[A \text{ has the } k\text{-intersection property} \Rightarrow B \text{ has the } k\text{-intersection prop.} \]

Observation

If \(A \) is a reduct of a module and \(|A| > 1 \), then \(A \) fails the \(k\)-intersection property for every \(k \).

Corollary

If \(A \) has the \(k\)-intersection property for some \(k \), then \(HSP(A) \) doesn’t contain a reduct of a module (with more than one element).
Observation

\(B \in \text{HSP}(A) \). Then

\(A \) has the \(k \)-intersection property \(\Rightarrow \) \(B \) has the \(k \)-intersection property.

Observation

If \(A \) is a reduct of a module and \(|A| > 1 \), then \(A \) fails the \(k \)-intersection property for every \(k \).

Corollary

If \(A \) has the \(k \)-intersection property for some \(k \), then \(\text{HSP}(A) \) doesn’t contain a reduct of a module (with more than one element).

Conjecture (Valeriote)

The other implication is also true.
Theorem (Hobby, Maróti, McKenzie, Valeriote, Willard)

Let A be an algebra. TFAE

- $\text{HSP}(A)$ doesn’t contain a reduct of a module (>1 element)
Theorem (Hobby, Maróti, McKenzie, Valeriote, Willard)

Let A be an algebra. TFAE

- $\text{HSP}(A)$ doesn’t contain a reduct of a module (> 1 element)
- $\text{HSP}(A)$ omits 1 and 2

Definition

A is $\text{SD}(\land)$, if it satisfies the equivalent conditions above
Theorem (Hobby, Maróti, McKenzie, Valeriote, Willard)

Let A be an algebra. TFAE

- $\text{HSP}(A)$ doesn’t contain a reduct of a module (> 1 element)
- $\text{HSP}(A)$ omits 1 and 2
- $\text{HSP}(A)$ is congruence meet semi-distributive, i.e.

 if $B \in \text{HSP}(A)$, $\alpha, \beta_1, \beta_2 \in \text{Con}(B)$

 then $\alpha \land \beta_1 = \alpha \land \beta_2 \Rightarrow \alpha \land (\beta_1 \lor \beta_2) = \alpha \land \beta_1$
Theorem (Hobby, Maróti, McKenzie, Valeriote, Willard)

Let A be an algebra. TFAE

- $\text{HSP}(A)$ doesn’t contain a reduct of a module (> 1 element)
- $\text{HSP}(A)$ omits 1 and 2
- $\text{HSP}(A)$ is congruence meet semi-distributive, i.e.

 if $B \in \text{HSP}(A)$, $\alpha, \beta_1, \beta_2 \in \text{Con}(B)$

then $\alpha \land \beta_1 = \alpha \land \beta_2 \implies \alpha \land (\beta_1 \lor \beta_2) = \alpha \land \beta_1$

- A has Willard terms
Theorem (Hobby, Maróti, McKenzie, Valeriote, Willard)

Let A be an algebra. TFAE

- $\text{HSP}(A)$ doesn’t contain a reduct of a module (> 1 element)
- $\text{HSP}(A)$ omits 1 and 2
- $\text{HSP}(A)$ is congruence meet semi-distributive, i.e.

 if $B \in \text{HSP}(A)$, $\alpha, \beta_1, \beta_2 \in \text{Con}(B)$
 then $\alpha \land \beta_1 = \alpha \land \beta_2 \Rightarrow \alpha \land (\beta_1 \lor \beta_2) = \alpha \land \beta_1$

- A has Willard terms
- A has weak near-unanimity terms of almost all arities
Theorem (Hobby, Maróti, McKenzie, Valeriote, Willard)

Let A be an algebra. TFAE

- $\text{HSP}(A)$ doesn’t contain a reduct of a module (> 1 element)
- $\text{HSP}(A)$ omits 1 and 2
- $\text{HSP}(A)$ is congruence meet semi-distributive, i.e.

 if $B \in \text{HSP}(A)$, $\alpha, \beta_1, \beta_2 \in \text{Con}(B)$

 then $\alpha \land \beta_1 = \alpha \land \beta_2 \Rightarrow \alpha \land (\beta_1 \lor \beta_2) = \alpha \land \beta_1$

- A has Willard terms
- A has weak near-unanimity terms of almost all arities

Definition

A is $\text{SD}(\land)$, if it satisfies the equivalent conditions above
Examples of $SD(\land)$ algebras

- If $HSP(A)$ is congruence distributive, then A is $SD(\land)$
Examples of $SD(\land)$ algebras

- If $HSP(A)$ is congruence distributive, then A is $SD(\land)$
- Even more: If $HSP(A)$ is congruence join semi-distributive, then A is $SD(\land)$ Hobby, McKenzie, Kearnes
Examples of $\text{SD}(\wedge)$ algebras

- If $\text{HSP}(A)$ is congruence distributive, then A is $\text{SD}(\wedge)$
- Even more: If $\text{HSP}(A)$ is congruence join semi-distributive, then A is $\text{SD}(\wedge)$ Hobby, McKenzie, Kearnes
- If A has a Jónsson chain of terms, then A is $\text{SD}(\wedge)$

Facts about intersection properties

- If A has a semilattice term, then A has the 1-intersection property
- If A has a k-ary near-unanimity term, then A has the $(k-1)$-intersection property Baker, Pixley
- If A has a short (3-terms) chain of Jónsson terms, then A has the 2-intersection property Kiss, Valeriote and 2 is the optimal number
Examples of SD(\land) algebras

- If $HSP(A)$ is congruence distributive, then A is $SD(\land)$
- Even more: If $HSP(A)$ is congruence join semi-distributive, then A is $SD(\land)$ Hobby, McKenzie, Kearnes
- If A has a Jónsson chain of terms, then A is $SD(\land)$
- If A has a near-unanimity term, then A is $SD(\land)$
- If A has a semilattice term, then A has the 1-intersection property
- If A has a k-ary near-unanimity term, then A has the $(k-1)$-intersection property Baker, Pixley
- If A has a short (3-terms) chain of Jónsson terms, then A has the 2-intersection property Kiss, Valeriote and 2 is the optimal number
Examples of $\text{SD}(\land)$ algebras

- If $\text{HSP}(A)$ is congruence distributive, then A is $\text{SD}(\land)$
- Even more: If $\text{HSP}(A)$ is congruence join semi-distributive, then A is $\text{SD}(\land)$ Hobby, McKenzie, Kearnes
- If A has a Jónsson chain of terms, then A is $\text{SD}(\land)$
- If A has a near-unanimity term, then A is $\text{SD}(\land)$
- If A has a semilattice term, then A is $\text{SD}(\land)$
Examples of $SD(\wedge)$ algebras

- If $HSP(A)$ is congruence distributive, then A is $SD(\wedge)$
- Even more: If $HSP(A)$ is congruence join semi-distributive, then A is $SD(\wedge)$ (Hobby, McKenzie, Kearnes)
- If A has a Jónsson chain of terms, then A is $SD(\wedge)$
- If A has a near-unanimity term, then A is $SD(\wedge)$
- If A has a semilattice term, then A is $SD(\wedge)$

Facts about intersection properties
Examples of $\text{SD}(\land)$ algebras

- If $\text{HSP}(\mathbf{A})$ is congruence distributive, then \mathbf{A} is $\text{SD}(\land)$
- Even more: If $\text{HSP}(\mathbf{A})$ is congruence join semi-distributive, then \mathbf{A} is $\text{SD}(\land)$ Hobby, McKenzie, Kearnes
- If \mathbf{A} has a Jónsson chain of terms, then \mathbf{A} is $\text{SD}(\land)$
- If \mathbf{A} has a near-unanimity term, then \mathbf{A} is $\text{SD}(\land)$
- If \mathbf{A} has a semilattice term, then \mathbf{A} is $\text{SD}(\land)$

Facts about intersection properties

- If \mathbf{A} has a semilattice term, then \mathbf{A} has the 1-intersection property
Examples of $SD(\land)$ algebras

- If $HSP(A)$ is congruence distributive, then A is $SD(\land)$
- Even more: If $HSP(A)$ is congruence join semi-distributive, then A is $SD(\land)$ Hobby, McKenzie, Kearnes
- If A has a Jónsson chain of terms, then A is $SD(\land)$
- If A has a near-unanimity term, then A is $SD(\land)$
- If A has a semilattice term, then A is $SD(\land)$

Facts about intersection properties

- If A has a semilattice term, then A has the 1-intersection property
- If A has a k-ary near-unanimity term, then A has the $(k - 1)$-intersection property Baker, Pixley
Examples of $\text{SD}(\wedge)$ algebras

- If $\text{HSP}(A)$ is congruence distributive, then A is $\text{SD}(\wedge)$
- Even more: If $\text{HSP}(A)$ is congruence join semi-distributive, then A is $\text{SD}(\wedge)$ Hobby, McKenzie, Kearnes
- If A has a Jónsson chain of terms, then A is $\text{SD}(\wedge)$
- If A has a near-unanimity term, then A is $\text{SD}(\wedge)$
- If A has a semilattice term, then A is $\text{SD}(\wedge)$

Facts about intersection properties

- If A has a semilattice term, then A has the 1-intersection property
- If A has a k-ary near-unanimity term, then A has the $(k - 1)$-intersection property Baker, Pixley
- If A has a short (3-terms) chain of Jónsson terms, then A has the 2-intersection property Kiss, Valeriote and 2 is the optimal number
Let \(A \) be an algebra. An instance of CSP(\(A \)) is a pair \((V, C) \), where

- \(V \) is a finite set (elements are called variables)
- \(C \) is a finite set of constraints

Constraint is a subuniverse \(C \) of \(A^D \), where \(D \subseteq V \) (called the scope of \(C \))
Definition \((\text{CSP}(A))\)

Let \(A\) be an algebra. An instance of \(\text{CSP}(A)\) is a pair \((V, C)\), where

- \(V\) is a finite set (elements are called variables)
- \(C\) is a finite set of constraints

Constraint is a subuniverse \(C\) of \(A^D\), where \(D \subseteq V\) (called the scope of \(C\))

Definition

A solution to \((V, C)\) is a mapping \(f : V \rightarrow A\) which satisfies all the constraints \(C \leq A^D\) in \(C\), i.e. \(f|D \in C\).
Definition (CSP(\(A\)))

Let \(A\) be an algebra. An instance of CSP(\(A\)) is a pair \((V, C)\), where

- \(V\) is a finite set (elements are called variables)
- \(C\) is a finite set of constraints

Constraint is a subuniverse \(C\) of \(A^D\), where
\(D \subseteq V\) (called the scope of \(C\))

Definition

A solution to \((V, C)\) is a mapping \(f : V \rightarrow A\) which satisfies all the constraints \(C \leq A^D\) in \(C\), i.e. \(f|D \in C\).

The aim is to find a solution fast (in poly-time).
Definition (± Bulatov, Jeavons)

Let $k \leq l$ be natural numbers. An instance (V, C) of CSP(A) is called (k, l)-minimal if

- Every l-element subset of V is a subset of the scope of some constraint in C.
- For every $J \subseteq V$, $|J| \leq k$ and every pair $C_1, C_2 \in S$ whose scopes contain J, the projections of C_1 and C_2 onto J are the same.

An instance (V, C) is called k-minimal, if it is (k, k)-minimal.
(\(k, l\))-minimal instance

Definition (± Bulatov, Jeavons)

Let \(k \leq l\) be natural numbers.
An instance \((V, C)\) of \(\text{CSP}(A)\) is called \((k, l)\)-minimal if

1. Every \(l\)-element subset of \(V\) is a subset of the scope of some constraint in \(C\).
2. For every \(J \subseteq V, |J| \leq k\) and every pair \(C_1, C_2 \in S\) whose scopes contain \(J\), the projections of \(C_1\) and \(C_2\) onto \(J\) are the same.

An instance \((V, C)\) is called \(k\)-minimal, if it is \((k, k)\)-minimal.

Observation

If \(k' \leq k\) and \(l' \leq l\) then \((k, l)\)-minimal instance is \((k', l')\)-minimal.
Bounded relational width

Observation

Every instance of $\text{CSP}(A)$ can be converted into an equivalent (k, l)-minimal instance in poly-time.

(Two instances are equivalent if they have the same set of solutions.)
Bounded relational width

Observation
Every instance of CSP(\(A\)) can be converted into an equivalent \((k, l)\)-minimal instance in poly-time.
(Two instances are equivalent if they have the same set of solutions.)

Definition
\(A\) has relational width \((k, l)\) if every \((k, l)\)-minimal instance, whose constraints are non-empty, has a solution.
\(A\) has bounded relational width if it has relational width \((k, l)\) for some \(k, l\).
The bounded relational width conjecture

Theorem (Larose, Zádori, Bulatov)

If A has bounded relational width, then A is an $\text{SD}(\wedge)$ algebra.

Conjecture (Larose, Zádori, Bulatov)

The other implication is also true.

▶ If A has a semilattice term, then A has rel. width 1 Feder, Vardi, Dalmau, Pearson

▶ If A has a 2-semilattice term, then A has rel. width 3 Bulatov

▶ If A has a k-ary near-unanimity term, then A has rel. width $k-1$ Feder, Vardi

▶ If A has a short chain of Jónsson terms (3 terms), then A has bounded relational width Kiss, Valeriote

▶ If A has a short chain of Jónsson terms (4 terms), then A has "bounded width" Carvalho, Dalmau, Marković, Maróti
The bounded relational width conjecture

<table>
<thead>
<tr>
<th>Theorem (Larose, Zádori, Bulatov)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If A has bounded relational width, then A is an $SD(\land)$ algebra.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conjecture (Larose, Zádori, Bulatov)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The other implication is also true.</td>
</tr>
</tbody>
</table>
The bounded relational width conjecture

<table>
<thead>
<tr>
<th>Theorem (Larose, Zádori, Bulatov)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If A has bounded relational width, then A is an $SD(\land)$ algebra.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conjecture (Larose, Zádori, Bulatov)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The other implication is also true.</td>
</tr>
</tbody>
</table>

- If A has a semilattice term, then A has rel. width 1 [Feder, Vardi, Dalmau, Pearson]
The bounded relational width conjecture

Theorem (Larose, Zádori, Bulatov)

If \mathbf{A} *has bounded relational width, then* \mathbf{A} *is an* $\text{SD}(\land)$ *algebra.*

Conjecture (Larose, Zádori, Bulatov)

The other implication is also true.

- If \mathbf{A} has a semilattice term, then \mathbf{A} has rel. width 1 *Feder, Vardi, Dalmau, Pearson*
- If \mathbf{A} has a 2-semilattice term, then \mathbf{A} has rel. width 3 *Bulatov*
The bounded relational width conjecture

Theorem (Larose, Zádori, Bulatov)

If A has bounded relational width, then A is an $SD(\land)$ algebra.

Conjecture (Larose, Zádori, Bulatov)

The other implication is also true.

- If A has a semilattice term, then A has rel. width 1 Feder, Vardi, Dalmau, Pearson
- If A has a 2-semilattice term, then A has rel. width 3 Bulatov
- If A has a k-ary near-unanimity term, then A has rel. width $k - 1$ Feder, Vardi
The bounded relational width conjecture

Theorem (Larose, Zádori, Bulatov)

If A has bounded relational width, then A is an $SD(\land)$ algebra.

Conjecture (Larose, Zádori, Bulatov)

The other implication is also true.

- If A has a semilattice term, then A has rel. width 1 Feder, Vardi, Dalmau, Pearson
- If A has a 2-semilattice term, then A has rel. width 3 Bulatov
- If A has a k-ary near-unanimity term, then A has rel. width $k - 1$ Feder, Vardi
- If A has a short chain of Jónsson terms (3 terms), then A has bounded relational width Kiss, Valeriote
The bounded relational width conjecture

Theorem (Larose, Zádori, Bulatov)

If A has bounded relational width, then A is an $SD(\land)$ algebra.

Conjecture (Larose, Zádori, Bulatov)

The other implication is also true.

- If A has a semilattice term, then A has rel. width 1 Feder, Vardi, Dalmau, Pearson
- If A has a 2-semilattice term, then A has rel. width 3 Bulatov
- If A has a k-ary near-unanimity term, then A has rel. width $k - 1$ Feder, Vardi
- If A has a short chain of Jónsson terms (3 terms), then A has bounded relational width Kiss, Valeriote
- If A has a short chain of Jónsson terms (4 terms), then A has “bounded width” Carvalho, Dalmau, Marković, Maróti
Corollaries of the Prague Theorem

<table>
<thead>
<tr>
<th>Corollary</th>
</tr>
</thead>
<tbody>
<tr>
<td>If (A) is an (\text{SD}(\land)) algebra, then (A) has relational width ((2, 3)). (The parameters ((2, 3)) are optimal.)</td>
</tr>
</tbody>
</table>
Corollary

If A is an $SD(\wedge)$ algebra, then A has relational width $(2, 3)$. (The parameters $(2, 3)$ are optimal.)

Corollary

If A is an $SD(\wedge)$ algebra, then A satisfies the 2-intersection property. (Recall that 2 is optimal.)
Corollaries of the Prague Theorem

Corollary

If A is an $SD(\wedge)$ algebra, then A has relational width $(2, 3)$. (The parameters $(2, 3)$ are optimal.)

Corollary

If A is an $SD(\wedge)$ algebra, then A satisfies the 2-intersection property. (Recall that 2 is optimal.)

Proof.

- Let $R_1, \ldots, R_m \leq A^n$ be nonempty and 2-equal
- Let $V = [n]$, $C = \{R_1, \ldots, R_m\}$
- (V, C) is a $(2, n)$-minimal instance of $\text{CSP}(A)$
I am finally going to introduce Prague strategies.

Comparison with known notions:

\[(2, 3)\text{-minimal instance of } \text{CSP}(A)\]
\[\Downarrow\]
Prague strategy over \(A\)
\[\Downarrow\]
1-minimal instance of \(\text{CSP}(A)\)
Let \((V, \mathcal{C})\) be an instance of \(\text{CSP}(A)\)
For $x, y \in V$ and $C \in \mathcal{C}$ and $a, b \in A$ we write $a \xrightarrow{x,y,C} b$, if

- x, y are in the scope of C
- The mapping $x \rightarrow a, y \rightarrow b$ is in the projection of C to $\{x, y\}$
For $x, y \in V$ and $C \in \mathcal{C}$ and $a, b \in A$ we write $a \xrightarrow{x,y,C} b$, if
- x, y are in the scope of C
- The mapping $x \rightarrow a, y \rightarrow b$ is in the projection of C to $\{x, y\}$

Definition

A *pattern* w is a tuple (x_1, C_1, \ldots):

$$x_1 \xrightarrow{C_1} x_2 \xrightarrow{C_2} \ldots \xrightarrow{C_i} x_{i+1},$$

where $x_j \in V$ and $C_j \in \mathcal{C}$.

We write $a \xrightarrow{w} b$, if there exist $a = a_1, a_2, \ldots, a_{i+1} = b$ such that

$$a = a_1 \xrightarrow{x_1,x_2,C_1} a_2 \xrightarrow{x_2,x_3,C_2} a_3 \rightarrow \cdots \rightarrow a_i \xrightarrow{x_i,x_{i+1},C_i} a_{i+1} = b$$

The **scope** of w is $[[w]] = \{x_1, \ldots, x_{i+1}\}$
If patterns w_1, w_2 start and end with the same variable x, we can form their concatenation $w_1 \circ w_2$.

$$w^K = w \circ w \circ \cdots \circ w \ (K\text{-times})$$
A Prague strategy over \mathbf{A} is an instance (V, C) of $\text{CSP}(\mathbf{A})$ such that

1. (V, C) is 1-minimal
2. For every $x \in V$,
 - every pattern v starting and ending with x,
 - every $a, b \in A$ such that $a \xrightarrow{v} b$ and every pattern w starting and ending with x s.t. $[[v]] \subseteq [[w]]$, there exists a natural number K such that $a \xrightarrow{w^K} b$
Definition (!!!!!!!!)

A Prague strategy over \mathbf{A} is an instance (V, C) of $\text{CSP}(\mathbf{A})$ such that

1. (V, C) is 1-minimal
2. For every $x \in V$,
 - every pattern v starting and ending with x,
 - every $a, b \in A$ such that $a \xrightarrow{v} b$ and
 - every pattern w starting and ending with x s.t. $[[v]] \subseteq [[w]]$,

 there exists a natural number K such that $a \xrightarrow{w^K} b$

Observation

Every $(2, 3)$-min. instance of $\text{CSP}(\mathbf{A})$ is a Prague strategy over \mathbf{A}.
The Prague Theorem

Theorem (BK)

Let A be an algebra. TFAE

- A is an $SD(\wedge)$ algebra
- Every Prague strategy over A has a solution
The Prague Theorem

Theorem (BK)

Let A be an algebra. TFAE

- A is an SD(\land) algebra
- Every Prague strategy over A has a solution

Proof.

Implication \uparrow follows from Larose, Zádori, Bulatov
The Prague Theorem

Theorem (BK)

Let A be an algebra. TFAE

- A is an SD(\land) algebra
- Every Prague strategy over A has a solution

Proof.

Implication \uparrow follows from Larose, Zádori, Bulatov

For \downarrow the strategy of the proof is to find smaller and smaller substrategies until we find a solution.
The Prague Theorem

Theorem (BK)

Let A be an algebra. TFAE

- A is an SD(\wedge) algebra
- Every Prague strategy over A has a solution

Proof.

Implication \uparrow follows from Larose, Zádori, Bulatov

For \downarrow the strategy of the proof is to find smaller and smaller substrategies until we find a solution

Two cases

- When we have a proper absorbing set of the projection to some singleton
The Prague Theorem

Theorem (BK)

Let A be an algebra. TFAE

- A is an SD(\land) algebra
- Every Prague strategy over A has a solution

Proof.

Implication \uparrow follows from Larose, Zádori, Bulatov

For \downarrow the strategy of the proof is to find smaller and smaller substrategies until we find a solution

Two cases

- When we have a proper absorbing set of the projection to some singleton
- When we don’t have …
Thank you for your attention!

Thank you for your attention?

thank you for your attention?