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ABSTRACT. Let V be a countably generated right vector space over a field F' and o €
End(Vr) be a shift operator. We show that there exist a unit u and an idempotent e such
that 1 — u, 0 — u are units in End(Vp) and 1 — e, o — e are idempotents in End(Vg). We
also obtain that if D is a division ring and D % Zs,Zs3, then 1 — u,« — u are units in
End(Vp) for any a € End(Vp).

1. INTRODUCTION

Let R be an associative ring with unity. Given a function f : R — R where R is a
noncommutative associative ring with identity, f is said to be wnit-additive if f(u 4+ v) =
f(u) + f(v), for all units u,v € R. Moreover, if f(uv) = f(u)f(v) for all units u,v € R,
then the ring R is called unit-homomorphic [7]. In [7], the authors proved that every unit
additive map of a semilocal ring R is additive if and only if either R has no homomorphic
image isomorphic to Zs orR/J(R) = Zg where J(R) denotes the Jacobson radical and Z,, is
the ring of integers modulo n. The study of rings satisfying the 2-sum property (i.e. rings
such that each of their elements is a sum of two units) was introduced by Wolfson [12] and
Zelinsky [13]. They, independently, proved that the endomorphism ring of a vector space V
over a division ring D satisfies the 2-sum property, except that dim(V) = 1 and D = F,.
A ring R is said to have unit sum number n, if for any r € R there exist units uy, -, uy,
of R such that » = uy + -+ + u,. According to [8], a ring R is said to satisfy the binary
2-sum property if for any a,b € R there exist units uq,us,us of R such that a = u; + us
and b = u; 4+ uz. Recall that a semilocal ring R has unit sum number 2 if and only if no

factor ring of R is isomorphic to Fy (see [5]). Recently, the author of [8] provides a similar
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characterization of semilocal rings with the binary 2-sum property: a semilocal ring R satisfies
the binary 2-sum property if and only if no factor ring of R is isomorphic to Fy, F3, or the
2 x 2 matrix ring Ms(F2). They also obtained in [8, Corollary 19] that if R is an exchange
ring with primitive factors Artinian (e.g., a semilocal ring), then R satisfies the binary 2-sum
property if R satisfies the Goodearl-Menal property (Two elements a,b € R are said to satisfy
the Goodearl-Menal condition, in case there exists a unit v in R such that a — u,u™! is a
unit. A ring R is said to satisfy the Gooodearl-Menal if every elements a,b € R satisfy this
property [6]).

Let V be a countably generated right vector space over a division ring D. In 2010, Chen
[3] generalized a result of Zelinsky [13]; it is proved that for any endomorphism f of V' there
exists an automorphism g of V with f+¢g and f—g¢~! both automorphisms of V if D # Zy, Zs.
We also notice that this result is extended to an Artinian right R-module over a semilocal ring
R that contains 1/2 and 1/3. In [10, Theorem], Nicholson and Varadarjan proved that every
countable linear transformation over a division ring is clean (every element of a ring is a sum
of an idempotent and a unit [9]). Let V' be a countably generated vector space over a division
ring D such that |D| # 2,3, and let Endp (V') denote the ring of linear transformations on V.
Chen [4] obtained two interesting decompositions in Endp(V): (1) For any f € Endp(V),

I are both automorphisms

there exists an automorphism g on V such that f —g and f — g~
on V. Thus, Endp(V) satisfies a special case of the Goodearl-Menal condition. (2) For any
f € Endp(V), there exists an automorphism g on V such that f2 — g2 is an automorphism

on V. In [2], Camillo and Simon also applied The Nicholson-Varadarajan theorem on clean

linear transformations and they used the tool of Shift operators.
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For a countably infinite dimensional right vector space Vp, a linear transformation f €
End(Vp) is called a shift operator if there exists a basis {v1,va, -+ , v, -+ } of V such that
f(v;) = vi41 for all 4. Note that the matrix representation of the shift operator f over basis

{v; }; is oof the form

[Nl )
SO = OO
o= O OO
_— o o oo

The main purpos of this study is to obtain the following two generalizations using a new tool,
namely idempotent additive maps taking idempotents instead of units in a unit additive map:
(1) Let V be a countably generated right vector space over a field F and o € S = End(Vr) be
a shift operator. Then there exist a unit v € S and an idempotent e € S such that 1 —u,oc—u
are units in s and 1 — e, 0 — e are idempotents in s. (Theorem 2.4); (2) If D is a division ring
and D 2 Zs,Z3, then there exist a unit u € End(Vp) for which 1 — u,o —u € U(End(Vp))
for any o € End(Vp) (Theorem 2.9).

2. RESULTS

We will denote by U(R) the set of all units and by Id(R) a set of all idempotents of a ring
R.

Definition 2.1. Let R be a ring. A map o : R — R is called an (a) idempotent (unit)

additive map if o is additive on idempotents (units) of R, i.e
o(a+0b) =o(a) + o(b),

for all a,b € U(R) (a,b € Id(R).

For convenience, we fix a notation: for a,b € R, we write

a «~ b (or a «* b, to emphasize the element u) if a — u,b — u € U(R) for some u € U(R),
a="b(ora = b to emphasize the element e)if a—e,b—e € Id(R) for some e € Id(R),

a < b (or a += b to emphasize the unit w), if there exists u € U(R) such that a — u, b —

u~! € U(R) (Goodearl-Menal condition [6]).
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We list some properties of notations in the following observations.

Lemma 2.2. The followings hold for a ring R and elements a,b € R, u,x,y € U(R).
(1) Let o be a unit-additive map of R. If —a e~ u, then o(a+u) = o(a) + o(u).
(2) If 1 e ¢ for all ¢ € R, then every unit-additive map of R is additive.
(3) Let o be an automorphism or anti-automorphism of R. Then:
(2) a <% b iff o(a) %% o (b).
(D) a «% b iff zay ¥ zby.
4) () 1% aif1 s
(b) 1w & for all x € R iff v e~ x for all x € R and allv € U(R).
(¢) l«—x forallz € R iff v<— x for allz € R and all v € U(R).
(d) v e~ x for all z € R and all v € U(R) iff v +— = for all z € R and all

v e U(R).

Proof. (1) and (2) See [7, Lemmas 2.3 and 2.4].
(3) and (4) See [8, Lemmas 2.7 and 2.8]. O

Lemma 2.3. The followings conditions hold for a ring R and r € R.
(1) Let o be an idempotent-additive map of R. If e € Id(R) with —r = e, then o(r+e) =
o(r)+o(e).
(2) If 1 = x for all x € R, then every idempotent-additive map of R is additive.
(3) r =1 if and only if there exist e, f € Id(R) such that r =e+ f,

(4) Let o be a ring automorphisms of R. Then r = 1 if and only if o(r) = 1

Proof. (1) and (2) The proofs are similar to the proofs of Lemma 2.2 (1) and (2).
(3) If there exists e € Id(R) such that r—e, 1 —e € Id(R), then it is enough to put f :=r—e.
The converse follow from the fact that 1 — e € Id(R) for an arbitrary idempotent e.

(4) This is clear since o(e) € Id(R) for each e € Id(R). O

Now we are ready to prove our first main theorem.



UNIT AND IDEMPOTENT ADDITIVE MAPS OVER COUNTABLE LINEAR TRANSFORMATIONS 5

Theorem 2.4. Let V be a countably generated right vector space over a field F and 0 € S =
End(VFg) be a shift operator. Then
(1) 1=o,

(2) 1 om0

1 1 10
be a basis of V. Define an infinite block-diagonal matrices

Proof. (1) Let Ey = (O O), Ey = (1 0>, 0;x; is a zero matrix of type ¢ X j and (;)i<w

Ei  0Oax2 O2x2 Ogx2 ... 01x1 O1x2 O1x2 O1x2 O1xe
O2x2  Ei  Oax2 Og2x2 ... O2x1 Bz Oax2 O2xz  O2x2
B=|02x2 Oax2  E1 Oax2 .| and 0 = | O2x1 O2x2 E2 Oaxa  O2xo 7

O2x2  O2x2 O2x2  E1 ... O2x1 O2x2 Oax2 B O2x2
and endomorphisms e, f € End(V) such that B is the matrix of e and C is the matrix of f
with respect to the basis (u;)i<w, i.€.
e(uzi—1) = e(uz;) = ua;,

flugi—1) =0, f(uz;) = u2; + ugit1

for each ¢ > 1. Then

0000 O
1200 0
0100 0
A=10 01 2 o0
0001 0

is the matrix of e + f and it is easy to see that e, f € Id(End(V)) as E? = E; and E3 = Es.

Let us denote g = e + f and we will construct a basis (v;);<, which witnesses that g is a
shift operator, i.e. that g(v;) = v;y1.

First, put v; = u; and ve = ug. Then Span(vy,vs) = Span(uy,us), g(v1) = ve and g(va) €
Span(vy,ve, uz)~\Span(vi, ve). Let we have constructed vy, . . ., v; such that Span(vy,...,v;) =
Span(ug,...,u;), g(vi—1) = v; and g(v;) € Span(vy,...,v;, ui+1) ~ Span(vy,...,v;). Then
define v;11 = g(v;). By the induction hypotheses v1,...,v;41 is linearly independent, hence
Span(vy,...,v;i41) = Span(ug,...,u;11), and it is clear from the matrix A that g(v,11) €

Span(vi, . .., Vit1, Ui+2) \ Span(vi, ..., vit1)
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Since (v;)i<. is a basis satisfying [e + f](v;) = v;41 for each i, we have proved that e + f
is a shift operator, hence 1 = e + f by Lemma 2.3(3). As there exists an invertible operator,
say a € End(V), such that e + f = a~'oa, the assertion follows from Lemma 2.3(4).

(2) Denote by (v;)i<w a basis of V such that o(v;) = v;41. First, suppose that characteristic
of F'is not 2. Let Uy := <_11 _01>, U := (1 ?) and Us := (_21 g) Remark that all

these matrices are invertible. We denote by u an operator such that its matrix with respect

to the basis (v;)i<. is
U, 0 0 O
0O U; 0 O
ey 0 0 U, 0

Now we easily compute matrices

us 0 0 0 ... lixt1 0 0 0
0o Us 0 0 ... 0 Uz 0 O

I-—uwy=10 0 Uy 0 ...| and [o=ulewp=| 0 0 U, 0

Since all these matrices are invertible, we can see that u,1 —u,0 —u € U(S5).

Now, let 1+ 1 = 0 and consider the matrix

coo &

0
U
0
0

ol oo
T ocooco

01 0 0 0 1
where U = [0 1 1] is an invertible matrix with the inverse U=' = [1 0 0]. Clearly,
1 0 0 1 10

the matrices A and A + I are invertible with the inverses

vt o 0 0
0 Ut 0 0

A1 = 0 0o Ut o0
0 0 0 Ut
and
U+ I3) 1 0 0 0
0 (U+1I3)7! 0 0
(A+I)_1 _ 0 0 (U +I3)~1 0 7
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0 1 1
11 1

01 0
basis (v;)i<.. We have proved that w and 1 4 u are invertible operators.

where (U + I3)~! = . Let A be the matrix of an operator u with respect to the

Finally, the operator u + o is invertible since it has a matrix with respect to (v;);<w
B 0 0 0

Eys B 0 0
0 FEis B 0
B

0 0 Ei3

with the inverse

Bt 0 0 0
C B! 0 0
0 C B 0

0 0 c B!

010 10 1 01 1
where B=[1 1 1|,Bt=|1 0 0|,c=[0 1 1| and E;5=
110 00 1 00 0

oS OO

S OO

S O =
O

GL, (D) denotes the n-dimensional general linear group over a division ring D and M, (D)
denotes the ring of all n X n matrices over D with an identity I,,.

Recall that the matrices a and b are equivalent if there exists a regular matrix p such that

a=p lhp.

Lemma 2.5. Let D be a division ring of characteristic different from 2, n € N andb € M,,(D).

Then the following conditions are equivalent.

(1) b=1,
QIT a12 Q13 0

(2) b is equivalent to a block matrix 0 I az 0 € M,,(D) where I,,1,,I; are
0 asz2 It 0
0 0 0 O

identity matrices, and a; ; and 0 are matrices.

Proof. Recall that b = I, if and only if there exist e, f € Id(M,, (D)) such that b =e + f by

Lemma 2.3(3). Since

217« 12 Q13 0 Ir ai12 0 0 Ir 0 ai13 0
0 IS a3 0 o 0 0 0 0 0 Is a23 0
0 aso I, 0|0 ass 1, ol Tl0 0 0 o0
0 0 0 O 0 0 0 0 0 0 0 O
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where both the matrices on the right side are idempotents, we get that (2) = (1) holds.

Let b = e + f for idempotent matrices e, f and let us identify all matrices with linear
operator on D™ given by the matrix multiplication. Let us denote by B the basis of im(e) N
im(f) which could be completed to bases of im(e) and im(f) by E and F', i.e. BUE is a
basis of im(e) and B U F is a basis of im(f). Since e and f are idempotents, we get e(u) = u
for each w € BUE and f(u) = u for each v € BU E. Hence e(v) € Span(B U E) and
f(v) € Span(B U F) for all v € D™.

Finally let K be a basis of ker(b) and let k € ker(b). Then 0 = b(k) = e(k) + f(k) and
so e(k) = f(—k) € im(e) Nim(f) = Span(B). Hence k = e(k) = f(—k) = —k which implies
that & = 0 and ker(b) C ker(e) Nker(f). It means that the matrix of operator b = e + f with

respect to the basis BU E'U F U K is of the form

Ir ai2 0 O IT 0 a13 O QIT a2 a3 0
0 0 0 0O n 0 Iy aps O [ O I, ag O
0 ag2 Iy O 0 0 0 Of |0 as I O
0 0 0 O 0 0 0 O 0 0 0 0
which is equivalent to the matrix b. (Il

Theorem 2.6. Let D be a division ring.

(1) Let the characteristic of D be different from 2 and b € Ma(D). Then b = I if and

only if b is equivalent to one of the matrices:

0 0 1 0 1 ¢ 2 c 2 0
0 0/7\0 0/>\d 1) \0 1) \0 2
for some ¢,d € D.
(2) If D2 Zy,Z3 and n € N, then

(i) for any a,b € M,,(D), there exists ¢ € GL, (D) such that b « a.

(ii) b« I,,.

Proof. (1) This follows from Lemma 2.5.
(2) Assuming D 2 Zs,Z3 implies that |D| > 4. Let x,y € D. We have the following three
cases.

If z = 0, then we choose a nonzero element u € D such that v # y. Hence y —u # 0.
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If y = 0, then we choose a nonzero element v € D such that u # x. Hence x — u # 0.
If  # and y # 0, then we choose a nonzero element u € D such that v # x and u # y.
As a result we obtain that x e wu.

a21 Aa22 b21 b22
M« (n—1)(D), a21,b21 € M(5,—1)x1(D) and aga, baa € M(;,_1)x(n—1)(D). Note that there exists

Let a = (a” a”) € M, (D) and b = (b” bl?) € M, (D), where ai1,bi1 € D, ai2,bis €

0 # z € D such that aj1—2z = u; # 0and byj;—x = uy # 0. Since agg—azluflau € M(,,—1)(D)
and bgg—bzluflblg € M(,,—1)(D), we can obtain y € GL,_1(D) such that agg—agluflalg—y =
v1 € GL,_1(D) and bay — byyuj *byg — y € GL,_1(D). They imply that

a — diag(z,y) = (ul “2 )

a1 U1+ a1y a2

and
b — diag(x,y) = (u2 biz 1 ) .
bor v 4 boruy bio
Since
Uy a2 - 1 0\ [u1 a2
<a21 v +021U1_1@12> B <021U1_1 1) (0 U1>
and

U b12 . 1 0 U2 b12
b21 Vo + b21u;1b12 - bglugl 1 0 V2 ’

U a12 Uz b12 .
we get _ , _ € GL,(D) as desired. |
& <a21 U1 + a21u) 16l12> <521 vg + by u] 1512) n(D)

For the last main theorem we need the following a series of lemmas.

Lemma 2.7. Let D be a division ring and o € End(Vp) such that Vp is spanned by
{y,a(y), 62(y), -} for somey € V. If D % Ly, Zs, then
(1) 1o~ a.

(2) If Vp is infinitely generated, then 1 = «.

Proof. (1) We may assume that Vp # 0. If a™(y) ¢ yD + a(y)D + -+ + o™ (y)D for all
n > 1, then {y,a(y),a?(y), -} is a basis of V. Since « is a shift operator with respect to
the basis {y, a(y),a?(y), -}, we get 1 «~ a by Theorem 2.4(2). Now suppose that there
exists n € N such that o"(y) ¢ yD + a(y)D + - -+ + o™ 1(y)D. If n is minimal with respect

to this property, then {y, a(y),a?(y), - -} forms a basis for V. Hence Endp(Vp) = M, (D).
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By Lemma 2.3(2), we obtain that 1 «~ .

(2) This follows from Theorem 2.4(1) using the arguments of (1) O

Lemma 2.8. Let D be a division ring such that D 2 Zo,7Z3, o € End(Vp) and U be
an a-invariant subspace of Vp. Assume that there exists a vector y € U 'V such that

V=U+ 500" (y)D. If the restriction o|y satisfies 1 «~ aly, then 1« «

Proof. Let V.= M & U where M is a subspace which contains y. Define

a:v/iu—Vviu

(see [10, Lemma 4]). Clearly,

a*(y) = a™(v)
and there exists a D-subisomorphism 6y : V/U — M given by 0,(v) = 6(v) by [10, Lemma 4]
where 6 is an idempotent in Endp (V') satistying (V) = M and Ker(f) = U. By [10, Lemma

4], we have the endomorphism ring of M as:

B:=6aly': M — V/U = V/U — M.

By the hypothesis, {7, a(Y),-- -} spans V/U. Hence {7, a(7), -} spans V/U since a”(y) =
a™(T). Now it is easy to see that {6o[7],60[a(7)], -} spans M. By Lemma 2.7, we get
B e~ 1. Then 8 —v; = a; and 1 — v; = by for some units v1,a1,b; of End(M). By
hypothesis, 1 «~ «a|y, we have a|y — v2 = as and 1 — vy = by for some units vs, ag, be of

End(M). Since V.= M @ U, we can define

vt (v) = v (m +u) = vi(m) + [a(m) — B(m) + va(u)].

v* is an automorphism of V: Since v*(m + u) = 0 implies v1(m) = 0 and [a(m) — B(m)] +

va(u) = 0, whence m = u = 0, we get v* is monic. As u = va(ug) = v*(0 + ug) for some
ug € U, we obtain U C Im(v*). If m € M, we write m = vi(mq) for my € M, then

a(my) — B(m1) = —va(up). Then v*(my + ug) = vi(my) + [a(my) — B(mq) + va(up)] which
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implies that M C I'm(v*). Hence v* is epic.

a — v* is an automorphism: Firstly,
(a—v*)m+u) =alm+u)—v(m+u)
a(m) + a(u) —vi(m) — [a(m) — B(m) — va(u)]
= o, (u) —va(u) —vi(m) + 5(m)
= bg(u) + bl(m)

Now, by a similar technic of previous proof, we can obtain that a — v* is monic and epic.

1 — v* is an automorphism: Firstly,

(I=v)(m+u) =1lm+u)—v(m+u)

a(m) + a(u) —vi(m) — [a(m) — B(m) — va(u)]
1(m) + 1(u) — vi(m) — [a(m) — 5(m) + vz (u)]
= 1(m) —vi(m) + 1(uv) — va(u) + f(m) — a(m)
= bi(m) + [b2(u) + B(m) — a(m)].

Finally, the same argument as for o — v* shows that 1 — v* is monic and epic. O

Theorem 2.9. Let D be a division ring and D 2 Zs,Zs3. Then 1 «~ « for any « € End(Vp).

Proof. Fix a € End(Vp). Define
x={(U,v):Up CVisa a—invariant and o, « 1}.

Note that (0,0) € x. Now we define (U,v) < (U’,v") by U C U’ and vl’u = v is a partial order
of x. By Zorn’s Lemma, there exists a maximal element, say (U,v) in x.

Assume U # V. Then, take y € V N\ U and let K := ZiZO a'(y)D, and write Vo = U + K.
Clearly, Vy and K are a-invariant subspaces, and o € End(Vp) and oy, «% 1 because (U, v) €

X- By Lemma 2.8, we get o «~ 1 which contradicts the maximality of (U,v) € x.
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