Cyclic terms for join semi-distributive varieties II

Marcin Kozik

joint work with Libor Barto

TCS @ Jagiellonian University Kraków, Poland

AAA Bern 2009

Definition (Cyclic algebra)

Let **A** be a finite algebra. A subalgebra $\mathbf{R} \leq \mathbf{A}^n$ is cyclic, if

 $\forall a_1, \ldots, a_n \in A$ $(a_1, a_2, \ldots, a_n) \in R \Rightarrow (a_2, \ldots, a_n, a_1) \in R$

Definition (Cyclic algebra)

Let **A** be a finite algebra. A subalgebra $\mathbf{R} \leq \mathbf{A}^n$ is cyclic, if

 $\forall a_1, \ldots, a_n \in A$ $(a_1, a_2, \ldots, a_n) \in R \Rightarrow (a_2, \ldots, a_n, a_1) \in R$

R is an algebra

Definition (Cyclic algebra)

Let **A** be a finite algebra. A subalgebra $\mathbf{R} \leq \mathbf{A}^n$ is cyclic, if

$$\forall a_1, \ldots, a_n \in A \qquad (a_1, a_2, \ldots, a_n) \in R \Rightarrow (a_2, \ldots, a_n, a_1) \in R$$

- **R** is an algebra
- R is a relation on A compatible with operations of algebra A

Definition (Cyclic algebra)

Let **A** be a finite algebra. A subalgebra $\mathbf{R} \leq \mathbf{A}^n$ is cyclic, if

$$\forall a_1, \ldots, a_n \in A \qquad (a_1, a_2, \ldots, a_n) \in R \Rightarrow (a_2, \ldots, a_n, a_1) \in R$$

- R is an algebra
- ▶ *R* is a relation on *A* compatible with operations of algebra **A**

Definition (A retraction)

For a relational structure (A, R) a function $f : A \rightarrow A$ is a retraction iff

•
$$f(f(a)) = f(a)$$
 for all $a \in A$ and

• if $(a_1, \ldots, a_n) \in R$ then $(f(a_1), \ldots, f(a_n)) \in R$ (endomorphism).

The missing theorem

Theorem (For simple algebras)

Let **A** be a finite, simple algebra from an $SD(\lor)$ variety and

The missing theorem

Theorem (For simple algebras)

Let **A** be a finite, simple algebra from an $SD(\lor)$ variety and let p be a prime number greater than |A|

The missing theorem

Theorem (For simple algebras)

Let **A** be a finite, simple algebra from an $SD(\lor)$ variety and let p be a prime number greater than |A| and let $\mathbf{R} \leq \mathbf{A}^p$ be a cyclic and subdirect subalgebra of \mathbf{A}^p .

Theorem (For simple algebras)

Let **A** be a finite, simple algebra from an $SD(\lor)$ variety and let p be a prime number greater than |A| and let $\mathbf{R} \leq \mathbf{A}^p$ be a cyclic and subdirect subalgebra of \mathbf{A}^p . If R has more than one element then (A, R) has a non-trivial retraction.

Theorem (For simple algebras)

Let **A** be a finite, simple algebra from an $SD(\lor)$ variety and let p be a prime number greater than |A| and let $\mathbf{R} \leq \mathbf{A}^p$ be a cyclic and subdirect subalgebra of \mathbf{A}^p . If R has more than one element then (A, R) has a non-trivial retraction.

and more generally

Theorem (General case)

Let **A** be a finite, simple algebra from an $SD(\lor)$ variety and let p be a prime number greater than |A| and let $\mathbf{R} \leq \mathbf{A}^p$ be a cyclic and subdirect subalgebra of \mathbf{A}^p . Then R contains a constant tuple.

Let ${\bf A}$ and ${\bf R}$ be the minimal counterexample to the general case. And, WLOG, the algebras are idempotent

R is subdirect (as otherwise it contains a constant tuple)

- **R** is subdirect (as otherwise it contains a constant tuple)
- if **A** has a non-trivial congruence θ then

- **R** is subdirect (as otherwise it contains a constant tuple)
- if **A** has a non-trivial congruence θ then
 - \mathbf{R}/θ is a cyclic subalgebra of $(\mathbf{A}/\theta)^p$

- **R** is subdirect (as otherwise it contains a constant tuple)
- \blacktriangleright if **A** has a non-trivial congruence θ then
 - ▶ \mathbf{R}/θ is a cyclic subalgebra of $(\mathbf{A}/\theta)^p$ and therefore \mathbf{R}/θ contains a constant tuple $(a/\theta, \ldots, a/\theta)$.

- **R** is subdirect (as otherwise it contains a constant tuple)
- if **A** has a non-trivial congruence θ then
 - ▶ \mathbf{R}/θ is a cyclic subalgebra of $(\mathbf{A}/\theta)^p$ and therefore \mathbf{R}/θ contains a constant tuple $(a/\theta, \ldots, a/\theta)$.
 - a/θ is an SD(∨) algebra and R ∩ (a/θ)^p is a cyclic subalgebra of (a/θ)^p

- **R** is subdirect (as otherwise it contains a constant tuple)
- if **A** has a non-trivial congruence θ then
 - ▶ \mathbf{R}/θ is a cyclic subalgebra of $(\mathbf{A}/\theta)^p$ and therefore \mathbf{R}/θ contains a constant tuple $(a/\theta, \ldots, a/\theta)$.
 - a/θ is an SD(∨) algebra and R ∩ (a/θ)^p is a cyclic subalgebra of (a/θ)^p thus (a/θ)^p contains a constant tuple.

- **R** is subdirect (as otherwise it contains a constant tuple)
- if **A** has a non-trivial congruence θ then
 - ► ...OK
- A is simple.

- **R** is subdirect (as otherwise it contains a constant tuple)
- if **A** has a non-trivial congruence θ then
 - ► ...OK
- A is simple.
 - there exists a non-trivial retraction f of (A, R)

- **R** is subdirect (as otherwise it contains a constant tuple)
- if **A** has a non-trivial congruence θ then
 - ► ...OK
- A is simple.
 - there exists a non-trivial retraction f of (A, R)
 - ▶ if t₁,..., t_m are idempotent operations of A satisfying a Maltsev condition for SD(∨);

- **R** is subdirect (as otherwise it contains a constant tuple)
- if **A** has a non-trivial congruence θ then
 - ► ...OK
- A is simple.
 - there exists a non-trivial retraction f of (A, R)
 - if t₁,..., t_m are idempotent operations of A satisfying a Maltsev condition for SD(∨);
 - then, putting $\mathbf{B} = (f(A), ft_1, \dots, ft_m)$,

- **R** is subdirect (as otherwise it contains a constant tuple)
- if **A** has a non-trivial congruence θ then
 - ► ...OK
- A is simple.
 - there exists a non-trivial retraction f of (A, R)
 - ▶ if t₁,..., t_m are idempotent operations of A satisfying a Maltsev condition for SD(∨);
 - then, putting $\mathbf{B} = (f(A), ft_1, \dots, ft_m)$,
 - ▶ B is an SD(∨) algebra (as ft₁,..., ft_m satisfy all linear equations satisfied by t₁,..., t_m)

Let ${\bf A}$ and ${\bf R}$ be the minimal counterexample to the general case. And, WLOG, the algebras are idempotent

- **R** is subdirect (as otherwise it contains a constant tuple)
- if **A** has a non-trivial congruence θ then

► ...OK

- A is simple.
 - there exists a non-trivial retraction f of (A, R)
 - ▶ if t₁,..., t_m are idempotent operations of A satisfying a Maltsev condition for SD(∨);
 - then, putting $\mathbf{B} = (f(A), ft_1, \dots, ft_m)$,
 - ▶ B is an SD(∨) algebra (as ft₁,..., ft_m satisfy all linear equations satisfied by t₁,..., t_m)
 - ▶ and $f(R) = (\mathbf{R} \cap \mathbf{B}^p) \le \mathbf{B}^p$ is a cyclic subalgebra of **B**

Let ${\bf A}$ and ${\bf R}$ be the minimal counterexample to the general case. And, WLOG, the algebras are idempotent

- **R** is subdirect (as otherwise it contains a constant tuple)
- if **A** has a non-trivial congruence θ then

► ...OK

- A is simple.
 - there exists a non-trivial retraction f of (A, R)
 - ▶ if t₁,..., t_m are idempotent operations of A satisfying a Maltsev condition for SD(∨);
 - then, putting $\mathbf{B} = (f(A), ft_1, \dots, ft_m)$,
 - ▶ B is an SD(∨) algebra (as ft₁,..., ft_m satisfy all linear equations satisfied by t₁,..., t_m)
 - and $f(R) = (\mathbf{R} \cap \mathbf{B}^p) \leq \mathbf{B}^p$ is a cyclic subalgebra of **B**
 - from minimality of A it contains a constant tuple ... OK

Let **A** be an SD(\lor) algebra and **R** \leq **A**^{*p*} be cyclic (for a prime *p* > |*A*|).

Let **A** be an SD(\lor) algebra and **R** \leq **A**^{*p*} be cyclic (for a prime *p* > |*A*|). Definition

An unfolding of R is the p-ary relation R' on the set $A \times p$ defined by

$$\mathsf{R}' = ig\{ ig((\mathsf{a}_1,1),\ldots,(\mathsf{a}_p,p)ig) \in (\mathsf{A} imes p)^p | (\mathsf{a}_1,\ldots,\mathsf{a}_p) \in \mathsf{R} ig\}.$$

Let **A** be an SD(\lor) algebra and **R** \leq **A**^{*p*} be cyclic (for a prime *p* > |*A*|). Definition

An unfolding of R is the p-ary relation R' on the set $A \times p$ defined by

$$\mathsf{R}' = \big\{\big((\mathsf{a}_1,1),\ldots,(\mathsf{a}_p,p)\big) \in (\mathsf{A} \times p)^p | (\mathsf{a}_1,\ldots,\mathsf{a}_p) \in \mathsf{R}\big\}.$$

An unfolding power C of R is the subset of $A^{A \times p}$ consisting of all the homomorphisms from the relational structure $(A \times p, R')$ to (A, R).

Let **A** be an SD(\lor) algebra and **R** \leq **A**^{*p*} be cyclic (for a prime *p* > |*A*|). Definition

An unfolding of R is the p-ary relation R' on the set $A \times p$ defined by

$$\mathsf{R}' = \big\{\big((\mathsf{a}_1,1),\ldots,(\mathsf{a}_p,p)\big) \in (\mathsf{A} \times p)^p | (\mathsf{a}_1,\ldots,\mathsf{a}_p) \in \mathsf{R}\big\}.$$

An unfolding power C of R is the subset of $A^{A \times p}$ consisting of all the homomorphisms from the relational structure $(A \times p, R')$ to (A, R).

• C is a subuniverse of $\mathbf{A}^{A \times p}$

Let **A** be an SD(\lor) algebra and **R** \leq **A**^{*p*} be cyclic (for a prime *p* > |*A*|). Definition

An unfolding of R is the p-ary relation R' on the set $A \times p$ defined by

$$\mathsf{R}' = \big\{\big((\mathsf{a}_1,1),\ldots,(\mathsf{a}_p,p)\big) \in (\mathsf{A} \times p)^p | (\mathsf{a}_1,\ldots,\mathsf{a}_p) \in \mathsf{R}\big\}.$$

An unfolding power C of R is the subset of $A^{A \times p}$ consisting of all the homomorphisms from the relational structure $(A \times p, R')$ to (A, R).

- C is a subuniverse of $\mathbf{A}^{A \times p}$
- ▶ any $g \in C$ is a tuple (g_1, \ldots, g_p) (where $g_i(a) = g((a, i))$) and $(g_1(a_1), \ldots, g_p(a_p)) \in R$ whenever $(a_1, \ldots, a_p) \in R$.

Let **A** be an SD(\lor) algebra and **R** \leq **A**^{*p*} be cyclic (for a prime *p* > |*A*|). Definition

An unfolding of R is the p-ary relation R' on the set $A \times p$ defined by

$$\mathsf{R}' = \big\{\big((\mathsf{a}_1,1),\ldots,(\mathsf{a}_p,p)\big) \in (\mathsf{A} \times p)^p | (\mathsf{a}_1,\ldots,\mathsf{a}_p) \in \mathsf{R}\big\}.$$

An unfolding power C of R is the subset of $A^{A \times p}$ consisting of all the homomorphisms from the relational structure $(A \times p, R')$ to (A, R).

- C is a subuniverse of $\mathbf{A}^{A \times p}$
- ▶ any $g \in C$ is a tuple (g_1, \ldots, g_p) (where $g_i(a) = g((a, i))$) and

$$(g_1(a_1),\ldots,g_p(a_p))\in R$$
 whenever $(a_1,\ldots,a_p)\in R.$

▶
$$(id_A, id_A, ..., id_A) \in C$$

Let **A** be an SD(\lor) algebra and **R** \leq **A**^{*p*} be cyclic (for a prime *p* > |*A*|). Definition

An unfolding of R is the p-ary relation R' on the set $A \times p$ defined by

$$\mathsf{R}' = \big\{\big((\mathsf{a}_1,1),\ldots,(\mathsf{a}_p,p)\big) \in (\mathsf{A} \times p)^p | (\mathsf{a}_1,\ldots,\mathsf{a}_p) \in \mathsf{R}\big\}.$$

An unfolding power C of R is the subset of $A^{A \times p}$ consisting of all the homomorphisms from the relational structure $(A \times p, R')$ to (A, R).

• C is a subuniverse of
$$\mathbf{A}^{A \times p}$$

▶ any $g \in C$ is a tuple (g_1, \ldots, g_p) (where $g_i(a) = g((a, i))$) and

 $(g_1(a_1),\ldots,g_p(a_p))\in R$ whenever $(a_1,\ldots,a_p)\in R.$

Let **A** be an SD(\lor) algebra and **R** \leq **A**^{*p*} be cyclic (for a prime *p* > |*A*|). Definition

An unfolding of R is the p-ary relation R' on the set $A \times p$ defined by

$$\mathsf{R}' = \big\{\big((\mathsf{a}_1,1),\ldots,(\mathsf{a}_p,p)\big) \in (\mathsf{A} \times p)^p | (\mathsf{a}_1,\ldots,\mathsf{a}_p) \in \mathsf{R}\big\}.$$

An unfolding power C of R is the subset of $A^{A \times p}$ consisting of all the homomorphisms from the relational structure $(A \times p, R')$ to (A, R).

▶ any
$$g \in C$$
 is a tuple (g_1, \ldots, g_p) (where $g_i(a) = g((a, i))$) and
 $(g_1(a_1), \ldots, g_p(a_p)) \in R$ whenever $(a_1, \ldots, a_p) \in R$.

Let **A** be an SD(\lor) algebra and **R** \leq **A**^{*p*} be cyclic (for a prime *p* > |*A*|). Definition

An unfolding of R is the p-ary relation R' on the set $A \times p$ defined by

$$\mathsf{R}' = \big\{\big((\mathsf{a}_1,1),\ldots,(\mathsf{a}_p,p)\big) \in (\mathsf{A} \times p)^p | (\mathsf{a}_1,\ldots,\mathsf{a}_p) \in \mathsf{R}\big\}.$$

An unfolding power C of R is the subset of $A^{A \times p}$ consisting of all the homomorphisms from the relational structure $(A \times p, R')$ to (A, R).

Let **A** be an SD(\lor) algebra and **R** \leq **A**^{*p*} be cyclic (for a prime *p* > |*A*|). Definition

An unfolding of R is the p-ary relation R' on the set $A \times p$ defined by

$$\mathsf{R}' = \big\{\big((\mathsf{a}_1,1),\ldots,(\mathsf{a}_p,p)\big) \in (\mathsf{A} \times p)^p | (\mathsf{a}_1,\ldots,\mathsf{a}_p) \in \mathsf{R}\big\}.$$

An unfolding power C of R is the subset of $A^{A \times p}$ consisting of all the homomorphisms from the relational structure $(A \times p, R')$ to (A, R).

▶ any $g \in C$ is a tuple (g_1, \ldots, g_p) (where $g_i(a) = g((a, i))$) and $(g_1(a_1), \ldots, g_p(a_p)) \in R$ whenever $(a_1, \ldots, a_p) \in R$.

▶ if $(g, g, ..., g) \in C$ then g is an endomorphism of (A, R); ▶ if $(f_1, ..., f_p)$, $d = (g_1, ..., g_p) \in C$, then $(f_1 \circ g_1, ..., f_p \circ g_p) \in C$;

Let **A** be an SD(\lor) algebra and **R** \leq **A**^{*p*} be cyclic (for a prime *p* > |*A*|). Definition

An unfolding of R is the p-ary relation R' on the set $A \times p$ defined by

$$\mathsf{R}' = \big\{\big((\mathsf{a}_1,1),\ldots,(\mathsf{a}_p,p)\big) \in (\mathsf{A} \times p)^p | (\mathsf{a}_1,\ldots,\mathsf{a}_p) \in \mathsf{R}\big\}.$$

An unfolding power C of R is the subset of $A^{A \times p}$ consisting of all the homomorphisms from the relational structure $(A \times p, R')$ to (A, R).

▶ any
$$g \in C$$
 is a tuple (g_1, \ldots, g_p) (where $g_i(a) = g((a, i))$) and
 $(g_1(a_1), \ldots, g_p(a_p)) \in R$ whenever $(a_1, \ldots, a_p) \in R$.

if (g,g,...,g) ∈ C then g is an endomorphism of (A, R);
if (f₁,..., f_p), d = (g₁,..., g_p) ∈ C, then (f₁ ∘ g₁,..., f_p ∘ g_p) ∈ C;
if (g₁,..., g_p) ∈ C then (g_j, g_{j+1},..., g_{j+p}) ∈ C for any j.

Let **A** be an SD(\lor) algebra and **R** \leq **A**^{*p*} be cyclic (for a prime *p* > |*A*|). Definition

An unfolding of R is the p-ary relation R' on the set $A \times p$ defined by

$$\mathsf{R}' = \big\{\big((\mathsf{a}_1,1),\ldots,(\mathsf{a}_p,p)\big) \in (\mathsf{A} \times p)^p | (\mathsf{a}_1,\ldots,\mathsf{a}_p) \in \mathsf{R}\big\}.$$

An unfolding power C of R is the subset of $A^{A \times p}$ consisting of all the homomorphisms from the relational structure $(A \times p, R')$ to (A, R).

▶ any
$$g \in C$$
 is a tuple (g_1, \ldots, g_p) (where $g_i(a) = g((a, i))$) and
 $(g_1(a_1), \ldots, g_p(a_p)) \in R$ whenever $(a_1, \ldots, a_p) \in R$.

if (g,g,...,g) ∈ C then g is an endomorphism of (A, R);
if (f₁,..., f_p), d = (g₁,..., g_p) ∈ C, then (f₁ ∘ g₁,..., f_p ∘ g_p) ∈ C;
if (g₁,..., g_p) ∈ C then (g_j, g_{j+1},..., g_{j+p}) ∈ C for any j.

Let **A** be an SD(\lor) algebra and **R** \leq **A**^{*p*} be cyclic (for a prime *p* > |*A*|). Definition

An unfolding of R is the p-ary relation R' on the set $A \times p$ defined by

$$\mathsf{R}' = \big\{\big((\mathsf{a}_1,1),\ldots,(\mathsf{a}_p,p)\big) \in (\mathsf{A} \times p)^p | (\mathsf{a}_1,\ldots,\mathsf{a}_p) \in \mathsf{R}\big\}.$$

An unfolding power C of R is the subset of $A^{A \times p}$ consisting of all the homomorphisms from the relational structure $(A \times p, R')$ to (A, R).

▶ any
$$g \in C$$
 is a tuple (g_1, \ldots, g_p) (where $g_i(a) = g((a, i))$) and
 $(g_1(a_1), \ldots, g_p(a_p)) \in R$ whenever $(a_1, \ldots, a_p) \in R$.

if (g,g,...,g) ∈ C then g is an endomorphism of (A, R);
if (f₁,..., f_p), d = (g₁,..., g_p) ∈ C, then (f₁ ∘ g₁,..., f_p ∘ g_p) ∈ C;
if (g₁,..., g_p) ∈ C then (g_j, g_{j+1},..., g_{j+p}) ∈ C for any j.

Definition

For two tuples $(f_1, \ldots, f_p), (g_1, \ldots, g_p) \in C$ we define a congruence η_j

$$(f_1, \ldots, f_p) \eta_j (g_1, \ldots, g_p)$$
 iff $(f_i = g_i \text{ for all } i \neq j)$

Definition

For two tuples $(f_1, \ldots, f_p), (g_1, \ldots, g_p) \in C$ we define a congruence η_j

$$(f_1, \ldots, f_p) \eta_j (g_1, \ldots, g_p)$$
 iff $(f_i = g_i \text{ for all } i \neq j)$

From the SD(\lor) we infer that

$$\bigvee_j \eta_j$$
 is the full congruence on C

Definition

For two tuples $(f_1, \ldots, f_p), (g_1, \ldots, g_p) \in C$ we define a congruence η_j

$$(f_1, \ldots, f_p) \eta_j (g_1, \ldots, g_p)$$
 iff $(f_i = g_i \text{ for all } i \neq j)$

From the SD(\lor) we infer that

$$\bigvee_{j} \eta_{j}$$
 is the full congruence on C

and therefore there is j, and not onto $f_j : A \to A$ such that $(\mathrm{id}_A, \mathrm{id}_A, \dots, \mathrm{id}_A) \eta_j (f_1, \dots, f_p)$

Definition

For two tuples $(f_1, \ldots, f_p), (g_1, \ldots, g_p) \in C$ we define a congruence η_j

$$(f_1, \ldots, f_p) \eta_j (g_1, \ldots, g_p)$$
 iff $(f_i = g_i \text{ for all } i \neq j)$

From the SD(\lor) we infer that

$$\bigvee_j \eta_j$$
 is the full congruence on C

and therefore there is j, and not onto $f_j : A \rightarrow A$ such that

$$(\mathrm{id}_{\mathcal{A}},\mathrm{id}_{\mathcal{A}},\ldots,\mathrm{id}_{\mathcal{A}})\eta_j(f_1,\ldots,f_p)$$

thus $f_i = id_A$ for $i \neq j$ and finally

$$(f_j, \mathrm{id}_A, \ldots, \mathrm{id}_A) \circ (\mathrm{id}_A, f_j, \mathrm{id}_A, \ldots, \mathrm{id}_A) \circ \cdots \circ (\mathrm{id}_A, \ldots, \mathrm{id}_A, f_j) = (f_j, \ldots, f_j)$$

Thank you for your attention.