
CURVES AND FUNCTION FIELDS

1. Algebras over a field

T&N. K-algebra

2. Valuation rings

K is a �eld. R ≤ K means that R is a subring of K.

T&N. The notation (R,M) will mean that R is a local ring, i.e. there exists a unique
maximal ideal M .

Lemma 2.1. Let (R,M) be a local ring and A a �ntely generated ideal such that AM =
A. Then A = 0.

Proposition 2.2. Let (R,M) be a local domain with M = (t) for t 6= 0 and put
A :=

⋂
iM

i =
⋂
i(t

i). Then

(1) for each s ∈ R \ A there exist unique i ≥ 0 and u ∈ R∗ such that s = tiu,
(2) if A is �nitelly generated, then A = 0.

Corollary 2.3. If (R,M) is a noetherian local domain with the fraction �eld K and
M = (t) for some t ∈M , then

(1) for each s ∈ R \ {0} there exist unique i ≥ 0 and u ∈ R∗ such that s = tiu,
(2) for each s ∈ K \ {0} there exist unique i ∈ Z and u ∈ R∗ such that s = tiu,

Lemma 2.4. Let R ≤ K, α ∈ K \ R such that α−1 /∈ R. If J is a proper ideal of R,
then either J [α] ( R[α] or J [α−1] ( R[α−1].

T&N. If R ≤ K, R is called a valuation ring (VR) of K if for every α ∈ K \ {0} either
α ∈ R or α−1 ∈ R. R is a VR if it is VR in its fraction �eld. R is uniserial, if for every
pair of ideals I, J either I ⊆ J or J ⊆ I.

Proposition 2.5. If R ≤ K and I is an ideal such that 0 6= I 6= R, then there exists
a valuation ring S of the �eld K with the maximal ideal M for which R ⊆ S ( K and
I ⊆M .

Lemma 2.6. Let R and S be noetherian VR's of K with maximal ideals M = R \ R∗,
N = S \ S∗, then

(1) M and N are principal,
(2) R and S are maximal proper subrings of K,
(3) M ⊆ N i� M = N i� R = S i� R ⊆ S.
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Lemma 2.7. Let a, b ∈ K[x, y] be coprime, then

(1) (a, b) ∩K[x] 6= 0,
(2) if P is a prime ifdeal containing (a, b), then P is a maximal ideal of K[x, y].

Corollary 2.8. Prime ideals of K[x, y] are exactly:
(a) {0}, (b) (p) for p ∈ K[x, y] irreducible, (c) maximal ideals.

T&N. A map ν : K → Z ∪ {∞} is a d iscrete valuation of K if for each a, b ∈ K:

(D1) ν(ab) = ν(a) + ν(b),
(D2) ν(a+ b) ≥ min(ν(a), ν(b)),
(D3) ν(a) =∞ i� a = 0.

ν is the trivial discrete valuation if ν(K∗) = 0. We will suppose that all discrete valuations
are nontrivial.
Let R be a noetherian domain and p ∈ R a prime element. For each a, b ∈ R \ {0}

de�ne νp(a) = max i | pi/a and νp(
a
b
) = νp(a)− νp(b).

Example 2.9. Let R ≤ K, R be noetherian, K the fraction �eld of R and p a prime.
Then νp is a correctly de�ned discrete valuation of K.

De�nition. Let R ≤ K. R is said to be a d iscrete valuation ring (DVR), if there is a
discrete valuation ν such that R = {a ∈ K | ν(a) ≥ 0}.

Proposition 2.10. Let R be a domain. with M = (t) for t 6= 0 and put A :=
⋂
iM

i =⋂
i(t

i). Then the following is equivalent:

(1) R is a discrete valuation ring,
(2) R is a noetherian valuation ring,
(3) R is a local principal ideal domain,
(4) R is a a noetherian local ring with a principal maximal ideal.

T&N. If R is a DVR with the maximal ideal (t) then t is called a uniformizing element
and νt is called a normalized discrete valuation.

Example 2.11. For R noetherian and p a prime element, the localiyation R(p) is a DVR.

Lemma 2.12. Let R ≤ K and R be a DVR with a uniformizing element t, then for each
discrete valuation µ with R = {a ∈ K | µ(a) ≥ 0} there exists unique k ∈ N for which
µ = kνt.

Lemma 2.13. If ν is a discrete valuation and ν(a) 6= ν(b), then ν(a+b) = min(ν(a), ν(b)).

T&N. Let L be an AFF over K. We say that R is a valuation ring of the AFF L over
K, if R is a valuation ring and K ⊆ R. ν is a (normalized) discrete valuation of the AFF
L over K, if ν is a (normalized) discrete valuation and ν(K∗) = 0.
De�ne ν∞(a

b
) = deg(a)− deg(b) for a, b ∈ K[x] on the AFF K(x).

Proposition 2.14. Normalized discrete valuation (NDV) of the AFF K(x) over K is
either ν∞ or νp for prime p ∈ K[x].

Theorem 2.15. Let L be an AFF over K, P ∈ PL/K and K̃ the �eld of constants of L.
Then
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(1) K̃ ⊆ OP ,
(2) OP is a uniquely de�ned discrete valuation ring,
(3) degP is �nite.

Let L be an AFF over K and K̃ be its �eld of constants.

T&N. For P ∈ PL/K denote by νP = νt the NDV determined by OP where P = (t).

Let a =
∑
ai1...inx

i1
1 . . . x

in
n ∈ K[x?1, . . . , xn]. Then multa = min(

∑n
j=1 ij | ai1...in 6= 0).

Lemma 2.16. If z ∈ L \ K̃, then there exist P,Q ∈ PL/K for which νP (z) > 0 and
νQ(z) < 0.

Lemma 2.17. Let z ∈ L \ K̃, a ∈ K[x], P ∈ PL/K . Then
(1) νP (z) ≥ 0 implies νP (a(z)) ≥ 0,
(2) νP (z) > 0 implies νP (a(z)) = mult(a) · νP (z),
(3) νP (z) < 0 implies νP (a(z)) = deg(a) · νP (z)

3. Weierstrass equation polynomials

K is a �eld.

T&N.

Lemma 3.1.

Lemma 3.2.

Proposition 3.3. Let w ∈ K[x, y] be a WEP and σ ∈ Aff2(K). Then the following is
equivalent:

(1) there exists λ ∈ K∗ such that λσ∗(w) is a WEP,
(2) there exists a WEP w̃ such that (σ∗(w)) = (w̃),

(3) there exists c ∈ K∗, d ∈ K and b ∈ A2(K) such that A =

(
c2 0
d c3

)
and σ = τbθA.

Corollary 3.4.

Corollary 3.5.

Example 3.6.

Example 3.7.

T&N.

Lemma 3.8.

Lemma 3.9.

Lemma 3.10.
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Corollary 3.11.

Proposition 3.12. Let charK 6= 2 and w = y2 − f(x) be a short WEP.

(1) w has at most 1 singularity,
(2) if K is perfect, then a singularity is K-rational,
(3) w is smooth if and only if f is separable.

Example 3.13.

4. Coordinate rings

K is a �eld and K its algebraic closure. X := {x1, . . . , xn}.

T&N. Let U ⊆ An. Then

IU = {a ∈ K[X] | a(α) = 0∀α ∈ U}, IU = {a ∈ K[X] | a(α) = 0∀α ∈ U}
and Iα = I{α}, Iα = I{α}.

Lemma 4.1.

Proposition 4.2. If P is a prime ideal of K[X] such that P ∩K[xi] 6= 0 for all i = 1, . . . n,
then there exists α ∈ An for which P = Iα

Proposition 4.3. If P is a prime ideal of K[x, y], then either (a) P = {0}, or (b) P = (p)
for p ∈ K[x, y] irreducible, or (c) P is maximal and there exists α ∈ An for which P = Iα.

Corollary 4.4. Let P be a nonzero prime ideal of K[x, y].

(1) P is maximal i� there exists α ∈ An for which P = Iα i� VP is �nite.
(2) there exists p ∈ K[x, y] irreducible such that P = (p) i� Va ( A2 is in�nite.
(3) If p, q ∈ K[x, y] are irreducible such that q /∈ (p), then V{p,q} = Vp ∩ Vq is �nite.

Example 4.5.

Lemma 4.6.

Proposition 4.7. Let w ∈ K[x, y] be irreducible, C = Vw, α = x + (w), β = y + (w) ∈
K[C] ⊂ K(C) = K(α, β). Then

(1) α is transcendental i� degy w > 0,
(2) if α is transcendental, then [K(C) : K] = degy w,
(3) K(C) is an AFF over K.

Corollary 4.8. Let L = K(α, β). Then L is an AFF if and only if there exists an
irreducible a�ne curve C ⊂ A2 such that L ∼=K K(C).

Lemma 4.9.

Lemma 4.10.

Corollary 4.11.

Example 4.12.

T&N.
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5. Places

K is a �eld and w = yg(x, y) + h(x) + y ∈ K[x, y] where
h ∈ K[x], g ∈ K[x, y], m := mult(h) ≥ 2, mult(g) ≥ 1.

T&N. Let a =
∑

i,j≥0 aijx
iyj, then de�ne:

µ(a) := mult(a(x, ym)),
s(a) := {(i, j)| i, j ≥ 0, i+ jm = µ(a)},
S(a) :=

∑
(i,j)∈s(a) aijx

iyj.

T&N. Denote by Λ the K-endomorphims of K[x, y] de�ned by the rule

Λ(u(x, y)) := u(x,−h(x)− yg(x, y))

for every u ∈ K[x, y].

Lemma 5.1. For every i, j ≥ 0 µ(Λ(xiyj)) = i + jm and there exists λ ∈ K \ {0} such
that S(Λ(xiyj)) = λxi+jm.

Example 5.2.

Lemma 5.3. There exists P ∈ PL/K such that νP (α) > 0 νP (β) > 0. Moreover, then
νP (β) = mνP (α).

Lemma 5.4. Let u ∈ K[α, β] \ {0} and k := µ(u). Then there exist λ ∈ K∗ and
b ∈ K[x, y] such that µ(b) > k and u = λxk + b(α, β).

Proposition 5.5. There exists a unique P ∈ PL/K such that νP (α) > 0 νP (β) > 0. For
such νP (α) = 1 and νP (β) = m and νP (u ·v−1) = µ(u)−µ(v) for each u, v ∈ K[α, β]\{0}.

L is an algebraic function �eld over K given by the equality w(α, β) = 0 for
w = yg(x, y) + h(x) + y where h ∈ K[x], g ∈ K[x, y], mult(h) ≥ 2, mult(g) ≥ 1.

Example 5.6.

Observation. For each σ ∈ Aff2(K) there exists a unique σ ∈ Aff2(L) such that
σ(γ) = σ(γ) for each γ ∈ A2(K)

T&N. σ denotes the extension of σ from the last observation.

L is an algebraic function �eld over K given by the (general) equality f(α, β) = 0.

Lemma 5.7. Let γ = (γ1, γ2) ∈ A2(K), A ∈ GL2(K), σ := θAτ−γ, (u, t) := σ(α, β),
wσ := (σ−1)∗(f). Then

(1) L is an algebraic function �eld over K given by wσ(u, t) = 0.
(2) If f is smooth at γ ∈ Vf (K), then there exists A such that either wσ = y or

wσ = yg(x, y) + h(x) + y where h ∈ K[x] \ {0}, g ∈ K[x, y], mult(h) ≥ 2,
mult(g) ≥ 1.
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(3) Let tγ(f) = a1(x−γ1)+a2(y−γ2) for γ ∈ Vf (K), then A is a matrix form (2) (i.e.
σ := θAτ−γ satis�es that wσ = yg(x, y) + h(x) + y for h ∈ K[x] \ {0}, g ∈ K[x, y],
mult(h) ≥ 2, mult(g) ≥ 1) if and only if there is (b1, b2) ∈ K2 \Span((a1, a2)) such

that A =

(
b1, b2
a1, a2

)
.

Theorem 5.8. Let f be smooth at γ = (γ1, γ2) ∈ Vf (K).

(1) There exists a unique P ∈ PL/K such that νP (α− γ1) > 0 νP (β − γ2) > 0.
(2) If l = l0 + l1x+ l2y ∈ K[x, y] where l0, l1, l2 ∈ K then it holds for P from (1):

νP (l(α, β))

 = 0 if l(γ) 6= 0
= 1 if l(γ) = 0 and l /∈ (tγ(f))
≥ 2 if l(γ) = 0 and l ∈ (tγ(f))

L is an algebraic function �eld over K given by the (general) equality f(α, β) = 0
with deg f ≥ 2, which is simultaniously given by the equality wσ(u, v) = 0 where
wσ = yg(x, y) + h(x) + y for h ∈ K[x] \ 0, g ∈ K[x, y], mult(h) ≥ 2, mult(g) ≥ 1.

T&N. Let p ∈ K[x] and γ ∈ K. The multiplicity of (the root) γ of (the polynomial) p
is a non-negative integer k satisfying (x− γ)k|p and (x− γ)k+1 6 |p.

Proposition 5.9. Let γ = (γ1, γ2) ∈ Vf (K), ∂f
∂y

(γ) 6= 0, λ, µ ∈ K such that γ2 = λγ1 +µ.

Then there exists a unique P ∈ PL/K for which {α−γ1, β−γ2} ⊂ P , and νP (β−λα+µ)

is equal to the multiplicity of the root γ of the polynomial f̂(x) = f(x, λx+ µ).

Example 5.10.

T&N. Let γ = (γ1, γ2) ∈ Vf (K) ⊂ A2(K). Then (f) ⊆ Iγ = (x− γ1, y − γ2). Denote by

Rγ := K[x, y](Iγ) = {a
b
| a, b ∈ K[x, y] : b(γ) 6= 0}

the localization of K[x, y] in the maximal ideal Iγ, (Iγ) = {a
b
∈ Rγ | a ∈ Iγ} denotes the

(unique) maximal ideal of Rγ and ωγ : Rγ → L is de�ned by the rule ωγ(
a
b
) = a(α,β)

b(α,β)
.

Denote

fOγ := {ρ ∈ L | ∃r ∈ Rγ : ωγ(r) = ρ}, fPγ := {ρ ∈ L | ∃r ∈ (Iγ) : ωγ(r) = ρ}.
If f is �xed we will write Oγ instead fOγ and Pγ instead fPγ.
Lemma 5.11. If f is singuar at γ ∈ Vf (K), then Oγ is not a valuation ring.

Lemma 5.12. Let L be an algebraic function �eld overK given by the equality wσ(u, v) =
0 where wσ = yg(x, y) + h(x) + y for h ∈ K[x], g ∈ K[x, y], mult(h) ≥ 2, mult(g) ≥ 1.
Suppose that P ∈ PL/K such that u, v ∈ P , νP (u) = 1. If z ∈ K[u, v] \ {0}, then
there exists a, b ∈ K[x, y] with a(0) 6= 0, b(0) 6= 0 (i.e. mult(a) = mult(b) = 0) and

z
uνP (z) = a(u,v)

b(u,v)
∈w O∗(0,0) = wO(0,0) \ wP(0,0)

Proposition 5.13. Let f be smooth at γ = (γ1, γ2) ∈ Vf (K) and P ∈ PL/K , ∂f
∂y

(γ) 6= 0

such that νP (α− γ1) > 0, νP (β − γ2) > 0. Then
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(1) there exists u ∈ Pγ such that νP (u) = 1 and z
uνP (z) ∈ O∗γ for each r ∈ K[α, β].

(2) P = Pγ.

Example 5.14.

L is an AFF over K given by the equality f(α, β) = 0 for transcendental α, β.

Lemma 5.15. Let P ∈ PL/K and P̃ = P ∩K[α, β].

(1) If K[α, β] ⊆ OP , then P̃ is a maximal ideal of K[α, β], dimK(K[α, β]/P̃ ) < ∞,
νP (α) ≥ 0, and νP (β) ≥ 0.

(2) If K[α, β] 6⊆ OP , then P̃ = 0 and either νP (α) < 0 or νP (β) < 0.
(3) If K[α, β] 6⊆ OP and f is WEP, then νP (α) < 0, νP (β) < 0 and 3νP (α) = 2νP (β).

Proposition 5.16. Let P ∈ PL/K , degP = 1, f be smooth at all points γ ∈ Vf (K).
Then the following conditions are equivalent:

(1) K[α, β] ⊆ OP ,
(2) there exists unique (γ1, γ2) ∈ Vf (K) for which νP (α−γ1) > 0 and νP (β−γ2) > 0,
(3) there exists unique γ ∈ Vf (K) for which P = Pγ.

Corollary 5.17. If f is a WEP smooth at all points γ ∈ Vf (K) and P ∈ PL/K is a place
of degree 1, then either there exists γ ∈ Vf (K) for which P = Pγ or α

−1, β−1 ∈ P .

Lemma 5.18. Let n ≥ 1 and P1, . . . , Pn be pairwise distinct places. If νi := νPi for all i,
a1, . . . an ∈ L and z ∈ Z, then

(1) there exists s ∈ L∗ such that ν1(s) > 0 and νi(s) < 0 for all i = 2, . . . , n,
(2) there exists t ∈ L such that νi(t− ai) > z for all i = 1, . . . , n.

Theorem 5.19 (Weak Approximation Theorem). Let n ≥ 1 and P1, . . . , Pn be pairwise
distinct places. If a1, . . . an ∈ L and z1, . . . , zn ∈ Z, then there exists s ∈ L such that
νPi(s− ai) = zi for all i = 1, . . . , n.

T&N. If W is a subspace of a K-space V , we say that B is a l inearly independent set
(a basis) of V modulo W if {b+ w | b ∈ B} forms a linearly independent set (a basis) of
the factor V/W .

Corollary 5.20. (1) PL/K is in�nite,
(2)If n ≥ 1, e ≥ 0 and P, P1, . . . , Pn are pairwise distinct places, then there exists a

basis B of the K-algebra OP modulo P such that B ⊂
⋂
j≥1 Pj (i.e. νPj(b) > 0 for each

j and b ∈ B).

Proposition 5.21. Let n ≥ 1 and P1, . . . , Pn be pairwise distinct places and νi := νPi
for all i. If s ∈

⋂n
i=1 Pi (i.e. νP (s) ≥ 1 for every i), then [L : K(s)] ≥

∑n
i=1 νi(s) degPi

Corollary 5.22. If s ∈ L∗, then the set {P ∈ PL/K | νP (s) 6= 0} is �nite.

Corollary 5.23. If f is a Weierstrass equaition polynomial and L is given by f(α, β) = 0,
then there exists unique P∞ ∈ PL/K such that νP∞(α) < 0. Furthermore, degP∞ = 1,
νP∞(α) = −2 and νP∞(β) = −3.
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Example 5.24. Let f = y2 + y− (x3 + 1) = y2 + y + x3 + 1 ∈ F2[x, y] and α := x+ (f),
β := y + (f) ∈ K[x, y]/(f). Then f is a Weierstrass equaition polynomial and L :=
F2(α, β) is an AFF over F2 given by f(α, β) = 0.
Let P ∈ PL/K of degree 1. Then P ∈ {P(1,0), P(1,1), P∞}, since Vf (F2) = {(1, 0), (1, 1)}.
By 5.20(1) PL/K is in�nite. hence other places are of degree greater than 1, for example

for each ireducible m ∈ F2[x] of degree greater than 1, there exists Pm ∈ PL/K sch that
m(α) ∈ Pm, thus degPm ≥ deg(m) > 1.

6. Divisors

Let L be an AFF over K and K̃ be its �eld of constants.

De�nition. Let Div(L/K) = {
∑

P∈PL/K apP | ap ∈ Z} denote the free abelian group

with the free basis PL/K (hence only �nitely many ap's are non-zero) and operations∑
P∈PL/K

apP ±
∑

P∈PL/K

bpP =
∑

P∈PL/K

(ap ± bp)P, 0 =
∑

P∈PL/K

0P.

A formal sum
∑

P∈PL/K apP is called a d ivisor (of the AFF). Degree of a divisor is de�ned

by degK(
∑

P∈PL/K apP ) :=
∑

P∈PL/K ap degK(P ).

Example 6.1.
∑

P∈PL/K νp(r)P is a divisor by 5.22 for each r ∈ L∗.

T&N. A divisor
∑

P∈PL/K νp(r)P for each r ∈ L∗ is called principal divisor and it is

denored by (r), Princ(L/K) := {(r) | r ∈ L∗}.

T&N. Let A =
∑

P∈PL/K apP , B =
∑

P∈PL/K bpP ∈ Div(L/K). Then let us denote:

max(A,B) :=
∑

P∈PL/K

max(ap, bp)P, min(A,B) :=
∑

P∈PL/K

min(ap, bp)P,

A+ := max(A, 0), A− := −min(A, 0) = (−A)+, and A is positive if A = A+.
De�ne relations ≤ (≥ is the oposite relation) and ∼ on Div(L/K):
A ≤ B (B ≥ A) if ap ≤ bp for every P ∈ PL/K ,
A ∼ B if A−B ∈ Princ(L/K).
L(A) := {r ∈ L∗ | (r) + A ≥ 0} ∪ {0}.

T&N. Cl(L/K) := Div(L/K)/Princ(L/K) is the class group of the AFF.
If A ∈ Div(L/K), then L(A) is said to be the Riemann-Roch space of the divisor A

and l(A) = dimL/K A = dimK L(A).

If K = K̃, then L is a full constant AFF.

Lemma 6.2. If A,B ∈ Div(L/K) such that A ≤ B, then L(A) is a subspace of L(B)
and dimK(L(B)/L()) ≤ degK(B − A).

Proposition 6.3. For K = K̃ (i.e. L is a full constant AFF), and A,B ∈ Div(L/K):

(D1) if A ≥ 0, then 1 ≤ l(A) ≤ degA+ 1,
(D2) if A < 0, then l(A) = 0,
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(D3) l(A) < l(A+) <∞,
(D4) if A ≤ B, then degA− l(A) ≤ degB − l(B).

Lemma 6.4. If s ∈ L \ K̃ (i.e. s is transcendental over K), then there exists B ∈
Div(L/K) such that B ≥ 0 and for each k ≥ 0:

(1) (k + 1)[L : K(s)] ≤ l(k · (s)− +B),
(2) (k + 1)[L : K(s)] ≤ k · deg((s)) −+ degB + 1,
(3) k[L : K(s)]− l(k · (s)−) ≤ degB − [L : K(s)].

Theorem 6.5. If K = K̃ and s ∈ L \ K̃ (i.e. L is a full constant AFF and s is
transcendental over K), then deg((s)−) = deg((s)+) = [L : K(s)] and deg((s)) = 0.

Corollary 6.6. If A ∼ B, then (1) degA = degB and (2) dimL/K A = dimL/K B.

Example 6.7. Let L be an AFF over F2 given by f(α, β) = 0 for f = y2 + y− (x3 + 1) ∈
F2[x, y] as in 5.24. We will compute principal divisors (α + 1) adn (α + 1).
(a) By 6.5 deg((α+1)+) =

∑
P :α+1∈P νP (α+1) degP = [K : F2(α+1)] = [K : F2(α)] =

2. Since α + 1 ∈ P(1,0) ∩ P(1,1) we can see that degP(1,0) = degP(1,1) = 1. Furthermore

νP∞(α + 1) = νP∞(α) = −2, hence PL/K (1) = {P(1,0), P(1,1), P∞} is the set of all places of
degree 1 and

(α + 1) = 1 · P(1,0) + 1 · P(1,1) − 2 · P∞
(b) Again by 6.5 deg((α)+) =

∑
P :α∈P νP (α) degP = [K : F2(α)] = 2 and α is not an

element of P ∈ PL/K (1), thus there exists a unique Pα such that α ∈ Pα and degPα = 2
which means that

(α) = 1 · Pα − 2 · P∞

Proposition 6.8. For K = K̃ and A,B ∈ Div(L/K):

(D5) l(B − A) ≥ 1 if and only if there exists A′ ∈ Div(L/K) such that A ∼ A′ ≤ B,
(D6) if l(B − A) ≥ 1, then degA− l(A) ≤ degB − l(B),
(D7) l(A) ≥ 1 if and only if there exists s ∈ L8 such that A+ (s) ≥ 0,
(D8) if degA < 0, then l(A) = 0,
(D9) L((s)) = Ks−1 = {ks−1|k∈K}.

Lemma 6.9. Let K = K̃ and A ∈ Div(L/K) such that degA = 0. Then

(1) l(A) ∈ {0, 1},
(2) l(A) = 1 if and only if A ∈ Princ(L/K).

Theorem 6.10 (Riemann). If K = K̃, then there exists nonnegative integer γ such that
deg(A)− l(A) < γ for each A ∈ Div(L/K).

De�nition. The minimal possible γ from the Riemann theorem for L over K̃ (i.e. min-
imal γ for which deg(A) − l(A) < γ for each A ∈ Div(L/K)) is called the genus of the
AFF L over K.

The genus of the AFF will be denoted by g in the sequel.
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Lemma 6.11. There exists an integer γ such that for each A ∈ Div(L/K) with deg(A) ≥
γ it holds that deg(A) = l(A) + g − 1.

T&N. Let P := PL/K and consider the Cartesion power LP as a L-algebtra with opera-
tions de�ned in coordinates where l → l ∗ 1 ∈ LP identi�es elements of L with constants
of LP. f ∈ LP is called ad�ele if the set {P ∈ P | f(P ) 6= 0} is �nite and AL/K denotes the
set of all ad�eles.
Let A =

∑
P∈PL/K apP ∈ Div(L/K). Then AL/K(A) := {f ∈ LP | νP (f(P )) + aP ≥

0∀P ∈ P} and i(A) := g − 1− deg(A)− l(A) ≥ 0 is said to be the index of speciality of
A. A is called special if i(A) > 0 and A is called /nonspecial if i(A) = 0.

Lemma 6.12. Let K = K̃, A =
∑

P∈PL/K apP , B =
∑

P∈PL/K bpP ∈ Div(L/K) and

s ∈ L∗. Then
(1) if A ≤ B, then AL/K(A) ⊆ AL/K(B) and dimK(AL/K(B)/AL/K(A)) = deg(B −

A),
(2) if A ≤ B, then dimK((AL/K(B) + L)/(AL/K(A) + L)) = i(A)− i(B),
(3) AL/K(A)∩AL/K(B) = AL/K(min(A,B)),AL/K(A)+AL/K(B) = AL/K(max(A,B)),
(4) dimK(AL/K/(AL/K)/(AL/K(A) + L) = i(A),
(5) AL/K = AL/K(A) + L if and only if i(A) =,
(6) sAL/K(A) = AL/K(A− (s))

Lemma 6.13. Let S $ PL/K , , P1, . . . , Pn ∈ S be pairwise distinct places, a1, . . . an ∈ L
and z ∈ Z. Then there exists t ∈ L such that νPi(t − ai) > z for all i = 1, . . . , n and
νP (t) ≥ 0 for all P ∈ S \ {P1 . . . , Pn}.

Theorem 6.14 (Strong Approximation Theorem). Let S $ PL/K , , P1, . . . , Pn ∈ S be
pairwise distinct places. If a1, . . . an ∈ L and z1, . . . , zn ∈ Z, then there exists s ∈ L such
that νPi(s− ai) = zi for all i = 1, . . . , n and νP (s) ≥ 0 for all P ∈ S \ {P1 . . . , Pn}.

7. Weil differntials

Let L be an AFF over K of genus g and K̃ be its �eld of constants.

T&N. Let A ∈ Div(L/K). Then
ΩL/K(A) := (AL/K(A) + L)oK = {ω ∈ AL/K∗ | ω(AL/K(A) + L) = 0, }

ΩL/K :=
⋃

B∈Div(L/K)

ΩL/K(B) = {ω ∈ AL/K∗ | ω(L) = 0, ∃B ∈ Div(L/K) : ω(AL/K(B)) = 0}

Elements of ΩL/K are called Weil di�erntials (of the AFF).

Lemma 7.1. Let ω ∈ ΩL/K \{0} and K = K̃. Then there exists a uniqueW ∈ Div(L/K)
such that ω(AL/K(W )) = 0 and for each A ∈ Div(L/K) satis�es that A ≤ W whenever
ω(AL/K(A)).

T&N. The divisor W from 7.1 uniquely determained by a a Weil di�erntial ω is called
the canonical divisor of ω and it is denoted (ω).

10



Lemma 7.2. Let ω, ω̃ ∈ ΩL/K \ {0}, A ∈ Div(L/K), and K = K̃. De�ne Ψω := s ·ωl for
every s ∈ L. Then

(1) if s ∈ L∗, then (sω) = (s) + (ω),
(2) Ψω is an L- and so K-linear embedding, and Ψω(L((ω)− A)) ⊆ ΩL/K(A)
(3) there exists B ∈ Div(L/K) such that Ψω(L((ω)−B)) ∩Ψω(L((ω)−B)) 6= 0.

Theorem 7.3. Let K = K̃. Then

(1) dimL(ΩL/K) = 1,
(2) if ω ∈ ΩL/K \ {0} and A ∈ Div(L/K), then Ψω,A : L((ω) − A) → ΩL/K(A) given

by Ψω,A(s) = sω is a K-isomoprhism.

Corollary 7.4. Let K = K̃. The canonical divisors form exactly one coset modulo
Princ(L/K) (i.e. for W , a canonical divisor, A ∼ W i� A is canonical).

Theorem 7.5 (Riemann-Roch). If K = K̃ and W a canonical divisor, then

l(A) = degA+ l(W − A) + 1− g
for every A ∈ Div(L/K).

Corollary 7.6. Let K = K̃ and A,W ∈ Div(L/K), then:

(1) if W is canonical, then l(W ) = g, degW = 2g − 2, i(W ) = 1,
(2) (Main consequence of the Riemann-Roch Theorem) if degA ≥ 2g − 1, then

l(A) = degA+ 1− g.

Lemma 7.7. Let K = K̃ and A ∈ Div(L/K), then:

(1) if degA = 2g − 2 and l(A) ≥ g, then A is canonical,
(2) if g = 1, then A is canonical if and only if A is principal.

Proposition 7.8. Let K = K̃ and A,B ∈ Div(L/K) and g = 0. Then:

(1) A is principal if and only if degA = 0,
(2) A ∼ W if and only if degA = degB,
(3) A is canonical if and only if and only if degA = −2.

T&N. P(1)
L/K := {P ∈ PL/K | degP = 1}.

Lemma 7.9. Let P ∈ P(1)
L/K 6= ∅, h ∈ Z, h ≥ 0, s ∈ L. Then

(1) K = K̃,
(2) s ∈ L(iP ) \ L((i− 1)P ) if and only if (s)− = iP , where i ≥ 1,
(3) if there exists k ≥ 0 such that l(iP ) ≥ i− h+ 1 for each i ≥ k, then g ≤ h,
(4) if for each i ≥ h+ 1 there exists si ∈ L such that (s)− = iP , then g ≤ h.

Example 7.10. x be a variable. Then K(x) is an AFF over K. By 2.14

PK(x)/K = {Pp | p ∈ K[x] is irreducible} ∪ {P∞}
where Pp is the maximal ideal of the localization K[x]((p)) with νPp = νp and P∞ is given
by the dicsrete valuation ν∞(a

b
) = deg(b)− deg(a).

Then νp(x
i) ≥ 0 for every i ≥ 0 and nu∞(xi) = −i for every i ≥ 0, hence (xi)− = iP∞.

Thus K(x) is of genus 0 by 7.9(4).
11



8. The associative law

Let L be an AFF over K of genus g.

Proposition 8.1. Let P(1)
L/K 6= ∅. Then g = 0 if and only if there exists s ∈ L such that

L = K(s)

De�nition. An A� L is called an eliptic function �eld (EFF), if it is of genus 1 and

P(1)
L/K 6= ∅.

Lemma 8.2. Let L be an EFF and P ∈ P(1)
L/K , then

(1) L is full constant and L(1P ) = K,
(2) L(1P ) $ L(2P ) $ L(3P ),
(3) For every u ∈ L(2P ) \ L(1P ) and every v ∈ L(3P ) \ L(2P ) there exists a WEP

w ∈ K[x, y] and λ ∈ K∗ such that L is given by w(λu, λv) = 0.

Proposition 8.3. Let w be a WEP w ∈ K[x, y] and L be given by w(α, β) = 0.

(1) There exists unigue P = P∞ ∈ PL/K such that νP (α) < 0 or νP (β) < 0,
(2) K[α, β] ⊆ OQ for all Q ∈ PL/K \ {P∞},
(3) P∞ ∈ P(1)

L/K , (α)− = 2P∞, (β)− = 3P∞, P∞ ∩ K[Vw] = P∞ ∩ K[α, β] = 0, and

OP∞ ∩K[α, β] = K,

(4) if w is smooth at Vw(K), then P(1)
L/K = {P∞} ∪ {Pγ | γ ∈ Vw(K)},

(5) L is either an EFF (and g = 1) or there is s ∈ L such that L = K(s) (and g = 0),
(6) if L = K(s), then there exists polynomials u, v ∈ K[x] for which α = u(s),

β = v(s), and deg u = 2, deg v = 3.

In the sequel w = y2 + a1xy + a3y − (x3 + a2x
2 + a4x+ a6) be a WEP.

Theorem 8.4. Let L be given by w(α, β) = 0. Then L is an EFF if and only if w is
smooth at Vw(K).

Example 8.5. (1) Let f = y2 + y + x3 + 1 ∈ F2[x, y] be a WEP. Since it is smooth at
Vf (F2), it is of genus 1 by 8.4 and F2(s) $ F2(Vf ) for each s ∈ F2(Vf )
(2) Let f = y2 +x3 +x+ 1 ∈ F2[x, y] be a WEP. Since it is singular F2(Vw), it is of genus
1 by 8.4 and there exists s ∈ F2(Vf ) such that F2(s) = F2(Vf ).

T&N. Pic0(L/K) := Ker(deg)/Princ(L/K) is called the P icard group, [A] := A +
Princ(L/K) denotes the cosets of Pic0(L/K).

Lemma 8.6. Let L be an EFF over K, P1, P2, Q ∈ P(1)
L/K , and A ∈ Div(L/K).

(1) if P1 − P2 ∈ Princ(L/K), then P1 = P2,

(2) if degA = 1, then there exist a unique place Q ∈ P(1)
L/K such that P − A ∈

Princ(L/K),
12



(3) the mapping ΨQ : P(1)
L/K → Pic0(L/K) de�ned by ΨQ(P ) := [P −Q] is a bijection.

T&N. L be an EFF over K, then we can de�ne for each Q ∈ P(1)
L/K a binary operation

⊕ by the rule P1 ⊕ P2 := Ψ−1Q (ΨQ(P1) + ΨQ(P2)) for the mapping ΨQ from the previous
lemma.

T&N. L be an EFF over K, then we can de�ne for each Q ∈ P(1)
L/K a binary operation

⊕ by the rule P1 ⊕ P2 := Ψ−1Q (ΨQ(P1) + ΨQ(P2)) for the mapping ΨQ from the previous
lemma.

T&N. Let l̂ = cx + dy + e ∈ K[x, y] for c, d, e ∈ K where (c, d) 6= (0, 0). Then l =

l̂ + (w) ∈ K[Vw] = K[α, β] for α = x+ (w), β = y + (w) is called a line represented by l̂.
We say that l passes through γ if γ ∈ Vl̂.

Lemma 8.7. Let w be smooth at Vw(K), γ = (γ1, γ2) ∈ Vw(K), l̂ ∈ K[x, y] represents a

line l = l̂ + (w) ∈ K[Vw].

(1) if l̂ = x − γ1, then there exists unique δ = (γ1, δ2) ∈ Vw(K) such that (l) =
Pγ + Pδ − 2P∞ and δ2 = −a1γ1 − a3 − γ2,

(2) if l̂ = y − λx− µ and l passes through γ, then (l)− = 3P∞ and

(a) either there exists P ∈ PL/K of degree 2 such that (l)+ = Pγ +P l̂ /∈ (tγ(w))
and Vw(K) ∩ Vl̂ = {γ},
(b) or there exist points δ = (δ1, δ2), η(η1, η2) ∈ Vw(K) such that (l)+ = Pγ+Pδ+

Pη l̂ /∈ (tγ(w)) and Vw(K)∩Vl̂ = {γ}, Vw∩Vl̂ = {γ, δ, η}, η1 = γ1−δ1−a2+λ2+a1λ

and l̂ ∈ (tγ(w)) i� γ ∈ {δ, η}.

De�nition. Let w be smooth and L be an EFF given by w. Consider the group structure
on PL/K (1) determined by ΨP∞ . Put E(K) = Vw(K)∪ {∞} and de�ne the operations ⊕,
ominus on E(K):

γ ⊕ δ = η ⇔ Pγ ⊕ Pδ = Pη, 	γ = δ ⇔ Pγ ⊕ Pδ = P∞

Theorem 8.8. Let w be smooth at Vw(K). Then (E(K),⊕,	,∞) is a commutative
group. Let γ = γ1, γ2, δ = δ1, δ2, η = η1, η2 ∈ Vw(K), then

(1) 	γ = γ1,−γ2 − a1γ1 − a3.
(2) If γ 6= 	δ and γ⊕δ = η, then η = (−η1−δ1+λ2+a1λ−a2, λ(γ1−η1)−γ2−a1η1−a3)

where
(a) λ = δ2−γ2

δ1−γ1 if γ1 6= δ1.

(b) λ =
3γ21+2a2γ1−a1γ2+a4

2γ2+a1γ1+a3
if γ1 = δ1.

9. Projective curves

Let n ≥ 1, K be a �eld and K the algebraic closure of K.
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T&N. Denote a = (a0 : a1 : · · · : an) = Span((a0, a1, . . . , an)) ⊂ Kn+1 a projective point
of the projective space

Pn(K) = {(a0 : a1 : · · · : an) | (a0, a1, . . . , an) ∈ Kn+1 \ {0}}
of the homogeneous coordinates (a0 : a1 : · · · : an) and put Pn := Pn(K).
K[X0, X1, . . . , Xn] denotes the set of all homogeneous polynomials and put

K(X0, X1, . . . , Xn) := {H
G
| H,G ∈ K[X0, X1, . . . , Xn],∃d ≥ 0 : degH = degG} ∪ {0}

Let f ∈ K[x1, . . . , xn] \ {0} and a = (a1, . . . , an) ∈ An. We de�ne

f̂ := Xdeg f
0 f(

X1

X0

, . . . ,
Xn

X0

), 0̂ := 0 ∈ K[X0, X1, . . . , Xn], â := (1 : a1 : · · · : an) ∈ Pn

Lemma 9.1. Let f ∈ K[x1, . . . , xn] \ {0} and a ∈ Vf . Then f is smooth at a if and only

if f̂ is smooth at â.

Proposition 9.2. Let H,F ∈ K[X0, X1, X2], F be irreducible and j ∈ {0, 1, 2}.
(1) Then either H ∈ (F ), hence H(a) = 0 for all a ∈ VF , or H /∈ (F ) and VF ∩ VH is

�nite.
(2) If xj /∈ (F ), then |{(a0 : a1 : · · · : an) ∈ VF | aj = 0}| is �nite.

Corollary 9.3. Let F,G ∈ K[X0, X1, X2], VF = VG, a ∈ VF . Then
(1) there exists λ ∈ K∗ such that ,
(2) F is smooth at a i� G is smooth at a.

Proposition 9.4. Let f ∈ K[x1, x2] be irreducible and F = f̂ . De�ne the mappings
εf : K(Vf )→ K(VF ) and ε : K(x)→ K(P1) by the rules

εf

(
g + (f)

h+ (f)

)
=
X

deg(h)
0 ĝ + (F )

X
deg(g)
0 ĥ+ (F )

and ε
(g
h

)
=
X

deg(h)
0 ĝ

X
deg(g)
0 ĥ

.

Then εf and ε are K-isomorphisms of �elds.

T&N. Let A,B,G ∈ K[X0, X1], B 6= 0. De�ne

νG(A) := max{e ≥ 0 | Ge/A}, νG

(
A

B

)
:= νG(A)− νG(B), νG(0) =∞.

Lemma 9.5. Let ν be a normalized discrete valuation of the AFF K(P1) over K.

(1) There exists G ∈ K[X0, X1] irreducible such that ν = νG,
(2) degree of the place {U ∈ K(P1) | νG(U) > 0} is equal to degG,

(3) the map (a0 : a1)→ {U ∈ K(P1) | νa1X0−a0X1(U) > 0} is a bijection P1 → P(1)
L/K .

Theorem 9.6. Let F ∈ K[X0, X1, X2], be irreducible and P ∈ PK(VF )/K), a ∈ VF . Then
(1) there exists b ∈ VF such that Pb ⊆ P ,
(2) if degP = 1 and Pa ⊆ P , then a ∈ VF (K),
(3) if F is smooth at a ∈ VF (K), then Pa = P and degPa = 1.
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