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1 Algebraic function fields

1.1. Consider extensions R C R(x) C C(z)
(a) Prove that R(z) and C(z) are AFFs over R,
)

(b) compute the field of constants R of the AFF R(z),
(c) compute the field of constants R of the AFF C(z),

)
(d) find a transcendental element o € C(z) such that [C(x) : R(«)] is minimal.
(a)

a) It is enough to take the transcendental element x and compute using Proposition
2.3
[C(z) : R(z)] = [C:R] =2 and [R(z):R(z)] = 1.
(b) By the proof of Lemma 2.6 we know that [R : R] < [R(z) : R(z)] =1, s0 R = R.
(c) Using (a) and the argument from (b) we can see that [R : R] < [C(z) : R(z)] = 2.
As CC R and [C: R] = 2 we obtain that R = C.
(d) We know that [C(z) : R(z)] = 2. Since

[C(2) : R(e)] > [R(@)) : R(e)] = [R: R] = 2
by Proposition 2.3, and [C(x) : R(z)] = 2, the element o = x is a transcendental element
with a minimal value of [C(z) : R(«)]. O

1.2. Let K C U be a finite degree extension. Prove that U(z) is an AFF over K with
the field of constants K = U.

Applying Proposition 2.3 we can compute [U(x) : K(z)] = [U : K] < oo again, where

x is transcendental and U C K. As
U: K] <[K:K]=[K(z): K@) <[U(z): K(z)] = [U : K],

it holds K = U. O
1.3. Prove that Q(v/5,7) is an AFF over Q and determine the field of constants Q.

Observe that Q(V5,2)Q(/5)(z) = Q(v/5, 7). Now it remains to apply 1.2, which
implies that Q = Q(v/5). O
1.4. Let g € K[z, y| be an irreducible polynomial, R := K|z, y]/(g), L be a fraction field
of R. Prove that L is an AFF over K.

Put € == 2+ (9) and v := y + (g9). Then R = K[{,v] and L = K({,v). Assume
to contrary that &, v are both algebraic over K, then [K(£,v) : K] < oo, hence R =
K[¢,v] = K(&§,v) = L. Note that K-algebras K[z| and K[y are infinitely dimensional as
K-spaces, which implies (¢) N K[z] # 0 and (¢9)NK[y] # 0. Then g € K*, a contradiction.

Since either £ or v is transcendental over K. Let w.l.o.g. a := £ transcendental, then
g(a,v) =0, and so [L : K(«)] < co. We have proved that L is an AFF over K. O
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2 Local rings

2.1. Prove that each valuation ring is uniserial.

Assume to contrary that R is a non-uniserial VR, so there exists a pair of ideals I, J
such that / ¢ J and J ¢ I, Hence 3a € I\ J and 3b € J\ I. Since R is a VR,
either ¥ € R, which implies a = 0-3 € J or g € R, which implies b = a - g €l a

contardiction. O

SallS]

2.2. Let p be a prime number and define Z,) = {{ | @ € Z,b € N, p does not divide b} is
a VR.

It satisfies to observe that arbitrary non-zero element of @ (which is the field od
fractions of Z and so of every subring of Q) is of the form a = ¢ -p' for a,b,i € Z with a, b
non-divisible by p. It imples that « € Z,) whenever ¢ > 0, and a~te Ly ifi <0. O

2.3. Let R,y = {% € R(z,y) | r,s € Rlx,3],5(0,0) # 0} C R(x,y). Prove that
(a

) R, is local,

(b) R, is not uniserial,
) R
(a

(c

+y 1s not valuation.
) It is enough to note that (x,y) is a maximal ideal of R, , and that
c+azx + by

Ry \ (2,y) = {

since [c 4+ az + by](0,0) = ¢ # 0.

(b) As (z) € (y) and (y) € (x), R, is not uniserial.
(c) It follows from (b) because every valuation ring is uniserial by 2.1, nevertheless,

it is clear that both =%, I;/y ¢ R, O

€ R(z,y) | c € R*,a,b,s € Rlz,y] : 5(0,0) # 0} = R},

2.4. Let (R, M) be a local ring (not necessary a domain) with M = (¢) for ¢t # 0 and
A=), M"=,(t"). Prove that for each s € R\ A there exist unique ¢ > 0 and some
(not neceessary unique) u € R* such that s = t'u,

The proof of existence is the same as in Proposition 3.2 and we slightly modify the
original proof of uniqueness:

Let t'u = t/v for 1 > j and u,v € R*, then t/(t"7 —u~lv) = 0. If ¢ > j then
t=9 —ulv ¢ M, hence 7 — u~'v € R*, which implies #/ = 0, a contradiction. Thus
1 = 7 and we are done. O]

08.03.

2.5. Let (R, M) be a local domain with M = (¢) for t # 0 and A = (), M" = (,(t").
Prove that AM = A.

If there exists ¢ for which M = M**! then A = M?, hence AM = M+ = A.

Letac A=), M then for each i > 0 there exists a; € M such that a = a,t, since
R\ M = R*. As a;t = a = a;t, we get (a; — a;)t = 0, which implies ay := a; = a; for
each 7,7 > 0. Hence a = agt for ap € (), M* = A. O
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3 Discrete valuation rings
3.1. Let R be a noetherian ring and p € R a prime element. Prove that the localization
R, is a DVR with the NDV ,.

By Example 4.1 v, is a NDV of the field od fractions K of R and it remains to observe
that

Ry ={3 € K |a€ Rbe R\ (p)} = {5 € K | v(a) 2 0,0(b) = 0} = v, ((0.00)).
[
3.2. Let S = Fy[X](;24,41) be a localization of Fo[X] in (2 + z +1).
(a) Show that S is DVR and find all DV v such that S = v~((0, o)),

(b) if v is NDV determining S, compute v(z°), and V(%),

(c) if v is NDV determining S, M is the maximal ideal of S, a € M?\ M? and
be M3\ M*, compute v(ab) and v(a + b).

(a) S'is DVR by 3.1 and all DV determining S are of the form kv,2,,, for an arbitrary
natural k£ by Lemma 4.4.

(b) As v = 142,71 by Lemma 4.4 and 2> + x + 1 does not divide x, we obtain that

3 3 $4 1‘2 X
v(2°) = 5v(z) = 0. Similarly, V(—(HI)SJ(;QLH)S) =
=v(@)+v(@P+a+1) =z +1)-3v(@@*+2+1)=0+0-0—-3 = —-3.

(c) Since M = (t) for a uniformizing element ¢, the condition a € M2\ M3 = (t?)\ (#3)

mens that v(a) = v(t?) = 2 and b € M3\ M* implies that v(b) = v(t*) = 3. Thus
v(ab) =v(a) +v(b) =5 and wv(a+b)=min(2,3) =2

by (D1) and Lemma 4.6. O

3.3. Let R = Z5) < Q be a localization of Z in the prime ideal (5). Find for every k£ > 2
elements a,b € Z) such that v5(a) = v5(b) = 2 and vs(a + b) = k.

Note that v5(25s) = 2 for an arbitrary element s € R* and v5(5F) = k, in particular
v5(50) = v5(—50) = 2. Put @ = 5¥ + 50 and b = 5F — 50, then

vs(5% + 50) = v(50) = 2 Vk > 2 by Lemma 4.6. and
vs(5% 4 50) = v(3 - 25) = 2 = v5(5* — 50) = v(—1-25)
Now, clearly vs(a + b) = v5(5%) = k. O

3.4. Let P be a place of an AFF L over K and vp(a) = 3 for a € L. Compute vp(a? —a)
and vp(a™2 —a™').

We can apply Lemma 4.9(3),(4): Since p = z? +z is a polynomial of the degree 2 and
the multiplicity 1, vp(a) = 3 and so vp(a'™) = —3 we get that

vp(a* — a) = vp(a) - mult(2® +2) =3 -1 =3 by 4.9(3) and
vp(a™® —a ') =vp(a™') deg(z? + 1) = —3-2=—6 by 4.9(4).
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4 Weierstrass equations

4.1. Find a short WEP which is R-equivalent to the WEP
w=y*+y2x+2)— (2% — 42> + 1) € Rz, y).
We apply linear algebra machinery used in the proofs of Section 5. First, we remove

the term 2xy. Let A = ( L0

1 1> € Us(R), which represents replacement of y by y — «

and compute
Py(w)=(y—z)* +(y—2) 20 +2)— (2° —42® + 1) =¢y* + 2y — (2° — 32> + 2z + 1).
Now we use b = (1, —1) to exclude monomials y and z?:
()= (y—1)2+20y—1)—(z+1)°* =3@+1)2+2@x+1)+1) = 9> — (2 — 2 +2).
O]
4.2. Show that the real polynomial @ = y? — (23 — x + 2) is
(a) R-equivalent to y* — (¢ — ;o + 55),

(b) C-equivalent to y* — (z* — z — 2).

08 and compute 0% () = 64y* —

64(2 — & + 55), hence > — (2* — 2+ 2) and y? — (2® — ;52 + 35) are R-equivalent by
Corollary 5.4 for ¢ = 2.

(a) It is enough to take the matrix A; = (4

—1
0

T +2), the same argument as in (a) proves C-equivalence of w and y*> — (2% —x —2). [0

(b) Now, we chose the complex matrix Ay = ?) . Since V%, (w) = —y® — (—z® +

4.3. Decide which of the following WEPs are smooth and find all singularities of singular
ones:

(a) y* — (2° +1) € Rz, y],

(b) (y+1)* = (2° + 1) € F3[,y],

)
(c) v* — (23 — 2 —xz+1) € Rlz,y],
)

(d) v* +y(2x +2) — (23 — 422 + 1) € R, y] (from 4.1).

(a) y* — (z® + 1) € R[z,y] is a smooth short WEP by Proposition 6.4 since the
polynomial 2% 4 1 is separable,

(b) (y+1)2—(23+1) € Fslz,y] is a singular WEP, since the polynomial 23+1 = (z+1)>3
has the root 2 of multiplicity 3. It is easy to see that the only singularity is (2, 2),

(c) y* — (2 — 2> —z + 1) € R[z,y] is also a singular WEP, since the root 1 of
23 — 22 — 2 + 1 has the multiplicity 2. Then the singularity is (1,0).

(d) Using the equivalent short form y* — (2 — x + 2) computed in 4.1 we can easily
see that the polynomial f = 23 — x + 2 is separable. Indeed, the roots of f’ = 3z — 1 are
i\/ig and f(j:\/ig) # 0, so there is no multiple root of f. This means that y* — (z° —z +2)
is smooth by Proposition 6.4, so > + y(2x + 2) — (2 — 422 + 1) is smooth by Corollary
6.3. O



29.03.

4.4. Find at least 3 maximal ideals in Rz, y] containing the WEP w = y* — (2% + 1).

Since maximal ideal of Rz, y] are of the form I, .,y for ¢i,c; € C by Theorem 7.4
and w € I, o) & w(cy,cz) = 0, it is enough to find 3 zeros of w. We get for example
maximal ideals containing w:

Iy =(y,2+1), I, = (y,x? —x +1), I(i%’i) — (P 1,7+ \3/5)7
where u = (e5%,0). -

06.04.

5 Computing discrete valuations

51. Let w = (y+z +1)* — (x + 2z + 1) € R[z,y]. Note that f = 1w = (> + 2° +
2yx + 2y — 2°) = y(x + 3y) + 5(2* — 2°) +y. so f = yg(z,y) + h(z) +y for g =z + 3y
and h = $(2? — 2°).

(a) Show that w is a WEP,
(b) compute u(g), S(g) and p(h), S(h),

)
(c) compute p(2°y?), p(z?y?®) and p(z’y* + 2%y?),
(d) find S(A(z3y?)) and S(A(z3y* + 22y?)).

(

a) It is easy to see by applying the substitution § < y+x +1 that §— (z*+2z+1) €
R[z,y] is a short WEP equivalent to w by. Since ged(z® + 2z + 1,32% + 2) = 1, the
polynomial w is a smooth WEP by Corollary 6.3 and Proposition 6.4.

(b) Note that mult(g) = 1 and m = mult(h) = 2. Then it is easy to compute

p(g) = mult(x + %yQ) =1,5(9) =2 and p(h) =mult(h) =2,5(h) = %x?

(c) By the definition we can see that u(z%y*) =3+2-2=7, u(z?y®>) =2+3-2=38
hence p(x3y? + x?y®) = 7 by Observation (2) on page 13.
(d) Using the proof of Lemma 9.2 we observe that

S(E) = (5

)2xu(w3y2) — 1x7.

Since A is K-endomorphisms of the K-algebra K|z, y| we can compute

S(A(g;'?’y? -+ 1’23/3)) — S(A(mggﬁ) + A(nyS)) _ S(A(l‘ng)) _ %llj'
by Observation (4) on page 13, because u(A(z3y?)) = 8 > 7 = u(A(2?y?)). 0
12.04.



5.2. Let f = yg(m,y) +h(z)+y=ylz+3y) +3@*—2%)+yeRlz,y forg=a+ 3y
and h = 1(z? — 2®) from 5.1. Put u = z + (f), v = y + (f) and note that L = R(u,v)
is an AFF over R given by f(u,v) = 0. Let P be the uniquely determined place from
Theorem 9.5 containing u, v. Compute

(a) vp(u), ve(v),
(b)
(c) vp(u? +v), vp(u? + 2v).
(a) vp(u) = 1 and vp(v) = mult(h) = 2 follows immediately form Theorem 9.5
E )) Using (a) and Lemma 4.6 we get vp(u + v) = min(vp(u), vp(v)) = 1.

c) Since f(u,v) =0, we get v = —v(u+ 3v) + 2(u® — u?), hence
2 L, Ly 13 -
vp(u® +v) = Vp(§U — U= v + JU ) =min(2,3,4,3) = 2.

Note that vp(u? — 2v) = vp(—u® + 2vu + v? + 2u?) = min(2, 3,4, 3) = 2, which implies
vp(u(u® — 2v)) = 3. Thus
vp(u® + 2v) = vp(u(u® — 2v) — v?) = min(3,4) = 3.

again by Lemma 4.6 [
19.04.

5.3. Let f = y*> + zy + 2° + 32 € R[z,y| and denote by L the AFF over R given by

fla,B) =0 for a =z +(f) and § =y + (f) € Rz, y]/(f).
(a) Determine the field of constants of L the AFF over R,
(

b) show that (—2,2) € V; and compute t(_29)(f),
(c) if P € Py K contains o + 2, f — 2, compute vp(a + 2) and vp(a + 3) and
(d) describe the structure of P.

(a) Since f is an absolutely irreducible by Lemma 8.2, the the field of constants R=R
by Proposition 8.3.
(b) It is easy to see that f((—2,2)) =0, hence (—2,2) € V. Since
of af

—— =y + 52"

) = =2 +ll§',
ox dy Y

we get

of of
ox dy

(c) Note (—2,2) is a zero of both lines z + 2, x +y. As x+ 2,2+ y ¢ (t) we get that
vp(a+2) =vp(a+ ) =1 by Theorem 9.7.

(c) By (c) both elements o+ 2 and a +  are uniformizing elements of the DVR Op,
i.e. the generators of its maximal ideal P. Thus by Proposition 10.4 and Theorem 9.7
P = Py — (a+2) = {(a+ 252 | g(~2,2) £ 0}. a

——(—2,2) = 82, (—2,2) =2, hence t=t_s2(f) =82z + 2y + 160.
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6 Places and divisors
6.1. Let f =y’ +y— (2 +1) =y*> +y+2°+1 € Fylx,y] and denote by L the AFF over
Fy given by f(a,8) =0 for @ =z + (f) and § =y + (f) € Fa[z,y]/(f).

(a) Find all points of V;(F3), which of them are smooth?

(b) Determine JP’(LI/) -

(c) Find P € Pric \ P),..

(a) We can directly compute that V¢(F2) = {(1,0), (1,1)}. As
o . or
oxr 7 oy 7

we compute t(1,0)(f) = +y + 1 and t1,1(f) = = + y, hence both points of V(IF,) are
smooth.

(b) P = {Pi1.0), Pty Poo}, since Vi (Fa) = {(1,0), (1,1)} by Proposition 11.8.

(c) Note that by Corollary 11.3 1,/ is infinite, hence P € IP’L/K\}P’(Ll/)K is infinite. Fix
for example an irreducible polynomial m € Fy[z| of degree greater than 1. Then there
exists P, € Pr/k such that m(a) € P, since m(a) is transcendental over 5. Note that

Kla]/(m(a)) is a K-space of dimension deg(m) which is embeddable into the K-algebra
Op/P since PN K[a] = (m(a). Thus

deg P, = dimg(Op/P) > dimg (K|a]/(m(«))) = deg(m) > 1.
If we choose for example m = 2% + = + 1, then deg P,,, > 2. O
03.05.

6.2. Consider the AFF given by f(a,8) =0for f=y*+y— (23 +1)=9*+y+2*+1¢€
Fy[x, y] from 6.1.

(a) Compute degrees of positive and negative parts of principal divisors (a 4+ 1) and

(@)
(b) Determine divisors (« + 1) and («) as elements of free group Div(L/Fs).
(a) By 12.6
deg((a+1)4) =deg((a+ 1) =[L:Fy(a+1)] = [L: Fa(a)] = 2.

and similarly deg((a),) = deg((a)4) = [L : Fo(a)] = 2.
(b) Recall that (a+1)y = > p ,i1cpvp(a+1)P. It is easy to compute that o+ 1 €
Py N Pya,1y and we know that vp (o + 1) = vp_(a) = =2 by 17.7, so we get

(O{+1):1P(170)+1P(171)—2P00

7



Since o ¢ P for all P € PL/K(l), hence there exists a unique P such that o € P and
deg P = 2, which means that
() =1-P—2-P,.

17.05.

6.3. Compute the genus of an AFF K(z) over o field K.

By 4.7 we know the structure of places K (x):
Pr(w)y/xk = {F, | p € K[z] is monic irreducible } U {Py}

where P, is the maximal ideal of the localization with vp, = 1, and P is given by the
discrete valuatlon Voo($) = deg(b) — deg(a). Then v,(z') > 0 for each i > 0 and p is
irreducible monic. Furthermore Voo(2") = —i for each i > 0, hence (z')_ = iP,. Thus
K(x) is of genus 0 by 14.4(3). O

6.4. Describe ale principal divisors of K(z) over o field K.

For every s € K(z)* there exist k € K*, irreducible, pairwisely non-associated polyno-
mials p; € K|[z] and exponents e; € Z, for which s = k[ [, pi". If we put d =), e; deg p;,
then (s) = >, e;P), — dP, forms a principal divisor and it holds e; = v,,(s) = vp, (s).
This presents a way of searching of an element of L determining a divisor of degree 0,
which is in this case necessarily principal. O]

18.05.

6.5. Decide whether Fy(V,,) is an EFF, if (a) w = > + y + 23 + 1 € Fyfz,y], (b)
w=y*+2*+x+1€Fz, vy

(a) We have computed in 6.1 that w is smooth at rational points V,,(F2) = {(1,0), (1,1))}.
Thus by 15.4 the genus of Fy(V,,) is 1, hence it is an EFF.

(b) Since there is a singularity at (1,1) € V,,(IFy), Fo(V,,) is of genus 0 again by by
15.4. O]

6.6. If there exists, find s such that Fo(s) = Fo(V,,) for w from ref6.5.

(a) Since Fy(V,,) is an EFF, Fy(s) S Fa(V,,) for each s € Fy(V,,) by Proposition 14.6.
(b) As (1,1) € V,,(Fy) is a singularity, there exists s € Fy(V,,) such that Fy(s) =
Fo (Vi) by 15.3. Using the proof of 15.3, it is easy to compute that e.g. s = ﬁﬁ for

a=z+ (w), f=y+ (w), hence Fy(V,,) = Fa(av, 5) is given by w(a, 5) = 0. O



