III. Infimum and supremum

Theory.

Definition. Number $g \in \mathbb{R}$ is called **infimum** of the set $M \subset \mathbb{R}$ (we denote it by $\inf M$) provided that

- (1) $\forall x \in M : x \ge g \ (= g \text{ is a lower bound of } M)$ and
- (2) $\forall g' > g \exists x \in M : x < g' (= g \text{ is the greatest lower bound}).$

If there exists a number from M satisfying (1), then (2) holds for free and we call this number **minimum** of the set M (we write min M). In this case we say that infimum is attained. Similarly, number $G \in \mathbb{R}$ is called **supremum** of the set $M \subset \mathbb{R}$ (we write sup M) if there holds

- (3) $\forall x \in M : x \leq G \ (= G \text{ is an upper bound of } M)$ a
- (4) $\forall G' < G \ \exists x \in M : x > G' \ (= G \text{ is the smallest upper bound}).$

If there exists a number from M satisfying (3), then (4) holds for free and we call this number **maximum** of the set M (we write max M); we say that supremum is attained.

Claim. Let $\emptyset \neq M \subset \mathbb{R}$ be a set bounded from below [above]. Then M has unique infimum [supremum]. **Claim.** There holds so-called **Archimedean property**, i.e.: $\forall x \in \mathbb{R} \exists n \in \mathbb{N} : n > x$.

Definition. If $M \subset \mathbb{R}$ is not bounded from below [above], then we define $\inf M = -\infty$ [sup $M = +\infty$].

Exercise 1. In the following examples find infimum and supremum of a given set. Decide about the existence of its minimum and maximum.

(a) $A = \{8\}.$	(i) $I = \{x \in \mathbb{R}; \frac{1}{x-1} \ge 2\}.$
(b) $B = \{5, 6\}.$	(j) $J = \{x \in \mathbb{R}; x - 3 \le 2\}.$
(c) $C = \{1, -9, 7, -3, 50\}.$	(k) $K = \{x \in \mathbb{R}; x - 1 - x - 2 < 1\}.$
(d) $D = \{x \in \mathbb{R}; x \le 0\}.$	(l) $L = \{x \in \mathbb{R}; \arctan x \ge \frac{\pi}{3}\}.$
(e) $E = \{x \in \mathbb{R}; x > 0\}.$	(m) $M = \{\arctan x; x \ge -1\}.$
(f) $F = \langle -2, 5 \rangle$.	(n) $N = \{ \sin x; x \in (0, 2\pi) \}.$
(g) $G = (-2, 0) \cup \{1\} \cup ((2, 4) \cap (3, 4)).$	(o) $O = \{ \sin x; x \in (0, \pi) \}.$
(h) $H = \{x \in \mathbb{R}; x^2 < 16\}.$	(p) $P = \{x^2; x \in (-2,3)\}.$

Exercise 2. In the following examples find infimum and supremum of a given set. Decide about the existence of its minimum and maximum.

Exercise 3 (Hard). Let $\emptyset \neq A \subset \mathbb{R}$ be a bounded set and $B := \{|x - y|; x, y \in A\}$. Show the following:

- (a) B has supremum and infimum.
- (b) There holds $\sup B = \sup A \inf A$.
- (c) Finally, $\inf B = 0$.

Results - III. Infimum and supremum

Exercise 1.

- (a) $\inf A = \min A = \sup A = \max A = 8.$
- (b) $\inf B = \min B = 5$ and $\sup B = \max B = 6$.
- (c) $\inf C = \min C = -9$ and $\sup C = \max C = 50$.
- (d) $\inf D = -\infty$, $\min D$ does not exist and $\sup D = \max D = 0$.
- (e) $\inf E = 0$, $\min E$ does not exist and $\sup E = +\infty$, $\max E$ does not exist.
- (f) $\inf F = \min F = -2$ and $\sup F = 5$, $\max F$ does not exist.
- (g) $\inf G = -2$, $\min G$ does not exist $\sup G = 4$, $\max G$ does not exist.
- (h) $\inf H = -4$, $\min H$ does not exist $\sup H = 4$, $\max H$ does not exist.
- (i) $\inf I = 1$, $\min I$ does not exist $\sup I = \max I = \frac{3}{2}$.
- (j) $\inf J = \min J = 1$ and $\sup J = \max J = 5$.
- (k) $\inf K = 1$, $\min K$ does not exist $\sup K = 2$, $\max K$ does not exist.
- (1) inf $L = \min L = \sqrt{3}$ and $\sup L = +\infty$, max L does not exist.
- (m) inf $M = \min M = -\frac{\pi}{4}$ and $\sup M = +\infty$, max M does not exist.
- (n) $\inf N = \min N = -1$ and $\sup N = \max N = 1$.
- (o) $\inf O = 0$, $\min O$ does not exist and $\sup O = \max O = 1$.
- (p) $\inf P = \min P = 0$ and $\sup P = 9$, $\max P$ does not exist.

Exercise 2.

- (a) $\inf A = 0$, minimum does not exist and $\sup A = \max A = 1$.
- (b) inf $B = \min B = \frac{1}{2}$ and $\sup B = 1$, maximum does not exist.
- (c) inf C = 0, minimum does not exist and $\sup C = \max C = \frac{5}{6}$.
- (d) inf D = 0, minimum does not exist and $\sup D = +\infty$, maximum does not exist.
- (e) inf $E = \frac{1}{2}$, minimum does not exist and sup $E = \max E = \frac{2}{3}$.
- (f) $\inf F = -\infty$, $\min F$ does not exist and $\sup F = \max F = -1$.
- (g) inf G = -1, minimum does not exist and $\sup G = \max G = \frac{4}{4}$.
- (h) $\inf H = 0$, minimum does not exist and $\sup H = 1$, maximum does not exist.
- (i) $\inf I = -\infty$, minimum does not exist and $\sup I = +\infty$, maximum does not exist.
- (j) $\inf J = \min J = 3$ and $\sup J = +\infty$, maximum does not exist.
- (k) inf $K = -\infty$, minimum does not exist and sup $K = \max K = 0$.
- (1) inf L = -1, minimum does not exist and $\sup L = \max L = 1$.
- (m) $\inf M = \min M = 0$ and $\sup M = 1$, maximum does not exist.
- (n) $\inf N = \min N = 0$ and $\sup N = +\infty$, maximum does not exist.