I. Mathematical logic

Exercise 1. Let A, B be statements. Prove by a truth table that the following are tautologies:

(a) $\neg(\neg A) \Leftrightarrow A$.	(Double negation)
(b) $\neg (A \land \neg A)$.	(Contradiction)
(c) $\neg (A \Rightarrow B) \Leftrightarrow (A \land \neg B).$	(Negation of implication)
(d) $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A).$	(Law of contrapositive)
(e) $A \lor (\neg A)$.	(Law of excluded middle)
(f) $(A \Rightarrow B) \Leftrightarrow (\neg A \lor B).$	(Alternative of implication)
(g) $((A \Rightarrow B) \land \neg B) \Rightarrow \neg A.$	(Modus tollens)

Exercise 2. Let S be the set of all Students and C be the set of all Classes. We consider the following predicates: L(s, c): "Student s Likes c", H(s, c): "Student s Hates c", G(s, c): "Student s is Good at c". Write the following statements using quantifiers, logical connectives and just defined objects.

- (a) Every student likes some class.
- (b) There exists a class which is liked by all students. [Is it the same as (a)?]
- (c) At least one student hates all classes.
- (d) If a student hates some class, then (s)he does not like it.
- (e) Every student is good at some class and does not hate some other one.
- (f) There is a student who is not good at the class which (s)he likes.
- (g) If a student is good at some class, then (s)he likes it or does not hate it.
- (h) Every student hates at most one class.
- (i) There are students who like at least two same classes.
- (j) There is a student who likes all classes and is good at three of them.
- (k) There is only one student who is good at the class which (s)he does not like.

Exercise 3. Negate the following statements a decide which is true or false:

(a)	I do not like this list.	(i)	$\exists x \in \mathbb{N} : 2 < x < 3.$
(b)	All velociraptors can open windows.	(j)	$\forall x,y \in \mathbb{R}: x \cdot y \geq 0 \Rightarrow x+y \geq 0.$
(c)	He likes studying or nightlife.	(k)	$\forall x \in \mathbb{R} \exists y \in \mathbb{R} : x \cdot y = 1.$
(d)	Some mammals lay eggs.	(1)	$\forall x \in \mathbb{R} \setminus \{0\} \exists y \in \mathbb{R} : x \cdot y = 1.$
(e)	All of us had fish and chips.	(m)	$\forall x \in \mathbb{R} \exists y \in \mathbb{Q} : y \le x \land x < y + 1.$
(f)	If x is even prime, then it is a nice number.	(n)	$\forall x \in \mathbb{R} \exists y \in \mathbb{N} : y \leq x \wedge x < y + 1.$
(g)	Each woman is loved by some man.	(o)	$\forall x \in \mathbb{N} \exists y \in \mathbb{N} \forall z \in \mathbb{N} : z > x \Rightarrow z > y.$
(h)	If a student loves cats, than (s)he loves dogs.	(p)	$\exists a,b\in \mathbb{N}\forall x\in \mathbb{R}: x>a \Rightarrow -x^2+bx\leq$

Exercise 4. You are a visitor on an island inhabited only by knights and knaves, where knights always tell the truth and knaves always lie. One day you meet residents A, B and C and ask A what type he is.

0.

- (a) A answers: "I am a knave, but B is not." What are A and B?
- (b) A answers: "Either I am a knave or B is a knight." What are A and B?
- (c) A answers: "B and C are the same type." You ask C: "Are A and B the same type?". What does C answer?
- (d) You do not hear A's answer. B then says: "A said that he is the only knight among us" and C says: "Don't believe B, he is lying!". What are B and C?

Results - I. Mathematical logic

Exercise 2.

- (a) $\forall s \in S \exists c \in C : L(s,c).$
- (b) $\exists c \in C \, \forall s \in S : L(s, c)$. [No.]
- (c) $\exists s \in S \,\forall c \in C : H(s, c).$
- (d) $\forall s \in S \,\forall c \in C : H(s,c) \Rightarrow \neg L(s,c).$
- (e) $\forall s \in S \exists c_1, c_2 \in C : c_1 \neq c_2 \land G(s, c_1) \land \neg H(s, c_2).$
- (f) $\exists s \in S \ \exists c \in C : \neg G(s,c) \land L(s,c).$
- (g) $\forall s \in S \,\forall c \in C : G(s,c) \Rightarrow (L(s,c) \lor \neg H(s,c)).$
- (h) $\forall s \in S \,\forall c_1, c_2 \in C : (H(s, c_1) \land H(s, c_2)) \Rightarrow c_1 = c_2.$
- (i) $\exists s_1, s_2 \in S \exists c_1, c_2 \in C : s_1 \neq s_2 \land c_1 \neq c_2 \land L(s_1, c_1) \land L(s_2, c_1) \land L(s_1, c_2) \land L(s_2, c_2).$
- (j) $\exists s \in S \exists c_1, c_2, c_3 \in C \forall c \in C : c_1 \neq c_2 \land c_1 \neq c_3 \land c_2 \neq c_3 \land L(s, c) \land G(s, c_1) \land \land G(s, c_2) \land G(s, c_3).$
- (k) $\exists s_1 \in S \exists c \in C \forall s_2 \in S : (G(s_1, c) \land \neg L(s_1, c)) \land ((G(s_2, c) \land \neg L(s_2, c)) \Rightarrow s_1 = s_2).$

Exercise 3.

- (a) I like this list.
- (b) There is a velociraptor, which cannot open windows.
- (c) He likes neither studying nor nightlife. (=He does not like studying and he does not like nightlife.)
- (d) No mammal lays eggs.
- (e) Someone of us had not fish and chips. (There is someone among us, who had not fish or had not chips.)
- (f) x is even prime and it is not a nice number.
- (g) There is a woman whom any man does not love.
- (h) There exists a student, who loves cats, but does not love dogs.
- (i) $\forall x \in \mathbb{N} : 2 \ge x \lor x \ge 3$. The negation is true.
- (j) $\exists x, y \in \mathbb{R} : x \cdot y \ge 0 \land x + y < 0$. The negation is true.
- (k) $\exists x \in \mathbb{R} \, \forall y \in \mathbb{R} : x \cdot y \neq 1$. The negation is true.
- (1) $\exists x \in \mathbb{R} \setminus \{0\} \forall y \in \mathbb{R} : x \cdot y \neq 1$. The original statement is true.
- (m) $\exists x \in \mathbb{R} \, \forall y \in \mathbb{Q} : y > x \lor x \ge y + 1$. The original statement is true.
- (n) $\exists x \in \mathbb{R} \forall y \in \mathbb{N} : y > x \lor x \ge y + 1$. The negation is true.
- (o) $\exists x \in \mathbb{N} \forall y \in \mathbb{N} \exists z \in \mathbb{N} : z > x \land z \leq y$. The original statement is true.
- (p) $\forall a, b \in \mathbb{N} \exists x \in \mathbb{R} : x > a \land -x^2 + bx > 0$. The original statement is true.

Exercise 4.

- (a) Both A and B are knaves.
- (b) Both A and B are knights.
- (c) Yes.
- (d) B is a knave and C is a knight.