19.02.

1 Basic notions

1.1. Describe sets V; and V;(R) if
(a) f=2*—y*€R[z,yl,
(b) f=(2*—y*)(z+y) € Rlz,y,
(c) f=2a"~y’ €Rlz,y]

(a) Since linear polynomials z+y and z —y are irreducible and 2* —y? = (z+y)(z—v),
we have irreducible decomposition of the curve:

Varye = Vouy UVory, Varo 2 (R) = Vo (R) U Vo (R),
where V.., = Spanc((1, —1)) and V,_, = Spanc((1,1)) are complex lines and V,,,(R) =
Spang((1,—1)) and V,_,(R) = Spang((1, 1)) are real lines.
(b) Since

V(@2 =y (z +y) = V(lz = y) @ +y)?) = (& —y)z +y)) = (@* - ),

we have the same irreducible decomposition of V; and V;(R) into two lines as in (a)

Vier—y)aty) = Very U Ve, Vo) (ty) (R) = Vagy (R) U Ve (R),

c) We can easily calculate the decomposition of 2 — 2 into linear factors in C[z, y]:
y Y Y

1 V3. 1 V3.
oyt = (=)@t oy 97 = (@ -y + (G SO+ (G - ),
hence Vys_ys =V, , UV (1o, UV, . (1-Byy is an irreducible decomposition into three

complex lines. If we consider Vys_,3(R) = V;_(R) U V21 4,1,2(R). Now revoking linear
algebra we can show that the real quadratic form g, = 22 + 2y + 3?2 is positively definite,

since its matrix
(1)~
1 ~s 3
3 1 U

is positively definite, hence {(x,y) € R? | g2(z,y) = 0} = {(0,0)}. It means that
Vis_ys(R) =V, (R) = Spang((1,1)) is a real line. O

26.02.
1.2. Describe the function field K (V) for a general field K and

(a) f=z+y,
(b) f = ax + by + ¢ where (a,b) # (0,0).



First note that any non-constant linear polynomial is irreducible and that the function
field K (V7) is a filed of fractions of the coordinate ring K[V}]. So it is enough to describe
coordinate rings.

(a) To find the coordinate ring K[V,.,| = K[z,y]/(x +y), we intend to use the First
Isomorphism Theorem. Consider evaluating homomorphism ¢ : K|z, y|] — K|[z| given by
©(p) = p(x, —x), then, obviously z+y € ker(p), hence (z+y) C ker(p). If q(y) € ker(yp),
where we consider ¢ as o polynomial in variable y with coefficients in the domain K|z],
we can observe that —z is a root of ¢, thus (y + z) | ¢ and so ¢ € (z + y). Since ¢(p) is
surjective and we have shown that ker(p) = (z +y) and the First Isomorphism Theorem
gives us

K[V = Klz,yl/(x +y) = Klz,y]/ ker(p) = Klz].

It means that the function field K(V,4,) is isomorphic to the field of rational functions
in one variable K (z).

(b) W.Lo.g we may suppose that b # 0, otherwise we switch the variables x and y.
We repeat the arguments of (a) for the evaluating homomorphism ¢ : K|z,y] — K|z]

given by the rule ¥(p) = p(x, —¢x — §), which is onto K[z]. Then ker(¢) = (ax + by +c)

and by the First Isomorphism Theorem we get the isomorphism.

K[Vaziby+e] = Kz, y]/(az + by + ¢) = K[z,y]/ ker(v) = Klz].
Thus K (Vagiby+e) = K(x) again. O
1.3. Let p be a prime number, ¢ = p" for n € N and f € F,[z] \ F,.
(a) If f is irreducible, describe a rupture field of f.
(b) If f is irreducible, describe a splitting field of f.
(c) For which k does the field F, contain a root of f7
(d) Construct an algebraic closure of the field F,,.

(a), (b) We know that the factor ring IF,[z]/(f) is a field containing a root of f, i.e. a
rupture field of f. Note that Fy[x]/(f) = Faeer is even a splitting filed of polynomials f

deg f deg f
and 29" — z and that f | 27

(c) Since Fx is a splitting filed of a polynomial 2 — g = Haquk 2 — a and it contains

— 2z in F [z].

all roots of irreducible polynomials of degree dividing k, F » contain a root of f if and
only if degged(f, 27" — ) > 0, which is true if and only if there exists an irreducible
factor of f of degree dividing k.

(d) Recall that [Fu is a subfield of F 1) since Fpo < Fpp iff a | b. Put K = (J, oy Fpr.

Observer that for each a € K there exists m for which « is a root of the polynomial
2P — x, hence K C F,. On the other hand let f € K[z]. Then there exist k such that
f € Fyu[z] and by (c) there is [ < deg f such that Fm < F ) < K contains a root of
f. This proves that K is an algebraic closure of the field F,,. O]

05.03.

1.4. Let f € Rlz,y] and F' € R[X,Y, Z] be its homogenization. Describe sets V, V;(R),
and points in infinity of Vp and Vp(R) if



(a) f=a+y*—1,
(b) f=2*+y.
First observe that
Vy={(a:b:c)€P?|c=0}={(a:b:0)€P?|(a,b) € C*\ (0,0)} = P*\ A%

(a) Clearly, V¢(R) is a unit circle. Now, we can easily determine the homogenization
F = X? +Y? — 72 of f. The points in infinity Vz NV of Vi are those satisfying
X?4Y? =272 =0. Since X2+Y? = (X +1Y)(X —14Y), we get that VeNVz = {(1,4i,0)}
and Vp(R)NV; =10

(b) This time V;(R) forms a parabola satisfying the equation y = —a?. Since the
homogenization of f is the polynomial F' = X? 4+ Y Z and the points in infinity Vx> NV
of Vi satisfy the equality X2 +YZ = X? = 0, we can easily compute that VNV, =
Ve(R)NVz ={(0,1,0)}. O

1.5. Let g = (523’%11)2 € R(x). Calculate in the function field R(x) over R the values of

valuations:
(a) vet1(B),
(b) ve-1(B),
(c) va(B),

(d) Vg2 _g+1 (5) :

Recall that v,(a) = max(k | p* | a) and v,(%) = vy(a) — v,(b) for a,b € Rlz] \ {(0)}.
a) Voy1(B) = ver1 (22 — 1) —vp (2> = 1)2=1-2=—1.

b) v 1(B) = veq(2? = 1) —v, (2> —1)*=0—-2= -2,

) v:(B8) = vp(2? — 1) — v, (22 —1)2=0—-0=0.

d) vp2_01(B) = Va2_pr(@® = 1) —vp2_p (2> —1)2=1-0=1. O

1.6. Let vy : K(x) — Z U {oo} be defined by the rules

0(0) = 00, vc(3) = deg(b) - deg(a)
for all a,b € K[z]\{(0)}. Prove that v is a normalized discrete valuation on the function

field K (x) over a field K.

First observe that the definition of v, is correct. If a,b,c,d € K|x] \ {(0)} satisfies

7 = 5 then
vso () = deg(b) — deg(a) = deg(d) — deg(c) = vse( ).

since ad = bc and so deg(a) + deg(d) = deg(b) + deg(c).
Let a,b,c,d € K[z]\ {(0)}. Then

vae(55) = voo(5) = deg(bd) —deg(ac) = deg(b)+deg(d)—deg(a)—deg(c) = voo(})+00(5)
and d+b
voo(% + 5) = vm(%) = deg(b) + deg(d) — deg(ad + bc).

3



As deg(ad + be) < max(deg(ad), deg(bc)) = max(deg(a) + deg(d), deg(b) 4+ deg(c)) we get
that

voo(% + 2) = deg(b) + deg(d) — deg(ad + bc) >
deg(b) + deg(d) — min(deg(a) + deg(d), deg(b) + deg(c)) =
— min(deg(b) — deg(a), deg(d) — deg(c)) = min(vm(%), Uoo(g)).
Finally note that v,(1) = 1 and that v, (a) = oo if and only if a = 0, which finishes the
proof that all axioms (DV1)—(DV4) are satisfied. O

12.05.

2 Weierstrass equations
2.1. Find a short WEP which is R-equivalent to the WEP
w=1y>+y2r+2)— (2 —42® + 1) € Rz, ).

We apply standard linear algebra machinery of Lemma 2.1. First, we remove the

term 2zy. Let A = ( 1o

1 1) € Uy(R), which represents replacement of y by y — x and
compute

P(w) =y —2)? +(y—2)2x +2) — (2% —42® + 1) = y* + 2y — (2® — 32° + 2z + 1).
Now we use b = (1, —1) to exclude monomials y and z*:
iAW) = (=1’ +20y -1 = ((z+ 1)’ =3@+ 1)’ +2c+ )+ 1) =¢* - (" —x+2).

O]

2.2. Show that the real polynomial w = y? — (2® — z + 2) is

(a) R-equivalent to y* — (2* — £ + 35),

(b) C-equivalent to y* — (z* — z — 2).
4 0
0 8
64(2® — & + 53), hence y? — (2* — x4+ 2) and y? — (2® — ;50 + 55) are R-equivalent by
the Fact from the lecture where we take ¢ =2 and d = (.

-1 0) and calculate
0 =2

(a) It is enough to take the matrix A; = ( and compute 0% () = 64y* —

(b) Now, we chose the complex matrix Ay =

0, (W) = —y* = (=2’ + 2+ 2).
Then the same argument as in (a) proves that C-equivalence of w and y*— (2> —x—2). O

19.03.



2.3. Decide which of the following WEPs are smooth and find all singularities of singular
ones:

(a)

(b) (y+1)* = (¢ + 1) € Fs[z,y],

(c) y* — (2* — 2 — 2z +1) € R[z,y),

(d) v* +y(2x +2) — (2% — 42> + 1) € Rz, y] (from 2.1).

(a) y* — (23 + 1) € R[z,y] is a smooth short WEP by Proposition 2.2 since the
polynomial 2% + 1 is separable. The same result follows from the Corollary 2.3 as

4-03427-12=1+#0.

(b) w= (y+1)*— (2* + 1) € F3[z, y] is a singular WEP, since w is F3-equivalent to
y? — (23 + 1) and the polynomial z° + 1 = (z + 1)? has the root 2 of multiplicity 3. It is
easy to see that the only singularity is (2, 2),

(c) y> — (2 — 2> — z + 1) € R[z,y] is also a singular WEP, since the root 1 of
23 — 2% — x + 1 has the multiplicity 2. Then the singularity is (1,0).

(d) Using the equivalent short form y* — (z® — 2 + 2) computed in 2.1 we can easily
see that the polynomial f = 23 — x + 2 is separable. Indeed, the roots of f’ = 3z — 1 are
i\% and f(:l:\/%,:) # 0, so there is no multiple root of f. This means that 3> — (23 —z +2)
is smooth by Proposition 2.2, hence y* + y(2z + 2) — (23 — 42 + 1) is smooth by Fact
from the lecture. [

2.4. Let f = y—2a® € C[z,y|. Find all singularities of V; and of the projective extension
V.

Since ?)_5 = 1, the tangent ¢,(f) # 0 for each o € V}, hence V; is a smooth affine
curve.
Clearly, F =Y Z* — X3 Then Vp NV = {(0:1:0)} since

Fla:8:0)=02ad’=02a=0&(a:5:0)=(0:1:0).

We calculate

OF OF OF
= —3X7, =7, =2YZ,
0X )% 0z
and so t(.1.0)(#) = 0. Thus F is singular at (0 : 1 : 0) and Vp is a singular projective
curve. 0

26.03.

2.5. For the elliptic curve C' given by the WEP w = y* — (2 + x + 2) € F;[z, y] compute
the tables of the group operations ©, ® on C(Fj).



Note that f = 23 + 2 + 2 = (z + 1)(2® — x + 2) where 2% — x + 2 is irreducible in
F5|x, y], which means that f is a separable polynomial. Hence w is a smooth WEP and
so V,, is an elliptic curve. Now, we compute f(z) for all z € Fj:

oj 12 |=2|-1
25 (0] 1 |—2]2 -1
f@yl2/-1] 2120

Since y* € {0,1, —1}, we can easily find all zeros

Vw(F5) - {<17 2)7 (17 _2>7 (_17 0)}7

which means that the group C(Fs5) = {o, (1,2), (1, —2),(—1,0)} is of the order 4. Since w
is of a short form, we know that &(z, y) = (z, —y) hence we have the table of the unary
operation
olo| (1,2) [(1,-2)|(~1,0)
o] (1,-2)] (1,2) [(~1,0)

From the table we can see that the group has exactly one element (—1,0) of the order 2,
so C(F5) = Z4 is a cyclic group. We can directly draw the table of the operation &

e | o [ (L2 [(1L,-2)[(-L0)]
0 0 (1,2) | (1,-2) | (—1,0)
(1,2) (1,2) | (—1,0) 0 (1,-2) O

T2 L2 o (L0 1LY
—10) [(=L0) | =2 | @2 | o

2.6. Describe the group C(IF7) of the elliptic curve C' given by the WEP w, and if it is
cyclic, find its generator.

(a) w=1y*— (2® + 3) € Fylx,y],
(b) w=1y*— (2% +22% —x — 2) € Fylx,y] .

(a) First we compute a table of values

0l 123 |-3]-2]-1
Z o1 [=3[2 2 =3]1
2S00 1| 1 =11 |-1]-1
fx)|3|-3|-3]2 |-3| 2|2

Since f has no root in F; by the table, it is irreducible and so separable. It implies that
w is a smooth WEP and we can easily find all F7-rational points of the curve

Vo(F7) = {(1,£2), (2, £2), (3, £3), (=3, £2), (-2, £3), (—1,£3)}.

Since C(F7) = V,(F7) U {o} has 13 elements, it is a cyclic group and (a) = C(F;) for
each a € V,,(F7).

(b) Since 23 +222 —x—2 = (x—1)(z+1)(z+2), the WEP is smooth and we have three
zeros (1,0), (—1,0), (—2,0) compute the table of the binary group operation & on C(F7).
It remains to observe that 3> € {0,1, 3,2} and compute f(z) for z € {0,2,3, —3}:

0 ]2]3 -3
fl@)|—2]-2]-2]|-1
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which shows that C'(F;) = {0, (1,0),(—1,0),(—2,0)} is a group of the order 4. As ©a = a
for every a € C(F;), we can see that C'(IF;) = Zy X Zs

2.7. For the curve V,, from 2.6(a) describe all points of
(a) secant passing points (1,2) and (3, 3), and compute (1,2) & (3, 3),
(b) tangent at the point (1,2), and compute (1,2) & (1,2) = [2](1, 2).
2-3

(a) It is easy to calculate the slope A = = = —3. Then the secant V, 3,45 contains

all points (x,y) satisfying y = —3x — 2, hence

‘/;J+3:v+2 = {(07 _2)7 (17 2)7 (27 _1>7 (37 3)7 <_37 0)7 (_27 _3)7 <_17 1)}

To find (1,2) @ (3,3) we can either find V1 3,.0 NV, = {(1,2),(3,3),(—2,—3)}, hence
(1,2) ® (2,3) = ©(—2,-3) = (—2,3) or we can apply formula

71:)\2—061—51:2—1—3:—2; 72:/\<0<1—71)—042:—3(1+2>_2:—4:3>

and (1,2) @ (2,3) = (71, 72)-

02.04.
(b) This time we calculate the slope A = % = —1, hence the tangent is
Vpraos = {(0,3),(1,2), (2,1), (3,0), (=3, —1), (2, —2), (—1,-3)}.
and [2](1,2) = (71,72) = (=1,3) as
Nn=A-201=1-2=-1, p=MNag—m)—ay=—-1(1+1)—-2=3.
O
09.04.

3 Montgomery curves

3.1. Find the Montgomery’s ladder for (a) n = 98, (b) n = 137

(a) Note that 15(98) = [log,(98)] + 1 = 7 and recall that the Montgomery’s ladder
{(ni,n;)}_, is done by the recurrent condition n,_; = [% | and by n} = n; + 1. Thus we
can easily compute

i|7]6]5]4]3]2]1
n; 9814912412 /6|3 |1
n, 199502513 |7|4]2

(b) This time 5(137) = |log,(137)] + 1 = 8, hence the table of the Montgomery’s

ladder is

i| 8 |7]6]5]4]3|2]1
137683417 [8[42]1
13869 35|18 |9|5|3|2

n;
n;




3.2. Describe the calculation of [98]P for an element P of Montgomery curve of order
greater then 98 using the Montgomery’s ladder.

From the calculation of the Montgomery’s ladder in 3.1 we obtain the binary notation
(98)2 = agasagaszasaiag = 1100010 for 98 = Z?:o a;2'. Recall that the run of calculation
([ny] P, [n;]P]), depends on the value of the bit a;_;, namely

e if a;_j = 0 then [n;|P = [2][n; 1] P and [n}|P = [n; 1|P & [n]_,]P,

e if a;_j =1 then [n;]P = [n; 1]P & [n_,]P and [n}]P = [2][n]_,]P.

Thus we can describe the calculation in the following table, where we denote P; =
[n;]P and P; = [n]P:

il 2 3 4 5 6 7
ar_; | 1 1 0 0 0 1 0
n; | 1 | 1+2 | 2-3 | 2:6 | 2-12 |24+25| 2-49
n, | 2 | 2.2 | 344 | 647 [124+13] 225 |[49+50
P, | P [PoP| 2R | 217 | 2P |PoP| 2P
Pl |21P| 2P |PaP|Pse P PaP| 2P, |Psa P,
0
16.04.

3.3. Decide whether the WEP w = y*>— f € Fs[z, y] is F5-equivalent to some Montgomery
polynomial if

(a) f=2"+1,
(b
(c

) f
) f

(d) f=23+z+1,
) f

(e

We apply Proposition 4.5 from the lecture (M.5 in the lecture notes) which says that
smooth WEP w = y? — f is F5-equivalent to some Montgomery polynomial if and only
if there exists a root ¢ € F5 of f such that f’({) is a non-zero square in F5. Note that if
we find all Fs-rational roots ¢ of f and check whether f'(¢) # 0, we will know that w is
smooth.

Observe that 1 = 1% = (—1)?, -1 = (2)? = (—2)? are all non-zero squares in F5. We
will search all Fs-rational roots ¢ of f and check whether f'({) = +1:

(a) The only Fs-rational root of f = x® +1is —1, f' = 32% and f'(—
means that w is not Fs-equivalent to any Montgomery polynomial.

(b) The only Fs-rational root of f = x® + 2 is 2, and f/(2) = 2, hence w is not
F5-equivalent to any Montgomery polynomial.

(c)The polynomial y*> — (2* + ) is already a Montgomery polynomial (for A = 0,
B =1), so the answer is yes.

(d) The polynomial 2® + = + 1 has no Fs-rational root, thus the answer is no.

(e) Since —1 is Fs-rational root of f = z® + z + 2, the derivative f’ = 3z% + 1 has
no Fs-rational root, and f'(—1) = —1, the WEP w is Fs-equivalent to some Montgomery
polynomial. O]

=3 + 2,

=3 +x,

=23+ +2.

1) = —2, which



3.4. Find a Montgomery polynomial Fs-equivalent to a WEP w € Fsx, y] if
(a) w=y>—(a°+2+2),
(b) w=1y*— (23 +22% —x —2).

(a) We have found the root —1 of f = 2® + 2 + 2 in the previous task and we use the
idea of the proof of Proposition 4.5/M.5 and Lemma 4.1. First substitute x — 1 into f
and we get f = f(z—1) = 23+ 22% — z. Now, if we put 2> + 22> — 1 = 23 + ABx® + Bz,
we can easily calculate B = +2 and A =2 (4+2) = 41, hence by Lemma 4.1 we get

Y — (2P + 1+ 2) ~p, 207 — (2 + 2P + 2) (~p, —20° — (2F — 2% + 1)),
(b) As in 3.3 we find roots £1, —2 of
f=2"+20" —2-2=(z+1)(z - 1)(z +2).
Since [’ = 32? — x — 1, we calculate f/(1) =1 and f'(—=1) = f'(=2) = —2. As f'(1) =1

is a square, we substitute z — z + 1 and we obtain f = f(z + 1) = 23 + 2. We can see

that the Fs-equivalent WEP y? — f = y? — (2® + z) is already Montgomery (cf. 3.3(c)),
so we are done, i.e. y? — (2% + 222 — 2 — 2) ~p, y* — (2% + 7). O

3.5. Decide whether there exists ¢ € F; such that the WEP y? — (2* — ¢) € Fy[z,y] is
F7-equivalent to some Montgomery polynomial.

Assume that there exists a root ¢ € F; of f = 2° — ¢ and b € F; such that
f'(¢) =3¢* =" e Fy.

Then 3 = 2—2 = (%)2, which contradicts to the fact that 1,2,4 are the only non-zero
squares in the field . n

3.6. Explain for an arbitrary field K why Montgomery polynomials m and m are K-
equivalent if

m = By* — (2* + A2® + ) and m = —By? — (2* — Az* +2) € K|x,y].
It is enough to consider the affine transformation (z,y) — (—z, —y), on m:
m(—z,—y) = By? — (=2 + Ax* —2) = —(—=By* — (2" — A2® + 2)) = (=1) -
and note that B € K*, A # +2 if and only if —B € K*, —A # +2. m

4 Edwards curves

4.1. Show that the polynomial x? + y* € RJ[z,y] is irreducible but it is not absolutely
irreducible.

Clearly, 22 +y? = (z +iy)(z —iy) € C[x,y], which shows that 2?4y is not absolutely
irreducible.

If 22 + y* = ¢19o was a nontrivial decomposition in R[z,y], then it would be a
nontrivial decomposition in C|z, y] which would be associated to the prime decomposition
r?+y* = (z+iy)(z—iy). Hence g;||(x+iy) which contradicts to the fact that g; € Rlx, ],
and so 2% + y? is irreducible in Rz, y]. O



23.04.

4.2. Let f =y*+az? — (1 + d2*y?) € Rlz,y] and F = (Y2 + aX?) 2% — (Z* + dX?Y?)
be the homogenization of f. Find all points of Vx NV, and decide which are smooth.
Since (a : b : c) € Vp N Vy if and only if ¢ = da?h® = 0 if and only if c = a = 0 or
c=b=0,weget VeNV;={(1:0:0),(0:1:0)}.
We can compute

or _ 2 2y OF _ 2 2y OF 2 2 3
o = 2X(0Z —dY?), oo =2Y(2° - dX?), oo =2Z(Y? +aX?) - 42,
OF OF OF
8X(100) aY(lOO) aZ(l()()) 0,
oF OF OF
S (0.1,0) = 25(0,1,0) = 52(0,1,0) = 0,
hence both the points (1:0:0) and (0:1:0) are singularities. O

4.3. If f = y* + ax? — (1 + d2*y?) € Klz,y] and a = cb* for ¢,b € K show that
[ ~r y? +cx? — (1 + db2x?y?).

It is enough to apply affine transformation (z,y) — (b~'z,y) to receive
y* +az® — (1+da*y?) = > + b* (b '2)® — (1 +d(b'2)*y®) = y* + ca? — (1 + db 22*y?),
which is K-rationally equivalent to f. O
30.04.

4.4. For the Montgomery curve given by 3y? — (2% +3z? +z) € F;[z, y] find a birationally
equivalent (a) twisted Edwards curve (b) Edwards curve.

(a) We simply apply Theorem 5.8 (E.7) for A = B = 3:

wa= (225520 = (52 ) — )

thus the birationally equivalent generalized Edwards curve satisfies the equation
4.%'2 +y2 — 1_'_ 5$2y2

(b) This time we use the linear transformation = — 2z to receive a birationally equiv-
alent Edwards curve given by 22 + > = 1 — 2%y?, where the coefficient d is transformed
by the rule d — & (see Lemma 5.5 (E.4)). O

4.5. For the Edwards curve given by the polynomial 22 + y* — x?y? € F;[x,y] compute a
birationally equivalent Montgomery curve.

We apply the formulas from Theorem 5.8 (E.7) again

at+d 4 1-1 4
AB)=1(2- = 2. —  — — 2
(4, B) < a—d’a—d) ( 1+1’1+1> (0,2),

hence we have found a birationally equivalent Montgomery curve given by the polynomial
2y? — (23 + ). O

10



4.6. If C is a curve given by the WEP w = y* — (3 —x + 1) € Fy[z, y], prove there exists
a birationally equivalent twisted Edwards curve and find the corresponding Edwards
polynomial.

Put f = 28—z +1 and observe that (2,0) € V,,, hence f(2) = 0. Since f' = 322 —1, we
have f/(2) = 4 = 22. Using the transformation z — z + 2 we get the Fr-equivalent WEP
y? — (23 — 2% +4z) = y? — (2* + AB2? + B?z), which is Fr-equivalent to the Montgomery
polynomial By*— (z®+ Az? +z) = 2y* — (23 + 32?4+ z). Now it remains to apply Theorem
5.8 (E.7) as in 4.4 to show that a birationally equivalent generalized Edwards curve exists

and it is given by the equality 62 + y? = 1 + 4a?y? since (6,4) = (3123:2). O

Let f =y* +az® — (1 + da*y?) € K[z, y] for a general field K with char(K) # 2 and
define F(Xy, Xp,Y1,Y2) = X3V + aX7Y3 — (X3YZ 4+ dXPY?) € K[X,, X2, Y1, Ys]. Note
that F' is homogeneous of degree 4. Define

Ve ={((01: ), (B1: B2)) €P' x P! | Flan, 00,1, o) = 0} P! x P!
and v : A? — P! x P! by the rule v(c, 8) = ((a: 1), (8 : 1))
4.7. Prove the following properties of VF and v:
(a) Vj is correctly defined,

(b) v is an embedding and v(V}) = Vi N v(A?)

(c) Vﬁd\ v(Vy) = {((1: £5),(1:0)),((1:0),(1: +t))} where s,t € K satisfy s* = d
and 2 = ¢,

(a) It is enough to observe each ((a1 : @), (81 : B2)) € P' x P! and non-zero \,n € K
such that F((oq : o), (B1 : 52)) = 0 that

F((Aa, A, nB1,mBa)) = N2 F(ay, as, Br, o) = A2 - 0 = 0.

(b) Clearly v is injective. Observe that («, 3) € V; if and only if

A

F(V(aaﬁ)) :ﬁ(a,l,ﬁ,l) :f(Oé7B> =0,

which holds if and only if v(a, ) € V. This shows that v(Vy) = Vs N v(A2).
(c) First note that

P! x P'\ v(A?) = (1:0) x PUP" x (1:0).

~

We will discuss two intersections ((1:0) x PY) N Vz (P! x (1:0)) N Vp.
Let A = ((z; : x5),(1:0)) € P! x (1:0)N Vg,
A={((1,£s),(1:0))} R
Let B = ((1:0),(y1:v2)) € ((1:0) x P')N Vg, then ays = dyi which implies that
y3 = 2yt = t*y}. Thus and so B = {((1:0), (1, £¢))}. O
Recall that (Vp, @, 0, 0) is a group with operations defined as follows:

then 73 = dr? = s*z? and so

o=v(0,1)=((0:1),(1:1))
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O((a1 1 ag), (B1: B2)) = ((—aq : az), (B1 2 B2))

(o1 2 an), (B2 B2) D ((71:72), (01 :02)) = { EEZ% ZZ;: EZE ZZ;% gtgef;isszense

where
p1 = o Bay201 + aafiyida, py = a1 f1720200327101,
po = 9200 + don Biyidr, ac Byy102 + aaB17201,
v = aof17201 — aaiBay1ds, 4] a1 B17202 — aafBay10
Vo = o2y — day 17101, Vs = 1827201 — a2f17102.

for each (o : ), (B1: B2), (71 : Y2), (01 @ 02)

4.8. Let o = ((1: #5),(1:0)) and 72 = ((1:0), (1 : £t)) for s, satisfying s* = d and
2 = g. Prove the following properties of the group (Vz, ®, S, 0):

(a) v(a® p) =v(a) @ v(p) if the left side has a sense,

(b) 7+ and v(0,—1) are elements of the order 2,

(c) o4+ and v(+£r,0) for 2 = a~! are elements of the order 4.
(

a) If we apply the definition of adding on VF we get
v(ug,ug) ® v(vy,ve) = ((ug 1), (ug : 1)) & ((v1 : 1), (v2: 1)) =

_ ((ugvg + ugvy 1 1 4 dugugvivs), (ugve — augvy @ 1 — dujusvivy)) =
((urug + v1v9 : au vy + ugvs), (Urte — V1Vg & ULV + UV )) =

_ { (s D GEEZGAS, D) = v, w) & (0, 12))
(et 1), (3222 0 1) = v((ur, uz) & (v, v2))
if the line has a sense, where on the first line we have exactly the closed formula and on

the second line the generic formula, which means that at least one line is correct.
(b) Since 74,v(0,—1) # 0= (0,1) and

ory = ((—-1:0),(1,%t)) =74, or(0,-1) =rv(0,—-1),

all the elements are exactly of the order 2.

(c) It is enough to show that [2]P = v(0,—1), as v(0,—1) has the order 2. Let us
apply the formulas of the addition

((1,£s),(1:0)) @ ((1,£s),(1:0)) = ((0,d),(d: —=d)) = ((0,1),(=1:1)) = v(0,—1).

and
(£7,0) @ (£r,0) = (0, —ar?) = (0 : —1),
which can be computed in V. O
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