CURVES AND FUNCTION FIELDS

1. ALGEBRAS OVER A FIELD

T&N. K-algebra

2. VALUATION RINGS

K is a field. R < K means that R is a subring of K.

T&N. The notation (R, M) will mean that R is a local ring, i.e. there exists a unique
maximal ideal M.

Lemma 2.1. Let (R, M) be a local ring and A a fintely generated ideal such that AM =
A. Then A = 0.

Proposition 2.2. Let (R, M) be a local domain with M = (¢) for ¢ # 0 and put
A=, M"=,(t"). Then

(1) for each s € R\ A there exist unique ¢ > 0 and u € R* such that s = t'u,

(2) if A is finitelly generated, then A = 0.

Corollary 2.3. If (R, M) is a noetherian local domain with the fraction field K and
M = (t) for some t € M, then

(1) for each s € R\ {0} there exist unique ¢ > 0 and u € R* such that s = t'u,
(2) for each s € K \ {0} there exist unique ¢ € Z and u € R* such that s = t'u,

Lemma 2.4. Let R < K, a € K\ R such that o' ¢ R. If J is a proper ideal of R,
then either J[a] C R[a] or J[a™!] € R[a™].

T&N. If R < K, R is called a valuation ring (VR) of K if for every o € K \ {0} either
a€ Rora '€ R RisaVRifitis VR in its fraction field. R is uniserial, if for every
pair of ideals I, .J either I C J or J C I.

Proposition 2.5. If R < K and [ is an ideal such that 0 # [ # R, then there exists
a valuation ring S of the field K with the maximal ideal M for which R C S C K and
ICM.

Lemma 2.6. Let R and S be noetherian VR’s of K with maximal ideals M = R\ R*,
N =5\ 5% then
(1) M and N are principal,

(2) R and S are maximal proper subrings of K,
(3) MCNif M=Niff R=Siff RC S.
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Lemma 2.7. Let a,b € K|x,y| be coprime, then
(1) (a.8) N Ka] 0,
(2) if P is a prime ifdeal containing (a,b), then P is a maximal ideal of K|z, y].

Corollary 2.8. Prime ideals of K[z, y] are exactly:
(a) {0}, (b) (p) for p € Klx,y] irreducible, (¢) maximal ideals.

T&N. A map v: K — Z U {oc} is a discrete valuation of K if for each a,b € K:

(D1) v(ab) = v(a) + v(b),

(D2) v(a+b) > min(v(a), v(b)),

(D3) v(a) = o0 iff a = 0.
v is the trivial discrete valuation if v(K*) = 0. We will suppose that all discrete valuations
are nontrivial.

Let R be a noetherian domain and p € R a prime element. For each a,b € R\ {0}

define v,(a) = maxi | p’/a and v,($) = vp(a) — vp(b).

Example 2.9. Let R < K, R be noetherian, K the fraction field of R and p a prime.
Then v, is a correctly defined discrete valuation of K.

Definition. Let R < K. R is said to be a discrete valuation ring (DVR), if there is a
discrete valuation v such that R = {a € K | v(a) > 0}.

Proposition 2.10. Let R be a domain. with M = (¢) for ¢ # 0 and put A := (), M* =
M;(t"). Then the following is equivalent:
(1) R is a discrete valuation ring,
(2) R is a noetherian valuation ring,
(3) R is a local principal ideal domain,
(4) R is a a noetherian local ring with a principal maximal ideal.

T&N. If R is a DVR with the maximal ideal (¢) then ¢ is called a uniformizing element
and 14 is called a normalized discrete valuation.

Example 2.11. For R noetherian and p a prime element, the localiyation R, is a DVR.

Lemma 2.12. Let R < K and R be a DVR with a uniformizing element ¢, then for each
discrete valuation p with R = {a € K | pu(a) > 0} there exists unique k € N for which
n = kl/t.

Lemma 2.13. If v is a discrete valuation and v(a) # v(b), then v(a+b) = min(v(a), v(b)).

T&N. Let L be an AFF over K. We say that R is a valuation ring of the AFF L over
K, if R is a valuation ring and K C R. v is a (normalized) discrete valuation of the AFF

L over K, if v is a (normalized) discrete valuation and v(K*) = 0.
Define vy (}) = deg(a) — deg(b) for a,b € K[z] on the AFF K(z).

Proposition 2.14. Normalized discrete valuation (NDV) of the AFF K(z) over K is

either v, or v, for prime p € K|z].

Theorem 2.15. Let L be an AFF over K, P € Py /i and K the field of constants of L.

Then
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(1) K C Op,
(2) Op is a uniquely defined discrete valuation ring,
(3) deg P is finite.

Let L be an AFF over K and K be its field of constants.

T&N. For P € Py /i denote by vp = v the NDV determined by Op where P = (t).
Let a =Y a;, ;o ... 20" € K[2?1,...,2,]. Then multa = min(_7 45 | @iy, # 0).

Lemma 2.16. If z € L\ K, then there exist P,Q € P Kk for which vp(z) > 0 and
VQ(Z) < 0.

Lemma 2.17. Let 2 € L\ K, a € K[z], P € Py/x. Then
(1) vp(z) > 0 implies vp(a(z)) > 0,
(2) vp(z) > 0 implies vp(a(z)) = mult(a) - vp(2),
(3) vp(z) < 0 implies vp(a(z)) = deg(a) - vp(2)

3. WEIERSTRASS EQUATION POLYNOMIALS

K is a field.

T&N.
Lemma 3.1.
Lemma 3.2.

Proposition 3.3. Let w € K|[z,y| be a WEP and o € Aff2(K). Then the following is
equivalent:

(1) there exists A € K* such that Ao*(w) is a WEP,
(2) there exists a WEP @ such that (0*(w)) = (w),
2
c
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(3) there existsc€ K*, d € K andb € A (K) such that A ( c ) and o JbHA

Corollary 3.4.
Corollary 3.5.
Example 3.6.
Example 3.7.
T&N.
Lemma 3.8.
Lemma 3.9.

Lemma 3.10.



Corollary 3.11.

Proposition 3.12. Let charK # 2 and w = y* — f(x) be a short WEP.

(1) w has at most 1 singularity,
(2) if K is perfect, then a singularity is K-rational,
(3) w is smooth if and only if f is separable.

Example 3.13.

4. COORDINATE RINGS

K is a field and K its algebraic closure. X := {x,...,z,}.

T&N. Let U C A™. Then

Iy ={a€ K[X]|a(a) = Wa € U}, Iy = {a € K[X] | a(a) = 0Va € U}
and I, = Ijay, Lo = I{a).
Lemma 4.1.

Proposition 4.2. If P is a prime ideal of K[X] such that PNK|z;] # 0foralli =1,...n,
then there exists o € A" for which P = I,

Proposition 4.3. If P is a prime ideal of K|z, y|, then either (a) P = {0}, or (b)
for p € K[z, y| irreducible, or (¢) P is maximal and there exists a« € A" for which

avav

(p)
[a

Corollary 4.4. Let P be a nonzero prime ideal of K[x,y].

(1) P is maximal iff there exists o € A" for which P = I, iff Vp is finite.
(2) there exists p € K[z, y] irreducible such that P = (p) iff V, C A? is infinite.
(3) If p,q € K[x,y] are irreducible such that ¢ ¢ (p), then V, ,» =V, NV, is finite.

Example 4.5.
Lemma 4.6.

Proposition 4.7. Let w € K[z, y] be irreducible, C =V,,, a =z + (w), f =y + (w) €
K[C| c K(C) = K(a, 8). Then

(1) « is transcendental iff deg, w > 0,

(2) if a is transcendental, then [K(C) : K] = deg, w,

(3) K(C) is an AFF over K.

Corollary 4.8. Let L = K(a,3). Then L is an AFF if and only if there exists an
irreducible affine curve C' C A% such that L =, K(C).

Lemma 4.9.
Lemma 4.10.
Corollary 4.11.
Example 4.12.
T&N.



5. PLACES

K is a field and w = yg(z,y) + h(z) +y € K[z,y| where
h € Klz], g € K[z,y], m := mult(h) > 2, mult(g) > 1.

T&N. Let a = Y, - a;;x'y’, then define:

p(a) = mult(a(z, y™)),
s(a) = {(5,4) .5 = 0,i + jm = p(a)},
S( ) Z(zg )es(a) CLZ].Z‘y

T&N. Denote by A the K-endomorphims of K|x,y] defined by the rule
Au(z,y)) == u(z, =h(z) - yg(z,y))
for every u € Klz,y).
Lemma 5.1. For every i,j > 0 u(A(z'y’)) = i + jm and there exists A € K \ {0} such
that S(A(z'y?)) = Aa'tI™,
Example 5.2.

Lemma 5.3. There exists P € Pr,x such that vp(a) > 0 vp(5) > 0. Moreover, then
vp(B) = mup(a).

Lemma 5.4. Let u € Ko, (] \ {0} and k := u(u). Then there exist A € K* and
b € K[z,y] such that u(b) > k and u = \a* + b(«, ).

Proposition 5.5. There exists a unique P € Py /x such that vp(a) > 0 vp(3) > 0. For
such vp(a) = 1 and vp(B) = m and vp(u-v=1) = p(u) — u(v) for each u,v € Kla, 8]\ {0}.

L is an algebraic function field over K given by the equality w(a, 8) = 0 for
w =yg(z,y) + h(x) +y where h € K[z|, g € K|z, y], mult(h) > 2, mult(g) > 1.

Example 5.6.

Observation. For each 0 € Affy(K) there exists a unique & € Affy(L) such that
o(y) = 7(y) for each v € A*(K)

T&N. 7 denotes the extension of o from the last observation.

L is an algebraic function field over K given by the (general) equality f(«, ) = 0.

Lemma 5.7. Let v = (y1,72) € A*(K), A € GLy(K), 0 := a7, (u,t) := 7(, B),
Wy := (e71)*(f). Then

(1) L is an algebraic function field over K given by w,(u,t) = 0.

(2) If f is smooth at v € V;(K), then there exists A such that either w, = y o
w, = yg(x,y) + h(z) +y where h € K[z] \ {0}, g € Klz,y], mult(h) > 2
mult(g) > 1.
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(3) Let t,(f) = a1(z —) +az(y—2) for v € Vy(K), then A is a matrix form (2) (i.e.
o := 047_, satisfies that w, = yg(x,y) + h(xz) +y for h € Kz]\ {0}, g € K[z, y],
mult(h) > 2, mult(g) > 1) if and only if there is (b, by) € K2\ Span((ay, as)) such
that A = (0102

a1, a2

Theorem 5.8. Let f be smooth at 7y = (71,72) € Vy(K).

(1) There exists a unique P € Pk such that vp(a —v1) > 0 vp(f —72) > 0.
(2) Ifl =1y + lix + loy € K|z, y] where ly, 1,1y € K then it holds for P from (1):

=0 ifl(y)#0
vp(l(e, 8)) § =1 ifl(y) =0and [ & (t,(f))
>2 ifl(y)=0and e (t,(f))

L is an algebraic function field over K given by the (general) equality f(«, ) =0
with deg f > 2, which is simultaniously given by the equality w,(u,v) = 0 where
wy =yg(x,y) + h(x) +y for h € K[z]\ 0, g € K[x,y|, mult(h) > 2, mult(g) > 1.

T&N. Let p € K[z] and v € K. The multiplicity of (the root) v of (the polynomial) p
is a non-negative integer k satisfying (x —v)k|p and (z — )k fp.

Proposition 5.9. Let v = (71, 72) € Vy(K), %(7) %0, \, u € K such that vo = Ay + .
Then there exists a unique P € Py, for which {a — 1,5 -2} C P, and vp(8 — Ao+ )
is equal to the multiplicity of the root ~ of the polynomial f(w) = f(z, \x + p).

Example 5.10.
T&N. Let v = (71,72) € V3(K) C A*(K). Then (f) C I, = (x — 11,y — 72). Denote by

Ry = Kleyluy) = {3 | a,b € Ko,y : 0(3) # 0}

the localization of K|x,y] in the maximal ideal I, (I,) = {} € R, | a € I} denotes the

(unique) maximal ideal of R, and w, : R, — L is defined by the rule w,(}) = Zggg))
Denote

10, = {peL|3re R w () =ph, Pyi={peL|dre(l) wr)=p}
If f is fixed we will write O, instead ;O, and P, instead ¢P,.

Lemma 5.11. If f is singuar at v € V;(K), then O, is not a valuation ring.

Lemma 5.12. Let L be an algebraic function field over K given by the equality w, (u,v) =
0 where w, = yg(z,y) + h(x) + y for h € K[z], g € K[z,y], mult(h) > 2, mult(g) > 1.
Suppose that P € Pp/k such that u,v € P, vp(u) = 1. If z € Klu,v] \ {0}, then
there exists a,b € K[z,y| with a(0) # 0, b(0) # 0 (i.e. mult(a) = mult(b) = 0) and

P _ a(uw) * o
P T Blap) Cw 0(0,0) - wO(O,O)\ wP(0,0)

Proposition 5.13. Let f be smooth at v = (71,72) € Vy(K) and P € Py, %(7) # 0
such that vp(a —v1) > 0, vp( — 72) > 0. Then
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(1) there exists u € P, such that vp(u) = 1 and —== € O for each r € K]a, 8],
(2) P=P,.

Example 5.14.

L is an AFF over K given by the equality f(«, ) = 0 for transcendental «a, 3.

Lemma 5.15. Let P € P 5 and P = PN K|a, ).
(1) If Ko, 5] € Op, then P is a maximal ideal of K|a, 3], dimg(K|a, 8]/ P) < oo,
vp(a) > 0, and vp(B) > 0.
(2) If Ko, f] € Op, then P = 0 and either vp(a) < 0 or vp(8) < 0.
(3) If Ko, 8] € Op and f is WEP, then vp(a) < 0, vp(5) < 0 and 3vp(a) = 2vp(f).

Proposition 5.16. Let P € Py /k, degP = 1, f be smooth at all points v € V;(K).
Then the following conditions are equivalent:
(1) K[OQB] - OP7
(2) there exists unique (71, v2) € V¢(K) for which vp(a—v1) > 0 and vp(8—"2) > 0,
(3) there exists unique v € V¢(K) for which P = P,.

Corollary 5.17. If f is a WEP smooth at all points v € V;(K) and P € Pk is a place
of degree 1, then either there exists v € V;(K) for which P = P, or o™, € P.

Lemma 5.18. Let n > 1 and P, ..., P, be pairwise distinct places. If v; :== vp, for all i,
ai,...a, € L and z € Z, then

(1) there exists s € L* such that v,(s) > 0 and v;(s) <0 foralli=2,...,n,

(2) there exists ¢ € L such that v;(t —a;) > zforalli=1,...,n.

Theorem 5.19 (Weak Approximation Theorem). Let n > 1 and Py,..., P, be pairwise
distinct places. If ay,...a, € L and 2q,...,2, € Z, then there exists s € L such that
vp(s—a;) =z foralli=1,... n.

T&N. If W is a subspace of a K-space V', we say that B is a linearly independent set
(a basis) of V modulo W if {b+ w | b € B} forms a linearly independent set (a basis) of
the factor V/W.

Corollary 5.20. (1) Pk is infinite,

(2)If n > 1,e>0and P, P,..., P, are pairwise distinct places, then there exists a
basis B of the K-algebra Op modulo P such that B C [\,5; P (i.e. vp;(b) > 0 for each
jand b € B).

Proposition 5.21. Let n > 1 and Py, ..., P, be pairwise distinct places and v; := vp,
for all i. If s € ([, P; (i.e. vp(s) > 1 for every i), then [L: K(s)] > > 7", vi(s)deg P,
Corollary 5.22. If s € L*, then the set {P € Py x | vp(s) # 0} is finite.

Corollary 5.23. If f is a Weierstrass equaition polynomial and L is given by f(«, 5) = 0,
then there exists unique P, € Py /k such that vp_(a) < 0. Furthermore, deg Py, = 1,

vp (o) = =2 and vp_(B) = —3.
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Example 5.24. Let f =3 +y— (23 +1) =¢y* +y+2°+1 € Fylz,y] and o := x + (f),
B :=y+(f) € Klz,y]/(f). Then f is a Weierstrass equaition polynomial and L :=
Fy(a, B) is an AFF over Fy given by f(«, 5) = 0.
Let P € Pr/k of degree 1. Then P € {P), P1,1), P}, since V;(F2) = {(1,0), (1,1)}.
By 5.20(1) P/ is infinite. hence other places are of degree greater than 1, for example
for each ireducible m € Fy[z]| of degree greater than 1, there exists P, € Pz, K sch that
m(a) € P, thus deg P,,, > deg(m) > 1.

6. DIVISORS

Let L be an AFF over K and K be its field of constants.

Definition. Let Div(L/K) = {ZPE]P,L/K a,P | a, € Z} denote the free abelian group
with the free basis Pk (hence only finitely many a,’s are non-zero) and operations

Y aP+ Y bP= > (a%b)P, 0= > 0P

A formal sum ZPEPL/K a, P is called a divisor (of the AFF). Degree of a divisor is defined
by degK(ZPeIP’L/K a,P) = ZPePL/K ap degy (P).
Example 6.1. ZPE]P,L/K vp(r) P is a divisor by 5.22 for each r € L*.

T&N. A divisor ZPGPL/K vy(r)P for each » € L* is called principal divisor and it is
denored by (r), Princ(L/K) := {(r) | r € L*}.

T&N. Let A = EPGPL/K a,P, B = EPGPL/K b,P € Div(L/K). Then let us denote:

max (A, B) := Z max(a,, b,) P, min(A, B) := Z min(a,, b,) P,

PEPL/K PE]PL/K

A, :=max(A4,0), A := —min(A,0) = (—A),, and A is positive if A = A,.

Define relations < (> is the oposite relation) and ~ on Div(L/K):

A< B (B>A)if ay, <, for every P € Py /k,

A~ Bif A— B € Princ(L/K).

LA):={reL"|(r)+A>0}uU{0}.
T&N. Cl(L/K) := Div(L/K)/Princ(L/K) is the class group of the AFF.

If A € Div(L/K), then £(A) is said to be the Riemann-Roch space of the divisor A
and [(A) = dimg/x A = dimg L(A).

If K = K, then L is a full constant AFF.

Lemma 6.2. If A, B € Div(L/K) such that A < B, then £(A) is a subspace of £(B)

and dimg (L(B)/L()) < degx (B — A).

Proposition 6.3. For K = K (i.e. L is a full constant AFF), and A, B € Div(L/K):
(D1) if A >0, then 1 <[(A) < deg A+ 1,

(D2) if A <0, then I[(A) =0,
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(D3) I(A) < I(A4) < o0,
(D4) it A < B, then deg A — [(A) < deg B — I(B).

Lemma 6.4. If s € L\ K (i.e. s is transcendental over K), then there exists B €
Div(L/K) such that B > 0 and for each k > 0:

(1) (k+ DL : K(s)] <I(k - (s)- + B),
(2) (k'+1)[ (S)} < k- deg((s)) = +deg B +1,
(3) KL ()] l(k - (s)-) < deg B —[L: K(s)].

Theorem 6.5. If K = K and s € L\ K (ie. L is a full constant AFF and s is
transcendental over K'), then deg((s)-) = deg((s)+) = [L : K(s)] and deg((s)) = 0.

Corollary 6.6. If A ~ B, then (1) deg A = deg B and (2) dimy,x A = dimy/x B.

Example 6.7. Let L be an AFF over Fy given by f(a,3) =0for f =9*+y—(2°+1) €
Fy[z, y] as in 5.24. We will compute principal divisors (o + 1) adn (a + 1).

() By 6.5 deg((a+1)4) = Y- pprcp ve(at1)deg P = [K : Fa(a-1)] = [K : Fo(a)] =
2. Since a + 1 € P ) N Py,1) we can see that deg Py ) = deg Fy,1) = 1. Furthermore
vp (a+1) =vp_(a) = =2, hence ]P’L/K(l) = {Pu,0), P1,1), P} is the set of all places of
degree 1 and

(Oz—i—l) = 1-P(170)—|—1-P(171)—2-POO

(b) Again by 6.5 deg((a)+) = > p.aepvp(a)deg P = [K : Fy(a)] = 2 and « is not an
element of P € IP’L/K(D, thus there exists a unique P, such that a € P, and deg P, = 2
which means that

() =1-P,—2- Py

Proposition 6.8. For K = K and A, B € Div(L/K):
(D5) (B — A) > 1 if and only if there exists A" € Div(L/K) such that A ~ A" < B,
(D6) if {(B — A) > 1, then deg A — I(A) < deg B — I(B).

(D7) 1(A) > 1 if and only if there exists s € L® such that A + (s) > 0,

(D8) if deg A < 0, then I(A) =0,

(D9) L((s) = Ks~* = {ks™1heK).

Lemma 6.9. Let K = K and A € Div(L/K) such that deg A = 0. Then

(1) 1(A) € {0, 1},
(2) 1(A) =1 if and only if A € Princ(L/K).

Theorem 6.10 (Riemann). If K = K, then there exists nonnegative integer v such that
deg(A) — I(A) < ~ for each A € Div(L/K).

Definition. The minimal possible  from the Riemann theorem for L over K (i.e. min-
imal v for which deg(A) — [(A) <  for each A € Div(L/K)) is called the genus of the
AFF L over K.

The genus of the AFF will be denoted by g in the sequel.
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Lemma 6.11. There exists an integer 7 such that for each A € Div(L/K) with deg(A4) >
7 it holds that deg(A) =1(A) +g — 1.

T&N. Let P := Pk and consider the Cartesion power L? as a L-algebtra with opera-
tions defined in coordinates where [ — [ * 1 € LF identifies elements of L with constants
of L¥. f € L¥ is called adéle if the set {P € P | f(P) # 0} is finite and A, x denotes the
set of all adeles.

Let A = ZPG]P’L/K ap,P € Div(L/K). Then A x(A) = {f € L | vp(f(P)) +ap >
OVP € P} and i(A) := g — 1 — deg(A) — [(A) > 0 is said to be the index of speciality of
A. Ais called special if i(A) > 0 and A is called /nonspecial if i(A) = 0.

Lemma 6.12. Let K = K, A = Y pp 0P, B = Y5y, 0P € Div(L/K) and
s € L*. Then
(1) if A S B, then .AL/K(A) Q .AL/K(B> and dlmK(.AL/K<B)/AL/K(A)) = deg(B —
A),
(2) if A < B, then dimg((AL/x(B) + L)/(Ar/x(A) + L)) =i(A) —i(B),
(3) AL/K(A)QAL/K(B) = AL/K(mln(A, B)), AL/K(A)+AL/K(B) = AL/K(maX(A, B))7
(4) dimg(Az/x/(Ar/x)/(Ar/r(A) + L) = i(A),
(5) »AL/K = AL/K(A) + L if and only if Z(A) =,
(6) sAL/k(A) = Ar/k(A = (s))
Lemma 6.13. Let S ; Pr/k,, P1,..., P, €8 be pairwise distinct places, ay,...a, € L

and z € Z. Then there exists t € L such that vp(t —a;) > z for all i = 1,...,n and
vp(t) > 0forall Pe S\{P ..., P}

Theorem 6.14 (Strong Approximation Theorem). Let S & Py, , P1,..., P, € S be
pairwise distinct places. If aq,...a, € L and z,..., 2, € Z, then there exists s € L such
that vp (s —a;) = z; foralli=1,...,nand vp(s) > 0 for all P € S\ {P,..., P,}.

7. WEIL DIFFERNTIALS

Let L be an AFF over K of genus g and K be its field of constants.

T&N. Let A € Div(L/K). Then
Qrk(A) == (ALr(A) + L)g = {w € A" | w(AL/r(A) + L) =0, }

QL/K = U QL/K(B) = {w c AL/K* | W(L> = O, dB € DlV(L/K) : W(AL/K(B)) = 0}

BeDiv(L/K)
Elements of Q/x are called Weil differntials (of the AFF).

Lemma 7.1. Let w € Q;/x\ {0} and K = K. Then there exists a unique W € Div(L/K)
such that w(Ar/x(WW)) = 0 and for each A € Div(L/K) satisfies that A < W whenever

W(AL/K(A))

T&N. The divisor W from 7.1 uniquely determained by a a Weil differntial w is called

the canonical divisor of w and it is denoted (w).
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Lemma 7.2. Let w,& € Qz/x \ {0}, A € Div(L/K), and K = K. Define ¥,, := s - wl for
every s € L. Then
(1) if s € L*, then (sw) = (s) + (w),
(2) U, is an L- and so K-linear embedding, and ¥, (L((w
(3) there exists B € Div(L/K) such that ¥, (L((w) — B))

Theorem 7.3. Let K = K. Then

(1) dlmL(QL/K) = ].,
(2) if we Qi \ {0} and A € Div(L/K), then ¥, 4 : L((w) — A) = Qp/x(A) given
by W, a(s) = sw is a K-isomoprhism.

A)

A)) € Qi
) — B))#O

) =
MWy (L((w

Corollary 7.4. Let K = K. The canonical divisors form exactly one coset modulo
Princ(L/K) (i.e. for W, a canonical divisor, A ~ W iff A is canonical).

Theorem 7.5 (Riemann-Roch). If K = K and W a canonical divisor, then
[(A) =degA+I(W —-A)+1—g
for every A € Div(L/K).
Corollary 7.6. Let K = K and A, W € Div(L/K), then:
(1) if W is canonical, then (W) = g, degW =2g — 2, i(W) =1,
(2) (Main consequence of the Riemann-Roch Theorem) if deg A > 2g — 1, then
[(A) =degA+1—g.
Lemma 7.7. Let K = K and A € Div(L/K), then:
(1) if deg A =29 — 2 and I(A) > g, then A is canonical,
(2) if g = 1, then A is canonical if and only if A is principal.
Proposition 7.8. Let K = K and A, B € Div(L/K) and g = 0. Then:
(1) A is principal if and only if deg A = 0,

(2) A~ W if and only if deg A = deg B,
(3) A is canonical if and only if and only if deg A = —

T&N. P = {P € Py | degP = 1}.

Lemma 7.9. Let P € IP’(LI/)K #0,heZ,h>0,se L. Then

(1) K = K,

(2) s € L(iP)\ L((: — 1)P) if and only if (s)_ =iP, where i > 1,

(3) if there exists k > 0 such that [(iP) > i — h + 1 for each ¢ > k, then g < h,
(4) if for each @ > h + 1 there exists s; € L such that (s)_ =P, then g < h.

Example 7.10. x be a variable. Then K(x) is an AFF over K. By 2.14
Pr(w)y/k = {F, | p € Klx] is irreducible} U { P, }

where P, is the maximal ideal of the localization K[z]()) with vp, = 1), and Py is given
by the dlcsrete valuation veo(§) = deg(b) — deg(a).
Then v,(z") > 0 for every i > 0 and nuy(z') = —i for every i > 0, hence (z°)_ = iPx.

Thus K(z) is of genus 0 by 7.9(4).
11



8. THE ASSOCIATIVE LAW

Let L be an AFF over K of genus g.

Proposition 8.1. Let IP’(Ll/)K # (). Then g = 0 if and only if there exists s € L such that
L=K(s)
Definition. An Aff L is called an eliptic function field (EFF), if it is of genus 1 and
(1)
Prk 7 0.
Lemma 8.2. Let L be an EFF and P € IP’(LI/)K,
(1) L is full constant and £L(1P) = K,
(2) L(P) S L(2P) G L(3P),
(3) For every u € L(2P) \ L(1P) and every v € L(3P) \ L(2P) there exists a WEP
w € K|z,y] and XA € K* such that L is given by w(Au, Av) = 0.

then

Proposition 8.3. Let w be a WEP w € K{z,y| and L be given by w(«, ) = 0.

(1) There exists unigue P = Py, € Pk such that vp(a) < 0 or vp(5) <0,

(2) Kla, B8] € Og for all Q € Pr i \ {Px},

(3) P € P, ()= = 2Py, (B)- = 3Pw, P N K[V,] = P N Ko, f] = 0, and
OPOO ﬂK[O&,ﬁ] = K,

(4) if w is smooth at V,(K), then PY) = {Px} U{P, | v € Vy,(K)},

(5) L is either an EFF (and g = 1) or there is s € L such that L = K(s) (and g = 0),

(6) if L = K(s), then there exists polynomials u,v € K|x] for which o = u(s),
g =wv(s), and degu = 2, degv = 3.

In the sequel w = y? + ayzy + azy — (2° + ax? + agx + ag) be a WEP.

Theorem 8.4. Let L be given by w(«, ) = 0. Then L is an EFF if and only if w is
smooth at V,(K).

Example 8.5. (1) Let f = y> +y + 2® + 1 € Fylx,y] be a WEP. Since it is smooth at
Vi (IFy), it is of genus 1 by 8.4 and Fy(s) & Fo(Vy) for each s € Fo(Vy)

(2) Let f = y*+ a3+ 2+ 1 € Fylx,y] be a WEP. Since it is singular Fo(V,,), it is of genus
1 by 8.4 and there exists s € Fy(V) such that Fa(s) = Fo(Vy).

T&N. Pic’(L/K) := Ker(deg)/Princ(L/K) is called the Picard group, [A] := A +
Princ(L/K) denotes the cosets of Pic’(L/K).

Lemma 8.6. Let L be an EFF over K, P, P, Q € P})., and A € Div(L/K).
(1) if P, — P, € Princ(L/K), then P, = Py,
(2) if deg A = 1, then there exist a unique place @ € IP’(Ll)K such that P — A €

/
Princ(L/K),
12



(3) the mapping ¥, : P

LK Pic’(L/K) defined by W (P) := [P — Q)] is a bijection.

T&N. L be an EFF over K, then we can define for each ) € ]P’(Ll/)K a binary operation

@ by the rule Py & Py := U, (VU (P1) 4+ Ug(Py)) for the mapping ¥, from the previous
lemma.

T&N. L be an EFF over K, then we can define for each ) € IP’(Ll/)K a binary operation

@ by the rule P, @& P := \I/él(\IJQ(Pl) + Ug(P,)) for the mapping Vg from the previous
lemma.

T&N. Let [ = cx +dy + e € K[z,y] for ¢,d,e € K where (¢,d) # (0,0). Then [ =
I+ (w) € K[V,] = Kla, ] for a = 2+ (w), f = y + (w) is called a line represented by .
We say that [ passes through v if v € V..

~

Lemma 8.7. Let w be smooth at V,,(K), v = (71,72) € Vuw(K), | € K|z, y] represents a
line I =1 + (w) € K[V,)].
(1) if [ = 2 — v, then there exists unique § = (71,8) € Vi, (K) such that (1) =
P, + Ps — 2P, and 0y = —a1y1 — az — 72,
(2) if [ = y — Az — p and [ passes through ~, then (I)_ = 3P, and
(a) either there exists P € Py, of degree 2 such that (I)y = P, + P [ ¢ (t,(w))
and V, (K) 1V = {1},
(b) or there exist points 6 = (01, d2), n(n1,n2) € Vi (K) such that (1) = P,+DPs+
Pyl ¢ (ty(w)) and Vi, (K)NV; = {7}, VoV = {7,6,n}, m = 11— 61 —az+A*+a: A
and [ € (t,(w)) iff v € {6,1}.

Definition. Let w be smooth and L be an EFF given by w. Consider the group structure
on ]P’L/K(l) determined by Wp_. Put E(K) = V,(K)U {oco} and define the operations &,
ominus on E(K):

’7@5:n<:>P'y@P5:Pna @’}/:5¢>P,Y@P5:poo

Theorem 8.8. Let w be smooth at V,,(K). Then (E(K),®,©,00) is a commutative
group. Let v = y1,72, 6 = 61,02, 1 = m1, 12 € Viy(K), then

(1) &y =m,—7 — a1 — as.
(2) If v # 60 and y®d = 7, then n = (=1 — 0+ 2 +a1 A\ —az, A(y1—11) —Y2—aym —as)
where
(a) A= £=2if 1 £ 4.
_ 3v2+2a2v1 —a1y2+aa
(b) A= 272—ia1'y1+a3

if Y1 = 51.

9. PROJECTIVE CURVES

Let n > 1, K be a field and K the algebraic closure of K.
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T&N. Denote a = (ag : ay : -+ - : a,) = Span((ag, ay, . ..,a,)) C K" a projective point
of the projective space

PY(K)={(ap:a1: - :ay) | (ao,as,...,a,) € K"\ {0}}

of the homogeneous coordinates (ag : ay : -+ - : a,) and put P* := P"(K).
K[Xy, Xy,...,X,] denotes the set of all homogeneous polynomials and put

H

K(Xo, X1, Xa) i= {5 | H.G € K[Xo, X1, X,],3d > 0 deg H = deg G} U {0}
Let f € K[zy,...,2,)\ {0} and a = (ay,...,a,) € A". We define

- X4 X

S, Ganll L —

f 0 f(X07 Y XO
Lemma 9.1. Let f € K[z1,...,2,]\ {0} and a € V. Then f is smooth at a if and only
if f is smooth at a.

Proposition 9.2. Let H, F' € K[Xy, X;, X5], F be irreducible and j € {0, 1, 2}.
(1) Then either H € (F), hence H(a) =0 for all a € Ve, or H ¢ (F) and Vp N Vy is
finite.
(2) If z; ¢ (F), then |{(ap:a1:---:a,) € Vp | a; =0} is finite.
Corollary 9.3. Let F,G € K[Xq, X1, Xs|, V@ = Vg, a € Vp. Then

(1) there exists A € K* such that ,
(2) F is smooth at a iff G is smooth at a.

),0:=0€ K[X0,Xy,...,X,], a:=1:ay:-:a,) €P"

Proposition 9.4. Let f € K[xy, 2] be irreducible and F = f. Define the mappings
e;: K(Vy) = K(Vr) and € : K(z) — K(P') by the rules

deg(h) A deg(h) ~
) (g+(f)):Xo o) (1) =X Mg
Wt ()~ X3k 1 (F) h) o xdeE),

Then €y and € are K-isomorphisms of fields.

T&N. Let A, B,G € K[X,, X;], B # 0. Define

ve(A) :=max{e > 0| G°/A}, vg <é> =vg(A) —ve(B), ve(0) = oo.

B

Lemma 9.5. Let v be a normalized discrete valuation of the AFF K (P') over K.
(1) There exists G € K[X,, X1] irreducible such that v = vg,
(2) degree of the place {U € K(P') | vg(U) > 0} is equal to deg G,
(3) the map (ap : a1) = {U € K(P') | Va,xo—aox, (U) > 0} is a bijection P' — P,

Theorem 9.6. Let F' € K[X,, X1, X5], be irreducible and P € Px(v,y/k), a € Vp. Then

(1) there exists b € Vp such that P, C P,
(2) if deg P =1 and P, C P, then a € Vp(K),
(3) if F is smooth at a € Vp(K), then P, = P and deg P, = 1.
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