II. Mathematical proofs

Exercise 1. Prove directly the following well-known statements.

- (a) $\sin \frac{\pi}{6} = \frac{1}{2} = \cos \frac{\pi}{3}$, $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} = \cos \frac{\pi}{6}$ and $\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} = \cos \frac{\pi}{4}$.
- (b) $x^2 + y^2 \ge 2xy$ for all $x, y \in \mathbb{R}$. [special case of AM-GM inequality]
- (c) $\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$ for any $q \in \mathbb{R} \setminus \{1\}$ and any $n \in \mathbb{N}_0$.
- (d) $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ for any $n \in \mathbb{N}$.
- (e) Quadratic formula.
- (f) \sqrt{x} is increasing function on $[0, +\infty)$.
- (g) $\sqrt[3]{x}$ is increasing function on \mathbb{R} .
- (h) $|x+y| \le |x|+|y|$ for all $x, y \in \mathbb{R}$. [Triangle inequality]
- (i) Pythagorean theorem.

Exercise 2. Use contradiction to prove each of the following statements.

- (a) $\sqrt{5}$ is an irrational number.
- (b) If $a, b \in \mathbb{Z}$ such that $a + b \ge 20$, then either $a \ge 10$ or $b \ge 10$.
- (c) If $x \neq y$ are positive reals, then $\frac{x}{y} + \frac{y}{x} > 2$.
- (d) For all positive reals x, y there holds $\frac{2}{x} + \frac{2}{y} \neq \frac{4}{x+y}$.
- (e) If k^2 is even, then k is even.
- (f) If k and l are odd integers, then there does not exist an integer m such that $k^2 + l^2 = m^2$.

Exercise 3. Prove each of the following statements using mathematical induction.

- (a) $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ for any $n \in \mathbb{N}$.
- (b) $\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$ for any $q \in \mathbb{R} \setminus \{1\}$ and any $n \in \mathbb{N}_0$.
- (c) The sum of the first n odd numbers is equal to n^2 .
- (d) $\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$ for any $n \in \mathbb{N}$.
- (e) $\sum_{k=1}^{n} k^{3} = \left(\sum_{k=1}^{n} k\right)^{2}$ for any $n \in \mathbb{N}$.
- (f) $\sum_{k=1}^{n} k(k-1) = \frac{n(n^2-1)}{3}$ for any $n \in \mathbb{N}$.
- (g) $\sum_{k=1}^{n} k \cdot k! = (n+1)! 1$ for any $n \in \mathbb{N}$.
- (h) $\sum_{k=1}^{n} k \cdot 2^k = (n-1)2^{n+1} + 2$ for any $n \in \mathbb{N}$.
- (i) $\left(1-\frac{1}{2^2}\right)\cdot\left(1-\frac{1}{3^2}\right)\cdots\left(1-\frac{1}{n^2}\right)=\frac{n+1}{2n}$ for any $n \in \mathbb{N}$ bigger than 1.
- (j) Let $a_1 = 1$ and $a_{n+1} = \sqrt{1 + 2a_n}$ for $n \in \mathbb{N}$. Show that $a_n < 4$ for any $n \in \mathbb{N}$.
- (k) For any $n \in \mathbb{N}$ there holds $n \leq 2^n$.
- (1) For any $n \in \mathbb{N}$, bigger than 3, there holds $n^2 \leq 2^n$.
- (m) For any $n \in \mathbb{N}$, bigger than 6, the inequality $3^n < n!$ holds.
- (n) For any $n \in \mathbb{N}$ and real $x \ge -1$ there holds $(1+x)^n \ge 1 + nx$. [Bernoulli's inequality]
- (o) For any $n \in \mathbb{N}$ and all $a, b \in \mathbb{R}$ there holds $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$. [Binomial theorem]

Results - II. Mathematical proofs

Exercise 1.

- (a) Try to draw a suitable right-angled triangle.
- (b) There holds $(a \pm b)^2 \ge 0$.
- (c) Try to multiply by q.
- (d) Add the first and the last term, then second and the second from the last, etc.
- (e) Try so-called completing the square.
- (f) There holds $a^2 b^2 = (a b)(a + b)$ and $a = \sqrt{x}$, $b = \sqrt{y}$.
- (g) Show it first for $x \ge 0$ using $a^3 b^3 = \dots$ For general case use the fact that $\sqrt[3]{x}$ is odd.
- (h) Consider several cases and use the definition of |x|.
- (i) See Wiki for a lot of proofs.