II. Mathematical proofs

Exercise 1. Prove directly the following well-known statements.
(a) $\sin \frac{\pi}{6}=\frac{1}{2}=\cos \frac{\pi}{3}, \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}=\cos \frac{\pi}{6}$ and $\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}=\cos \frac{\pi}{4}$.
(b) $x^{2}+y^{2} \geq 2 x y$ for all $x, y \in \mathbb{R}$. [special case of AM-GM inequality]
(c) $\sum_{k=0}^{n} q^{k}=\frac{1-q^{n+1}}{1-q}$ for any $q \in \mathbb{R} \backslash\{1\}$ and any $n \in \mathbb{N}_{0}$.
(d) $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$ for any $n \in \mathbb{N}$.
(e) Quadratic formula.
(f) \sqrt{x} is increasing function on $[0,+\infty)$.
(g) $\sqrt[3]{x}$ is increasing function on \mathbb{R}.
(h) $|x+y| \leq|x|+|y|$ for all $x, y \in \mathbb{R}$. [Triangle inequality]
(i) Pythagorean theorem.

Exercise 2. Use contradiction to prove each of the following statements.
(a) $\sqrt{5}$ is an irrational number.
(b) If $a, b \in \mathbb{Z}$ such that $a+b \geq 20$, then either $a \geq 10$ or $b \geq 10$.
(c) If $x \neq y$ are positive reals, then $\frac{x}{y}+\frac{y}{x}>2$.
(d) For all positive reals x, y there holds $\frac{2}{x}+\frac{2}{y} \neq \frac{4}{x+y}$.
(e) If k^{2} is even, then k is even.
(f) If k and l are odd integers, then there does not exist an integer m such that $k^{2}+l^{2}=m^{2}$.

Exercise 3. Prove each of the following statements using mathematical induction.
(a) $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$ for any $n \in \mathbb{N}$.
(b) $\sum_{k=0}^{n} q^{k}=\frac{1-q^{n+1}}{1-q}$ for any $q \in \mathbb{R} \backslash\{1\}$ and any $n \in \mathbb{N}_{0}$.
(c) The sum of the first n odd numbers is equal to n^{2}.
(d) $\sum_{k=1}^{n} k^{2}=\frac{1}{6} n(n+1)(2 n+1)$ for any $n \in \mathbb{N}$.
(e) $\sum_{k=1}^{n} k^{3}=\left(\sum_{k=1}^{n} k\right)^{2}$ for any $n \in \mathbb{N}$.
(f) $\sum_{k=1}^{n} k(k-1)=\frac{n\left(n^{2}-1\right)}{3}$ for any $n \in \mathbb{N}$.
(g) $\sum_{k=1}^{n} k \cdot k!=(n+1)!-1$ for any $n \in \mathbb{N}$.
(h) $\sum_{k=1}^{n} k \cdot 2^{k}=(n-1) 2^{n+1}+2$ for any $n \in \mathbb{N}$.
(i) $\left(1-\frac{1}{2^{2}}\right) \cdot\left(1-\frac{1}{3^{2}}\right) \cdots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n}$ for any $n \in \mathbb{N}$ bigger than 1 .
(j) Let $a_{1}=1$ and $a_{n+1}=\sqrt{1+2 a_{n}}$ for $n \in \mathbb{N}$. Show that $a_{n}<4$ for any $n \in \mathbb{N}$.
(k) For any $n \in \mathbb{N}$ there holds $n \leq 2^{n}$.
(l) For any $n \in \mathbb{N}$, bigger than 3 , there holds $n^{2} \leq 2^{n}$.
(m) For any $n \in \mathbb{N}$, bigger than 6 , the inequality $3^{n}<n$! holds.
(n) For any $n \in \mathbb{N}$ and real $x \geq-1$ there holds $(1+x)^{n} \geq 1+n x$. [Bernoulli's inequality]
(o) For any $n \in \mathbb{N}$ and all $a, b \in \mathbb{R}$ there holds $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}$. [Binomial theorem]

Results - II. Mathematical proofs

Exercise 1.

(a) Try to draw a suitable right-angled triangle.
(b) There holds $(a \pm b)^{2} \geq 0$.
(c) Try to multiply by q.
(d) Add the first and the last term, then second and the second from the last, etc.
(e) Try so-called completing the square.
(f) There holds $a^{2}-b^{2}=(a-b)(a+b)$ and $a=\sqrt{x}, b=\sqrt{y}$.
(g) Show it first for $x \geq 0$ using $a^{3}-b^{3}=\ldots$ For general case use the fact that $\sqrt[3]{x}$ is odd.
(h) Consider several cases and use the definition of $|x|$.
(i) See Wiki for a lot of proofs.

