Cyclic terms for join semi-distributive varieties II

Marcin Kozik

joint work with Libor Barto

TCS © Jagiellonian University
Kraków, Poland

AAA Bern 2009
Cyclic algebras

Definition (Cyclic algebra)

Let A be a finite algebra. A subalgebra $R \leq A^n$ is cyclic, if

$$\forall a_1, \ldots, a_n \in A \quad (a_1, a_2, \ldots, a_n) \in R \Rightarrow (a_2, \ldots, a_n, a_1) \in R$$
Cyclic algebras

Definition (Cyclic algebra)

Let A be a finite algebra. A subalgebra $R \subseteq A^n$ is **cyclic**, if

$$\forall a_1, \ldots, a_n \in A \quad (a_1, a_2, \ldots, a_n) \in R \Rightarrow (a_2, \ldots, a_n, a_1) \in R$$

- R is an algebra
Cyclic algebras

Definition (Cyclic algebra)

Let A be a finite algebra. A subalgebra $R \leq A^n$ is cyclic, if

$$\forall a_1, \ldots, a_n \in A \quad (a_1, a_2, \ldots, a_n) \in R \Rightarrow (a_2, \ldots, a_n, a_1) \in R$$

- R is an algebra
- R is a relation on A compatible with operations of algebra A
Cyclic algebras

Definition (Cyclic algebra)

Let A be a finite algebra. A subalgebra $R \subseteq A^n$ is cyclic, if

$$\forall a_1, \ldots, a_n \in A \quad (a_1, a_2, \ldots, a_n) \in R \Rightarrow (a_2, \ldots, a_n, a_1) \in R$$

- R is an algebra
- R is a relation on A compatible with operations of algebra A

Definition (A retraction)

For a relational structure (A, R) a function $f : A \rightarrow A$ is a retraction iff

- $f(f(a)) = f(a)$ for all $a \in A$ and
- if $(a_1, \ldots, a_n) \in R$ then $(f(a_1), \ldots, f(a_n)) \in R$ (endomorphism).
The missing theorem

Theorem (For simple algebras)

Let A be a finite, simple algebra from an $SD(\vee)$ variety and

and more generally

Theorem (General case)

Let A be a finite, simple algebra from an $SD(\vee)$ variety and

and more generally
The missing theorem

Theorem (For simple algebras)

Let A be a finite, simple algebra from an $SD(\vee)$ variety and let p be a prime number greater than $|A|$ and let $R \leq A^p$ be a cyclic and subdirect subalgebra of A^p. If R has more than one element then (A, R) has a non-trivial retraction.

And more generally

Theorem (General case)

Let A be a finite, simple algebra from an $SD(\vee)$ variety and let p be a prime number greater than $|A|$ and let $R \leq A^p$ be a cyclic and subdirect subalgebra of A^p. Then R contains a constant tuple.
The missing theorem

Theorem (For simple algebras)

Let A be a finite, simple algebra from an $SD(\vee)$ variety and let p be a prime number greater than $|A|$ and let $R \leq A^p$ be a cyclic and subdirect subalgebra of A^p.
The missing theorem

Theorem (For simple algebras)

Let A be a finite, simple algebra from an $SD(\vee)$ variety and let p be a prime number greater than $|A|$ and let $R \leq A^p$ be a cyclic and subdirect subalgebra of A^p. If R has more than one element then (A, R) has a non-trivial retraction.
The missing theorem

Theorem (For simple algebras)

Let A be a finite, simple algebra from an $SD(\lor)$ variety and let p be a prime number greater than $|A|$ and let $R \leq A^p$ be a cyclic and subdirect subalgebra of A^p. If R has more than one element then (A, R) has a non-trivial retraction.

and more generally

Theorem (General case)

Let A be a finite, simple algebra from an $SD(\lor)$ variety and let p be a prime number greater than $|A|$ and let $R \leq A^p$ be a cyclic and subdirect subalgebra of A^p. Then R contains a constant tuple.
The general case from the simple case

Let A and R be the minimal counterexample to the general case. And, WLOG, the algebras are idempotent.
The general case from the simple case

Let \(A \) and \(R \) be the minimal counterexample to the general case. And, WLOG, the algebras are idempotent

- \(R \) is subdirect (as otherwise it contains a constant tuple)
The general case from the simple case

Let A and R be the minimal counterexample to the general case. And, WLOG, the algebras are idempotent

- R is subdirect (as otherwise it contains a constant tuple)
- if A has a non-trivial congruence θ then
The general case from the simple case

Let A and R be the minimal counterexample to the general case. And, WLOG, the algebras are idempotent

- R is subdirect (as otherwise it contains a constant tuple)
- if A has a non-trivial congruence θ then
 - R/θ is a cyclic subalgebra of $(A/\theta)^p$
The general case from the simple case

Let A and R be the minimal counterexample to the general case. And, WLOG, the algebras are idempotent

- R is subdirect (as otherwise it contains a constant tuple)
- if A has a non-trivial congruence θ then
 - R/θ is a cyclic subalgebra of $(A/\theta)^p$ and therefore R/θ contains a constant tuple $(a/\theta, \ldots, a/\theta)$.

L. Barto, M. Kozik (Kraków)
The general case from the simple case

Let A and R be the minimal counterexample to the general case. And, WLOG, the algebras are idempotent

- R is subdirect (as otherwise it contains a constant tuple)
- if A has a non-trivial congruence θ then
 - R/θ is a cyclic subalgebra of $(A/\theta)^p$ and therefore R/θ contains a constant tuple $(a/\theta, \ldots, a/\theta)$.
 - a/θ is an $SD(\lor)$ algebra and $R \cap (a/\theta)^p$ is a cyclic subalgebra of $(a/\theta)^p$
The general case from the simple case

Let A and R be the minimal counterexample to the general case. And, WLOG, the algebras are idempotent

- R is subdirect (as otherwise it contains a constant tuple)
- if A has a non-trivial congruence θ then
 - R/θ is a cyclic subalgebra of $(A/\theta)^p$ and therefore R/θ contains a constant tuple $(a/\theta, \ldots, a/\theta)$.
 - a/θ is an $SD(\lor)$ algebra and $R \cap (a/\theta)^p$ is a cyclic subalgebra of $(a/\theta)^p$ thus $(a/\theta)^p$ contains a constant tuple.
The general case from the simple case

Let A and R be the minimal counterexample to the general case. And, WLOG, the algebras are idempotent

- R is subdirect (as otherwise it contains a constant tuple)
- if A has a non-trivial congruence θ then
 - \ldots OK
- A is simple.
The general case from the simple case

Let A and R be the minimal counterexample to the general case. And, WLOG, the algebras are idempotent

- R is subdirect (as otherwise it contains a constant tuple)
- if A has a non-trivial congruence θ then
 - ... OK
- A is simple.
 - there exists a non-trivial retraction f of (A, R)
The general case from the simple case

Let A and R be the minimal counterexample to the general case. And, WLOG, the algebras are idempotent

- R is subdirect (as otherwise it contains a constant tuple)
- if A has a non-trivial congruence θ then
 - \ldots OK
- A is simple.
 - there exists a non-trivial retraction f of (A, R)
 - if t_1, \ldots, t_m are idempotent operations of A satisfying a Maltsev condition for $SD(\lor)$;
The general case from the simple case

Let A and R be the minimal counterexample to the general case. And, WLOG, the algebras are idempotent

- R is subdirect (as otherwise it contains a constant tuple)
- if A has a non-trivial congruence θ then
 - ... OK
- A is simple.
 - there exists a non-trivial retraction f of (A, R)
 - if t_1, \ldots, t_m are idempotent operations of A satisfying a Maltsev condition for $SD(\lor)$;
 - then, putting $B = (f(A), ft_1, \ldots, ft_m)$,
The general case from the simple case

Let A and R be the minimal counterexample to the general case. And, WLOG, the algebras are idempotent

- R is subdirect (as otherwise it contains a constant tuple)
- if A has a non-trivial congruence θ then
 - \ldots OK
- A is simple.
 - there exists a non-trivial retraction f of (A, R)
 - if t_1, \ldots, t_m are idempotent operations of A satisfying a Maltsev condition for $SD(\lor)$;
 - then, putting $B = (f(A), ft_1, \ldots, ft_m)$,
 - B is an $SD(\lor)$ algebra (as ft_1, \ldots, ft_m satisfy all linear equations satisfied by t_1, \ldots, t_m)
The general case from the simple case

Let A and R be the minimal counterexample to the general case. And, WLOG, the algebras are idempotent

- R is subdirect (as otherwise it contains a constant tuple)
- if A has a non-trivial congruence θ then ... OK
- A is simple.
 - there exists a non-trivial retraction f of (A, R)
 - if t_1, \ldots, t_m are idempotent operations of A satisfying a Maltsev condition for $SD(\vee)$;
 - then, putting $B = (f(A), ft_1, \ldots, ft_m)$,
 - B is an $SD(\vee)$ algebra (as ft_1, \ldots, ft_m satisfy all linear equations satisfied by t_1, \ldots, t_m)
 - and $f(R) = (R \cap B^p) \leq B^p$ is a cyclic subalgebra of B
The general case from the simple case

Let A and R be the minimal counterexample to the general case. And, WLOG, the algebras are idempotent

- R is subdirect (as otherwise it contains a constant tuple)
- if A has a non-trivial congruence θ then
 - ... OK
- A is simple.
 - there exists a non-trivial retraction f of (A, R)
 - if t_1, \ldots, t_m are idempotent operations of A satisfying a Maltsev condition for $SD(\lor)$;
 - then, putting $B = (f(A), ft_1, \ldots, ft_m)$,
 - B is an $SD(\lor)$ algebra (as ft_1, \ldots, ft_m satisfy all linear equations satisfied by t_1, \ldots, t_m)
 - and $f(R) = (R \cap B^p) \leq B^p$ is a cyclic subalgebra of B
 - from minimality of A it contains a constant tuple ... OK
The simple case

Let A be an $SD(\lor)$ algebra and $R \leq A^p$ be cyclic (for a prime $p > |A|$).
The simple case

Let A be an SD(\lor) algebra and $R \leq A^p$ be cyclic (for a prime $p > |A|$).

Definition

An unfolding of R is the p-ary relation R' on the set $A \times p$ defined by

$$R' = \left\{ ((a_1, 1), \ldots, (a_p, p)) \in (A \times p)^p \mid (a_1, \ldots, a_p) \in R \right\}.$$
The simple case

Let A be an SD(\lor) algebra and $R \leq A^p$ be cyclic (for a prime $p > |A|$).

Definition

An unfolding of R is the p-ary relation R' on the set $A \times p$ defined by

$$R' = \{(a_1, 1), \ldots, (a_p, p) \in (A \times p)^p | (a_1, \ldots, a_p) \in R\}.$$

An unfolding power C of R is the subset of $A^{A \times p}$ consisting of all the homomorphisms from the relational structure $(A \times p, R')$ to (A, R).
The simple case

Let \mathbf{A} be an $\text{SD}(\vee)$ algebra and $\mathbf{R} \leq \mathbf{A}^p$ be cyclic (for a prime $p > |\mathbf{A}|$).

Definition

An unfolding of \mathbf{R} is the p-ary relation \mathbf{R}' on the set $\mathbf{A} \times p$ defined by

$$\mathbf{R}' = \{((a_1, 1), \ldots, (a_p, p)) \in (\mathbf{A} \times p)^p \mid (a_1, \ldots, a_p) \in \mathbf{R}\}.$$

An unfolding power \mathbf{C} of \mathbf{R} is the subset of $\mathbf{A}^{\mathbf{A} \times p}$ consisting of all the homomorphisms from the relational structure $(\mathbf{A} \times p, \mathbf{R}')$ to (\mathbf{A}, \mathbf{R}).

- \mathbf{C} is a subuniverse of $\mathbf{A}^{\mathbf{A} \times p}$
The simple case

Let A be an SD(\lor) algebra and $R \leq A^p$ be cyclic (for a prime $p > |A|$).

Definition

An unfolding of R is the p-ary relation R' on the set $A \times p$ defined by

$$R' = \{(a_1, 1), \ldots, (a_p, p) \in (A \times p)^p \mid (a_1, \ldots, a_p) \in R\}.$$

An unfolding power C of R is the subset of $A^{A \times p}$ consisting of all the homomorphisms from the relational structure $(A \times p, R')$ to (A, R).

- C is a subuniverse of $A^{A \times p}$
- any $g \in C$ is a tuple (g_1, \ldots, g_p) (where $g_i(a) = g((a, i))$) and

 $$(g_1(a_1), \ldots, g_p(a_p)) \in R \text{ whenever } (a_1, \ldots, a_p) \in R.$$
The simple case

Let A be an $SD(\lor)$ algebra and $R \leq A^p$ be cyclic (for a prime $p > |A|$).

Definition

An *unfolding* of R is the p-ary relation R' on the set $A \times p$ defined by

$$R' = \{ ((a_1, 1), \ldots, (a_p, p)) \in (A \times p)^p \mid (a_1, \ldots, a_p) \in R \}.$$

An *unfolding power* C of R is the subset of $A^{A \times p}$ consisting of all the homomorphisms from the relational structure $(A \times p, R')$ to (A, R).

- C is a subuniverse of $A^{A \times p}$
- any $g \in C$ is a tuple (g_1, \ldots, g_p) (where $g_i(a) = g((a, i))$) and $(g_1(a_1), \ldots, g_p(a_p)) \in R$ whenever $(a_1, \ldots, a_p) \in R$.
- $(\text{id}_A, \text{id}_A, \ldots, \text{id}_A) \in C$
The simple case

Let \(A \) be an SD(\(\vee \)) algebra and \(R \leq A^p \) be cyclic (for a prime \(p > |A| \)).

Definition

An **unfolding** of \(R \) is the \(p \)-ary relation \(R' \) on the set \(A \times p \) defined by

\[
R' = \{((a_1, 1), \ldots, (a_p, p)) \in (A \times p)^p | (a_1, \ldots, a_p) \in R \}.
\]

An **unfolding power** \(C \) of \(R \) is the subset of \(A^{A \times p} \) consisting of all the homomorphisms from the relational structure \((A \times p, R')\) to \((A, R)\).

- \(C \) is a subuniverse of \(A^{A \times p} \)
- any \(g \in C \) is a tuple \((g_1, \ldots, g_p) \) (where \(g_i(a) = g((a, i)) \)) and \((g_1(a_1), \ldots, g_p(a_p)) \in R \) whenever \((a_1, \ldots, a_p) \in R \).
- \((\text{id}_A, \text{id}_A, \ldots, \text{id}_A) \in C \)
- \((\overline{a_1}, \ldots, \overline{a_p}) \in C \) for \((a_1, \ldots, a_p) \in R \),
Let A be an SD(\lor) algebra and $R \leq A^p$ be cyclic (for a prime $p > |A|$).

Definition

An **unfolding** of R is the p-ary relation R' on the set $A \times p$ defined by

$$R' = \{(a_1, 1), \ldots, (a_p, p) \} \in (A \times p)^p | (a_1, \ldots, a_p) \in R\}.$$

An **unfolding power** C of R is the subset of $A^{A \times p}$ consisting of all the homomorphisms from the relational structure $(A \times p, R')$ to (A, R).

- any $g \in C$ is a tuple (g_1, \ldots, g_p) (where $g_i(a) = g((a, i)))$ and
 $$(g_1(a_1), \ldots, g_p(a_p)) \in R \text{ whenever } (a_1, \ldots, a_p) \in R.$$
The simple case reloaded

Let A be an SD(\lor) algebra and $R \leq A^p$ be cyclic (for a prime $p > |A|$).

Definition

An unfolding of R is the p-ary relation R' on the set $A \times p$ defined by

$$R' = \{(a_1, 1), \ldots, (a_p, p)\} \in (A \times p)^p | (a_1, \ldots, a_p) \in R\}.$$

An unfolding power C of R is the subset of $A^{A \times p}$ consisting of all the homomorphisms from the relational structure $(A \times p, R')$ to (A, R).

- any $g \in C$ is a tuple (g_1, \ldots, g_p) (where $g_i(a) = g((a, i))$) and $(g_1(a_1), \ldots, g_p(a_p)) \in R$ whenever $(a_1, \ldots, a_p) \in R$.
- if $(g, g, \ldots, g) \in C$ then g is an endomorphism of (A, R);
The simple case reloaded

Let \(A \) be an SD(\(\lor \)) algebra and \(R \leq A^p \) be cyclic (for a prime \(p > |A| \)).

Definition

An unfolding of \(R \) is the \(p \)-ary relation \(R' \) on the set \(A \times p \) defined by

\[
R' = \{ ((a_1, 1), \ldots, (a_p, p)) \in (A \times p)^p \mid (a_1, \ldots, a_p) \in R \}.
\]

An unfolding power \(C \) of \(R \) is the subset of \(A^{A \times p} \) consisting of all the homomorphisms from the relational structure \((A \times p, R')\) to \((A, R)\).

- any \(g \in C \) is a tuple \((g_1, \ldots, g_p)\) (where \(g_i(a) = g((a, i)) \)) and \((g_1(a_1), \ldots, g_p(a_p)) \in R \) whenever \((a_1, \ldots, a_p) \in R \).
- if \((g, g, \ldots, g) \in C \) then \(g \) is an endomorphism of \((A, R)\);
- if \((f_1, \ldots, f_p), d = (g_1, \ldots, g_p) \in C \), then \((f_1 \circ g_1, \ldots, f_p \circ g_p) \in C \).
The simple case reloaded

Let A be an $SD(\vee)$ algebra and $R \leq A^p$ be cyclic (for a prime $p > |A|$).

Definition

An **unfolding** of R is the p-ary relation R' on the set $A \times p$ defined by

$$R' = \{((a_1, 1), \ldots, (a_p, p)) \in (A \times p)^p \mid (a_1, \ldots, a_p) \in R\}.$$

An **unfolding power** C of R is the subset of $A^{A \times p}$ consisting of all the homomorphisms from the relational structure $(A \times p, R')$ to (A, R).

- any $g \in C$ is a tuple (g_1, \ldots, g_p) (where $g_i(a) = g(((a, i)))$) and
 $$(g_1(a_1), \ldots, g_p(a_p)) \in R$$ whenever $(a_1, \ldots, a_p) \in R$.
- if $(g, g, \ldots, g) \in C$ then g is an endomorphism of (A, R);
- if (f_1, \ldots, f_p), $d = (g_1, \ldots, g_p) \in C$, then $(f_1 \circ g_1, \ldots, f_p \circ g_p) \in C$;
- if $(g_1, \ldots, g_p) \in C$ then $(g_j, g_{j+1}, \ldots, g_{j+p}) \in C$ for any j.
The simple case reloaded

Let A be an SD(\lor) algebra and $R \leq A^p$ be cyclic (for a prime $p > |A|$).

Definition

An unfolding of R is the p-ary relation R' on the set $A \times p$ defined by

$$R' = \{(a_1, 1), \ldots, (a_p, p) \in (A \times p)^p | (a_1, \ldots, a_p) \in R\}.$$

An unfolding power C of R is the subset of $A^{A \times p}$ consisting of all the homomorphisms from the relational structure $(A \times p, R')$ to (A, R).

- any $g \in C$ is a tuple (g_1, \ldots, g_p) (where $g_i(a) = g((a, i)))$ and $(g_1(a_1), \ldots, g_p(a_p)) \in R$ whenever $(a_1, \ldots, a_p) \in R$.
- if $(g, g, \ldots, g) \in C$ then g is an endomorphism of (A, R);
- if $(f_1, \ldots, f_p), d = (g_1, \ldots, g_p) \in C$, then $(f_1 \circ g_1, \ldots, f_p \circ g_p) \in C$;
- if $(g_1, \ldots, g_p) \in C$ then $(g_j, g_{j+1}, \ldots, g_{j+p}) \in C$ for any j.

L. Barto, M. Kozik (Kraków) Cyclic terms for SD(\lor) AAA Bern 2009 6 / 8
Let A be an $SD(\lor)$ algebra and $R \leq A^p$ be cyclic (for a prime $p > |A|$).

Definition

An unfolding of R is the p-ary relation R' on the set $A \times p$ defined by

$$R' = \{ ((a_1, 1), \ldots, (a_p, p)) \in (A \times p)^p \mid (a_1, \ldots, a_p) \in R \}.$$

An unfolding power C of R is the subset of $A^{A \times p}$ consisting of all the homomorphisms from the relational structure $(A \times p, R')$ to (A, R).

- any $g \in C$ is a tuple (g_1, \ldots, g_p) (where $g_i(a) = g((a, i)))$ and $(g_1(a_1), \ldots, g_p(a_p)) \in R$ whenever $(a_1, \ldots, a_p) \in R$.
- if $(g, g, \ldots, g) \in C$ then g is an endomorphism of (A, R);
- if $(f_1, \ldots, f_p), \ d = (g_1, \ldots, g_p) \in C$, then $(f_1 \circ g_1, \ldots, f_p \circ g_p) \in C$;
- if $(g_1, \ldots, g_p) \in C$ then $(g_j, g_{j+1}, \ldots, g_{j+p}) \in C$ for any j.

The simple case concluded

Definition

For two tuples \((f_1, \ldots, f_p), (g_1, \ldots, g_p) \in C\) we define a congruence \(\eta_j\)

\[(f_1, \ldots, f_p) \eta_j (g_1, \ldots, g_p) \text{ iff } (f_i = g_i \text{ for all } i \neq j)\]
The simple case concluded

Definition

For two tuples \((f_1, \ldots, f_p), (g_1, \ldots, g_p) \in C\) we define a congruence \(\eta_j\)

\[(f_1, \ldots, f_p) \eta_j (g_1, \ldots, g_p) \text{ iff } (f_i = g_i \text{ for all } i \neq j)\]

From the SD(∨) we infer that

\[\bigvee_j \eta_j\] is the full congruence on \(C\)
The simple case concluded

Definition

For two tuples \((f_1, \ldots, f_p), (g_1, \ldots, g_p) \in C\) we define a congruence \(\eta_j\)

\[(f_1, \ldots, f_p) \eta_j (g_1, \ldots, g_p) \text{ iff } (f_i = g_i \text{ for all } i \neq j)\]

From the SD(\(\lor\)) we infer that

\[\bigvee_j \eta_j\] is the full congruence on \(C\)

and therefore there is \(j\), and not onto \(f_j : A \to A\) such that

\[(\text{id}_A, \text{id}_A, \ldots, \text{id}_A) \eta_j (f_1, \ldots, f_p)\]
The simple case concluded

Definition

For two tuples \((f_1, \ldots, f_p), (g_1, \ldots, g_p) \in C\) we define a congruence \(\eta_j\)

\[(f_1, \ldots, f_p) \eta_j (g_1, \ldots, g_p) \text{ iff } (f_i = g_i \text{ for all } i \neq j)\]

From the SD\(\left(\lor\right)\) we infer that

\[\bigvee_j \eta_j \text{ is the full congruence on } C\]

and therefore there is \(j\), and not onto \(f_j : A \to A\) such that

\[(\text{id}_A, \text{id}_A, \ldots, \text{id}_A) \eta_j (f_1, \ldots, f_p)\]

thus \(f_i = \text{id}_A\) for \(i \neq j\) and finally

\[(f_j, \text{id}_A, \ldots, \text{id}_A) \circ (\text{id}_A, f_j, \text{id}_A, \ldots, \text{id}_A) \circ \cdots \circ (\text{id}_A, \ldots, \text{id}_A, f_j) = (f_j, \ldots, f_j)\]
Thank you for your attention.