III. Infimum and supremum

Theory.

Definition. Number $g \in \mathbb{R}$ is called infimum of the set $M \subset \mathbb{R}$ (we denote it by $\inf M$) provided that
(1) $\forall x \in M: x \geq g$ ($=g$ is a lower bound of M) and
(2) $\forall g^{\prime}>g \exists x \in M: x<g^{\prime}$ ($=g$ is the greatest lower bound).

If there exists a number from M satisfying (1), then (2) holds for free and we call this number minimum of the set M (we write $\min M$). In this case we say that infimum is attained. Similarly, number $G \in \mathbb{R}$ is called supremum of the set $M \subset \mathbb{R}$ (we write $\sup M$) if there holds
(3) $\forall x \in M: x \leq G(=G$ is an upper bound of $M)$ a
(4) $\forall G^{\prime}<G \exists x \in M: x>G^{\prime}$ ($=G$ is the smallest upper bound).

If there exists a number from M satisfying (3), then (4) holds for free and we call this number maximum of the set M (we write $\max M$); we say that supremum is attained.
Claim. Let $\emptyset \neq M \subset \mathbb{R}$ be a set bounded from below [above]. Then M has unique infimum [supremum].
Claim. There holds so-called Archimedean property, i.e.: $\forall x \in \mathbb{R} \exists n \in \mathbb{N}: n>x$.
Definition. If $M \subset \mathbb{R}$ is not bounded from below [above], then we define $\inf M=-\infty[\sup M=+\infty]$.
Exercise 1. In the following examples find infimum and supremum of a given set. Decide about the existence of its minimum and maximum.
(a) $A=\{8\}$.
(i) $I=\left\{x \in \mathbb{R} ; \frac{1}{x-1} \geq 2\right\}$.
(b) $B=\{5,6\}$.
(j) $J=\{x \in \mathbb{R} ;|x-3| \leq 2\}$.
(c) $C=\{1,-9,7,-3,50\}$.
(k) $K=\{x \in \mathbb{R} ;||x-1|-|x-2||<1\}$.
(d) $D=\{x \in \mathbb{R} ; x \leq 0\}$.
(l) $L=\left\{x \in \mathbb{R} ; \arctan x \geq \frac{\pi}{3}\right\}$.
(e) $E=\{x \in \mathbb{R} ; x>0\}$.
(m) $M=\{\arctan x ; x \geq-1\}$.
(f) $F=\langle-2,5)$.
(n) $N=\{\sin x ; x \in\langle 0,2 \pi)\}$.
(g) $G=(-2,0\rangle \cup\{1\} \cup((2,4\rangle \cap(3,4))$.
(o) $O=\{\sin x ; x \in(0, \pi)\}$.
(h) $H=\left\{x \in \mathbb{R} ; x^{2}<16\right\}$.
(p) $P=\left\{x^{2} ; x \in(-2,3)\right\}$.

Exercise 2. In the following examples find infimum and supremum of a given set. Decide about the existence of its minimum and maximum.
(a) $A=\left\{\frac{1}{n} ; n \in \mathbb{N}\right\}$.
(b) $B=\left\{\frac{n}{n+1} ; n \in \mathbb{N}\right\}$.
(c) $C=\left\{2^{-n}+3^{-n} ; n \in \mathbb{N}\right\}$.
(d) $D=\left\{2^{-n}+3^{-n} ; n \in \mathbb{Z}\right\}$.
(e) $E=\left\{1-\sum_{k=1}^{n} \frac{1}{3^{k}} ; n \in \mathbb{N}\right\}$.
(f) $F=\left\{n-2 \sum_{k=0}^{n} k ; n \in \mathbb{N}\right\}$.
(g) $G=\left\{(-1)^{n}+\frac{1}{1+n} ; n \in \mathbb{N}\right\}$.
(h) $H=\left\{\frac{n}{n+m} ; n, m \in \mathbb{N}\right\}$.
(i) $I=\left\{n^{2}-m^{2} ; n, m \in \mathbb{N}\right\}$.
(j) $J=\left\{n^{2}-m^{2} ; n, m \in \mathbb{N}, n>m\right\}$.
(k) $K=\left\{n^{2}-m^{2} ; n, m \in \mathbb{N}, n \leq m\right\}$.
(l) $L=\left\{\cos \left(n+\frac{1}{n}\right) \pi ; n \in \mathbb{N}\right\}$.
(m) $M=\left\{\cos \left(2 n+\frac{1}{2 n}\right) \pi ; n \in \mathbb{N}\right\}$.
(n) $N=\left\{\tan \frac{\pi n}{2(n+m)} ; n \in \mathbb{N}_{0}, m \in \mathbb{N}\right\}$.

Exercise 3 (Hard). Let $\emptyset \neq A \subset \mathbb{R}$ be a bounded set and $B:=\{|x-y| ; x, y \in A\}$. Show the following:
(a) B has supremum and infimum.
(b) There holds $\sup B=\sup A-\inf A$.
(c) Finally, inf $B=0$.

Results - III. Infimum and supremum

Exercise 1.

(a) $\inf A=\min A=\sup A=\max A=8$.
(b) $\inf B=\min B=5$ and $\sup B=\max B=6$.
(c) $\inf C=\min C=-9$ and $\sup C=\max C=50$.
(d) $\inf D=-\infty, \min D$ does not exist and $\sup D=\max D=0$.
(e) $\inf E=0, \min E$ does not exist and $\sup E=+\infty, \max E$ does not exist.
(f) $\inf F=\min F=-2$ and $\sup F=5, \max F$ does not exist.
(g) $\inf G=-2, \min G$ does not exist $\sup G=4, \max G$ does not exist.
(h) $\inf H=-4, \min H$ does not exist $\sup H=4, \max H$ does not exist.
(i) $\inf I=1, \min I$ does not exist $\sup I=\max I=\frac{3}{2}$.
(j) $\inf J=\min J=1$ and $\sup J=\max J=5$.
(k) $\inf K=1$, $\min K$ does not exist $\sup K=2$, max K does not exist.
(l) $\inf L=\min L=\sqrt{3}$ and $\sup L=+\infty$, max L does not exist.
(m) $\inf M=\min M=-\frac{\pi}{4}$ and $\sup M=+\infty$, $\max M$ does not exist.
(n) $\inf N=\min N=-1$ and $\sup N=\max N=1$.
(o) $\inf O=0, \min O$ does not exist and $\sup O=\max O=1$.
(p) $\inf P=\min P=0$ and $\sup P=9, \max P$ does not exist.

Exercise 2.

(a) $\inf A=0$, minium does not exist and $\sup A=\max A=1$.
(b) $\inf B=\min B=\frac{1}{2}$ and $\sup B=1$, maximum does not exist.
(c) $\inf C=0$, minimum does not exist and $\sup C=\max C=\frac{5}{6}$.
(d) $\inf D=0$, minimum does not exist and $\sup D=+\infty$, maximum does not exist.
(e) $\inf E=\frac{1}{2}$, minimum does not exist and $\sup E=\max E=\frac{2}{3}$.
(f) $\inf F=-\infty, \min F$ does not exist and $\sup F=\max F=-1$.
(g) $\inf G=-1$, minimum does not exist and $\sup G=\max G=\frac{4}{4}$.
(h) $\inf H=0$, minimum does not exist and $\sup H=1$, maximum does not exist.
(i) $\inf I=-\infty$, minimum does not exist and $\sup I=+\infty$, maximum does not exist.
(j) $\inf J=\min J=3$ and $\sup J=+\infty$, maximum does not exist.
(k) $\inf K=-\infty$, minimum does not exist and $\sup K=\max K=0$.
(l) $\inf L=-1$, minimum does not exist and $\sup L=\max L=1$.
(m) $\inf M=\min M=0$ and $\sup M=1$, maximum does not exist.
(n) $\inf N=\min N=0$ and $\sup N=+\infty$, maximum does not exist.

