7. Homework

In the following examples, you should investigate the given function f, i.e. you should find:

- The domain and continuity of f.
- Points of intersections with axes.
- Symmetries: oddness, evenness, periodicity.
- Limits at the "endpoints of the domain".
- Asymptotes of the function.
- The intervals of monotonicity; local and global extrema.
- The range of f.
- The intervals of concavity or convexity; inflection points.
- The sketch of the graph of f.

Exercise 1. [4pts] Choose one of the following functions to investigate:
(i) $f(x)=\log ^{3} x-3 \log ^{2} x$.
(ii) $f(x)=\frac{1}{x} e^{\frac{2}{x}}$. Hint: $\lim _{x \rightarrow 0_{-}} f(x)=0$ can be used without the proof.
(iii) $f(x)=\arctan \frac{x}{1+x^{2}}$.
(iv) (a) $f(x)=e^{2 x}-e^{x}$ and (b) $f(x)=\frac{1}{1+x^{3}}$.

If you decide to deal with (iv), you need to investigate both functions.

Bonus 1. [4pts] Choose one of the following functions to investigate:
(i) $f(x)=\sqrt{x^{2}-\frac{2}{x}}$.
(ii) $f(x)=\frac{x^{3}}{x^{2}+x-2}$. Hint: It is not necessary to calculate the value of extrema, their sign is enough.
(iii) $f(x)=\frac{\cos x}{\sin x+2}$. Hint: f is periodic.

If you are unsure about something just write me an e-mail. Do not hesitate to check your results with WolframAlpha or GeoGebra.

7. Homework - Solution

Solution to Exercise 1.

(i) Clearly, $\mathcal{D}_{f}=(0,+\infty)$ and f is continuous on \mathcal{D}_{f} as a sum (and product) of continuous functions. Due to the shape of its domain, f has no symmetries. There is no intersection with y-axis (because $x \neq 0)$. If we set $y=0$, we are solving $(\log x-3) \log ^{2} x=0$, which gives points $[1,0],\left[e^{3}, 0\right]$.
Limits. We have

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} f(x) & =\lim _{x \rightarrow+\infty}(\log x-3) \log ^{2} x=+\infty \cdot(+\infty)^{2}=+\infty \\
\lim _{x \rightarrow 0_{+}} f(x) & =\lim _{x \rightarrow 0_{+}}(\log x-3) \log ^{2} x=-\infty \cdot(-\infty)^{2}=-\infty, \\
\lim _{x \rightarrow+\infty} \frac{f(x)}{x} & =\lim _{x \rightarrow+\infty} \frac{\log ^{3} x-3 \log ^{2} x}{x}=0, \quad \lim _{x \rightarrow+\infty} f(x)-0 \cdot x=+\infty \notin \mathbb{R},
\end{aligned}
$$

and so f has not asymptotes.

1. Derivative. In a standard way, we get

$$
f^{\prime}(x)=3 \frac{\log ^{2} x}{x}-6 \frac{\log x}{x}=\frac{3 \log x}{x} \cdot(\log x-2), x \in \mathcal{D}_{f} .
$$

We thus see that $f^{\prime}>0$ for $x \in(0,1) \cup\left(e^{2},+\infty\right)$ and $f^{\prime}<0$ for $x \in\left(1, e^{2}\right)$. It imples that f increases on (0,1$],\left[e^{2},+\infty\right.$) and decreases on $\left[1, e^{2}\right]$. At $x=1$ function f has local maximum, $f(1)=0$ and at $x=e^{2}$ has local minimum $f\left(e^{2}\right)=-4$. Also, $\mathcal{R}_{f}=\mathbb{R}$.
2. Derivative. We obtain

$$
\begin{aligned}
f^{\prime \prime}(x) & \left.=\left(\frac{3 \log ^{2} x-6 \log x}{x}\right)^{\prime}=\frac{1}{x^{2}}\left(\left(\frac{6 \log x}{x}-\frac{6}{x}\right) \cdot x-\left(3 \log ^{2} x-6 \log x\right) \cdot 1\right)\right) \\
& =\frac{3}{x^{2}}\left(2 \log x-2-\log ^{2} x+2 \log x\right)=-\frac{3}{x^{2}}\left(\log ^{2} x-4 \log x+2\right), x \in \mathcal{D}_{f} .
\end{aligned}
$$

We need to factor the bracket. We set $z=\log x$ and solve $z^{2}-4 z+2=0$, which has roots $z_{1,2}=2 \pm \sqrt{2}$. Let's denote $x_{1}=e^{2-\sqrt{2}}$ and $x_{2}=e^{2+\sqrt{2}}$. Now,

$$
f^{\prime \prime}(x)=-\frac{3\left(\log x-x_{1}\right)\left(\log x-x_{2}\right)}{x^{2}}
$$

and therefore, $f^{\prime \prime}>0$ if and only if $x \in\left(x_{1}, x_{2}\right)$ and $f^{\prime \prime}<0$ for $x \in\left(0, x_{1}\right) \cup\left(x_{2},+\infty\right)$. It implies that the function f is convex on $\left(e^{2-\sqrt{2}}, e^{2+\sqrt{2}}\right)$ and concave on $\left(0, e^{2-\sqrt{2}}\right),\left(e^{2+\sqrt{2}},+\infty\right)$. At both $x=e^{2-\sqrt{2}}$ and $x=e^{2+\sqrt{2}}$ the function f has the inflection points.
We need to realize that $0<1<e^{2-\sqrt{2}}<e^{2}<e^{2+\sqrt{2}}$.
(ii) Clearly, $\mathcal{D}_{f}=\mathbb{R} \backslash\{0\}$ and f is continuous on \mathcal{D}_{f} as a product (and composition) of continuous functions. Obviously, f has no symmetries. There is no intersection with y-axis (because $x \neq 0$). If we set $y=0$, we are solving $\frac{1}{x} e^{\frac{2}{x}}=0$, which has no solution either.
Limits. We have

$$
\begin{aligned}
\lim _{x \rightarrow \pm \infty} f(x) & =\lim _{x \rightarrow \pm \infty} \frac{e^{\frac{2}{x}}}{x}=\frac{e^{0}}{ \pm \infty}=0 \\
\lim _{x \rightarrow 0_{+}} f(x) & =\lim _{x \rightarrow 0_{+}} \frac{1}{x} e^{\frac{2}{x}}=\frac{+\infty}{0_{+}}=+\infty, \quad \lim _{x \rightarrow 0_{-}} f(x)=0 \text { (see hint), } \\
\lim _{x \rightarrow \pm \infty} \frac{f(x)}{x} & =\lim _{x \rightarrow+\infty} \frac{e^{\frac{2}{x}}}{x^{2}}=\frac{e^{0}}{+\infty}=0, \quad \lim _{x \rightarrow \pm \infty} f(x)-0 \cdot x=0
\end{aligned}
$$

and so f has trivial asymptote $y=0$ at $\pm \infty$.

1. Derivative. In a standard way, we get

$$
f^{\prime}(x)=\frac{1}{x^{2}}\left(-\frac{2}{x^{2}} \cdot e^{\frac{2}{x}} \cdot x-e^{\frac{2}{x}} \cdot 1\right)=-\frac{\frac{2}{x}+1}{x^{2}} \cdot e^{\frac{2}{x}}=-\frac{x+2}{x^{3}} \cdot e^{\frac{2}{x}}, x \in \mathcal{D}_{f} .
$$

We thus see that $f^{\prime}>0$ for $x \in(-2,0)$ and $f^{\prime}<0$ for $x \in(-\infty,-2) \cup(0,+\infty)$. It imples that f increases on $[-2,0)$ and decreases on $(-\infty,-2],(0,+\infty)$. At $x=-2$ function f has local (even global) minimum, $f(-2)=-\frac{1}{2 e}$. Finally, $\mathcal{R}_{f}=\left[-\frac{1}{2 e}, 0\right) \cup(0,+\infty)$.
2. Derivative. We obtain

$$
\begin{aligned}
f^{\prime \prime}(x) & =-\left(\frac{(x+2) e^{\frac{2}{x}}}{x^{3}}\right)^{\prime}=-\frac{1}{x^{6}}\left(\left(e^{\frac{2}{x}}-\frac{2 x+4}{x^{2}} \cdot e^{\frac{2}{x}}\right) \cdot x^{3}-(x+2) e^{\frac{2}{x}} \cdot 3 x^{2}\right) \\
& =-\frac{e^{\frac{2}{x}}}{x^{4}}\left(\frac{x^{2}-2 x-4}{x^{2}} \cdot x-(3 x+6)\right)=-\frac{e^{\frac{2}{x}}}{x^{5}}\left(x^{2}-2 x-4-3 x^{2}-6 x\right) \\
& =\frac{2\left(x^{2}+4 x+2\right)}{x^{5}} \cdot e^{\frac{2}{x}}, x \in \mathcal{D}_{f} .
\end{aligned}
$$

We need to factor the bracket. By quadratic formula we find its roots $x_{1,2}=-2 \pm \sqrt{2}$. Now,

$$
f^{\prime \prime}(x)=\frac{2\left(x-x_{1}\right)\left(x-x_{2}\right)}{x^{5}} \cdot e^{\frac{2}{x}},
$$

and therefore, $f^{\prime \prime}>0$ if and only if $x \in\left(x_{2}, x_{1}\right) \cup(0,+\infty)$ and $f^{\prime \prime}<0$ for $x \in\left(-\infty, x_{2}\right) \cup\left(x_{1}, 0\right)$. It implies that the function f is convex on $(-2-\sqrt{2},-2+\sqrt{2}),(0,+\infty)$ and concave on $(-\infty,-2-\sqrt{2})$, $(2+\sqrt{2}, 0)$. At both $x_{1,2}$ the function f has the inflection points.
We need to realize that $-2-\sqrt{2}<-2<-2+\sqrt{2}<0$.
(iii) Clearly, $\mathcal{D}_{f}=\mathbb{R}$ and f is continuous on \mathcal{D}_{f} as a composition of continuous functions. The single intersection point with y-axis is $[0,0]$ and this is also the only one intersection point with x-axis. Further, we see (because arctan is odd) that $f(-x)=-f(x)$ on the whole domain, i.e. f is odd. It is neither even, nor periodic. We can focus our investigation just on $x \in[0,+\infty)$.
Limits. We have (also, $f(0)=0$, but we already know it)

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} f(x) & =\lim _{x \rightarrow+\infty} \arctan \frac{1}{\frac{1}{x}+x}=\arctan \frac{1}{+\infty}=\arctan 0=0 \\
\lim _{x \rightarrow+\infty} \frac{f(x)}{x} & =\frac{0}{+\infty}=0, \quad \lim _{x \rightarrow+\infty} f(x)-0 \cdot x=0
\end{aligned}
$$

and the function f thus has just trivial asymptote $y=0$ (at both $\pm \infty$).

1. Derivative. In a standard way, we find

$$
f^{\prime}(x)=\frac{1}{1+\left(\frac{x}{1+x^{2}}\right)^{2}} \cdot \frac{1 \cdot\left(1+x^{2}\right)-x \cdot 2 x}{\left(1+x^{2}\right)^{2}}=\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}+x^{2}}, x \in \mathcal{D}_{f}
$$

We thus see that $f^{\prime}>0$ for $x \in(0,1)$ and $f^{\prime}<0$ for $x \in(1,+\infty)$. It imples that f increases on $[0,1]$ and decreases on $[1,+\infty)$. At $x=1$ the function f has local maximum $f(1)=\arctan \frac{1}{2}$. Also, $\mathcal{R}_{f}=\left[-\arctan \frac{1}{2}, \arctan \frac{1}{2}\right]$.
2. Derivative. We directly obtain

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{-2 x \cdot\left(x^{4}+3 x^{2}+1\right)-\left(1-x^{2}\right) \cdot\left(4 x^{3}+6 x\right)}{\left(\left(1+x^{2}\right)^{2}+x^{2}\right)^{2}} \\
& =\frac{-2 x^{5}-6 x^{3}-2 x+4 x^{5}+6 x^{3}-4 x^{3}-6 x}{\left(\left(1+x^{2}\right)^{2}+x^{2}\right)^{2}} \\
& =\frac{2 x^{5}-4 x^{3}-8 x}{\left(\left(1+x^{2}\right)^{2}+x^{2}\right)^{2}}=\frac{2 x\left(x^{4}-2 x^{2}-4\right)}{\left(\left(1+x^{2}\right)^{2}+x^{2}\right)^{2}}, x \in \mathcal{D}_{f} .
\end{aligned}
$$

We need to factor the bracket in the numerator. We set $z=x^{2}$ and solve $z^{2}-2 z-4=0$, it has roots $z_{1,2}=1 \pm \sqrt{5}$. Now,

$$
f^{\prime \prime}(x)=\frac{2 x\left(x^{2}-(1+\sqrt{5})\right)\left(x^{2}-(1-\sqrt{5})\right)}{\left(\left(1+x^{2}\right)^{2}+x^{2}\right)^{2}}=\frac{2 x\left(x-x_{1}\right)\left(x+x_{2}\right)\left(x^{2}+\sqrt{5}-1\right)}{\left(\left(1+x^{2}\right)^{2}+x^{2}\right)^{2}},
$$

where we set $x_{1}=-\sqrt{1+\sqrt{5}}$ and $x_{2}=\sqrt{1+\sqrt{5}}$. The second and the third bracket are positive (and the denominator too). Therefore, we have just two zero points of $f^{\prime \prime}$ and we see that $f^{\prime \prime}>0$ if and only if $x \in\left(x_{2},+\infty\right)$ and $f^{\prime \prime}<0$ for $x \in\left(0, x_{2}\right)$. It implies that the function f is convex on $(\sqrt{1+\sqrt{5}},+\infty)$ and concave on $(0, \sqrt{1+\sqrt{5}})$. At $x=0$ and x_{2} the function f has the inflection points.
We need to realize that $-\sqrt{1+\sqrt{5}}<-1<0<1<\sqrt{1+\sqrt{5}}$.
Notes: The common mistake would be forgetting to write that at $x=0 f$ has the inflection point. Do not forget to (correctly) sketch the graph on \mathbb{R}, i.e. not just on $[0,+\infty)$.
(iv) (a) Clearly, $\mathcal{D}_{f}=\mathbb{R}$ and f is continuous on \mathcal{D}_{f} as a sum of continuous functions. Of course, $f(x)=e^{x}\left(e^{x}-1\right)$, and thus, the single intersection point with x-axis is $[0,0]$ (and it is also the only intersection point with y-axis). The function has no symmetries (it is obvious due to the limits below).
Limits. We have

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} f(x) & =\lim _{x \rightarrow+\infty} e^{x}\left(e^{x}-1\right)=(+\infty) \cdot(+\infty)=+\infty, \\
\lim _{x \rightarrow-\infty} f(x) & =\lim _{x \rightarrow+\infty} e^{x}\left(e^{x}-1\right)=0 \cdot(-1)=0
\end{aligned}
$$

and the function f thus has just trivial asymptote $y=0$ at $-\infty$. At $+\infty$ we have

$$
\lim _{x \rightarrow+\infty} \frac{f(x)}{x}=\lim _{x \rightarrow+\infty} \underbrace{\frac{e^{x}}{x}}_{\rightarrow+\infty, \text { Scale }}\left(e^{x}-1\right)=+\infty \notin \mathbb{R}
$$

so there is no asymptote.

1. Derivative. We immediately have

$$
f^{\prime}(x)=2 e^{2 x}-e^{x}=e^{x}\left(2 e^{x}-1\right), x \in \mathcal{D}_{f} .
$$

We thus see that $f^{\prime}>0$ for $x \in\left(\log \frac{1}{2},+\infty\right)$ and $f^{\prime}<0$ for $x \in\left(-\infty, \log \frac{1}{2}\right)$. It imples that f increases on $\left[\log \frac{1}{2},+\infty\right)$ and decreases on $\left(-\infty, \log \frac{1}{2}\right]$. At $x=\log \frac{1}{2}$ the function f has local minimum $f\left(\log \frac{1}{2}\right)=\frac{1}{4}-\frac{1}{2}=-\frac{1}{4}$. Also, $\mathcal{R}_{f}=\left[\log \frac{1}{2},+\infty\right]$.
2. Derivative. We obtain

$$
f^{\prime \prime}(x)=4 e^{2 x}-e^{x}=e^{x}\left(4 e^{x}-1\right), x \in \mathcal{D}_{f} .
$$

We quickly see that $f^{\prime \prime}>0$ if and only if $x \in\left(\log \frac{1}{4},+\infty\right)$ and $f^{\prime \prime}<0$ for $x \in\left(-\infty, \log \frac{1}{4}\right)$. It implies that the function f is convex on $\left(\log \frac{1}{4},+\infty\right)$ and concave on $\left(-\infty, \log \frac{1}{4}\right)$. At $x=\log \frac{1}{4}$ f has the inflection point.
(b) Clearly, $\mathcal{D}_{f}=\mathbb{R} \backslash\{-1\}$ and f is continuous on \mathcal{D}_{f} as a quotient of continuous functions. Obviously, f has no intersection point with x-axis, and $[0,1]$ is the single intersection point with y-axis. Due to non-symmetric \mathcal{D}_{f}, the function has no symmetries.
Limits. We have

$$
\lim _{x \rightarrow \pm \infty} f(x)=\frac{1}{1 \pm \infty}=0
$$

so the function f has just the trivial asymptote $y=0$ at both $\pm \infty$. Around $x=-1$ we find

$$
\begin{aligned}
\lim _{x \rightarrow-1_{+}} f(x) & =\frac{1}{0_{+}}=+\infty \\
\lim _{x \rightarrow-1_{-}} f(x) & =\frac{1}{0_{-}}=-\infty
\end{aligned}
$$

1. Derivative. We immediately have

$$
f^{\prime}(x)=-\frac{3 x^{2}}{\left(1+x^{3}\right)^{2}}, x \in \mathcal{D}_{f}
$$

We thus see that $f^{\prime}<0$ on the whole domain. It imples that f decreases on $(-\infty,-1)$, $(-1,+\infty)$. There are no extrema and $\mathcal{R}_{f}=\mathbb{R} \backslash\{0\}$.
2. Derivative. We obtain

$$
f^{\prime \prime}(x)=-\frac{6 x\left(1+x^{3}\right)^{2}-3 x^{2} \cdot 2\left(1+x^{3}\right) \cdot 3 x^{2}}{\left(1+x^{3}\right)^{4}}=-\frac{6 x+6 x^{4}-18 x^{4}}{\left(1+x^{3}\right)^{3}}=\frac{6 x\left(2 x^{3}-1\right)}{\left(1+x^{3}\right)^{3}}, x \in \mathcal{D}_{f}
$$

Clearly, $f^{\prime \prime}$ has zeros $x=-1,0, \sqrt[3]{\frac{1}{2}}$. Therefore, $f^{\prime \prime}>0$ for $x \in(-1,0) \cup\left(\sqrt[3]{\frac{1}{2}},+\infty\right)$ and $f^{\prime \prime}<0$ for $x \in(-\infty,-1) \cup\left(0, \sqrt[3]{\frac{1}{2}}\right)$. It implies that f is convex on $(-1,0),\left(\sqrt[3]{\frac{1}{2}},+\infty\right)$ and concave on $(-\infty,-1)$, $\left(0, \sqrt[3]{\frac{1}{2}}\right)$. At $x=0, \sqrt[3]{\frac{1}{2}}$ the function f has the inflection points.

Solution to Exercise 2.

(i) We see that $x^{2}-\frac{2}{x} \geq 0 \Leftrightarrow \frac{x^{3}-2}{x} \geq 0$, and therefore, $\mathcal{D}_{f}=(-\infty, 0) \cup[\sqrt[3]{2},+\infty)$ and f is continuous here. There is no intersection with y-axis $($ as $x \neq 0)$ and there is exactly one intersection point with x-axis, the point $[\sqrt[3]{2}, 0]$. There are no symmetries due to the shape of \mathcal{D}_{f}.
$\underline{\text { Limits. At infinities we find }}$

$$
\begin{gathered}
\lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \pm \infty}|x| \sqrt{1-\frac{2}{x^{3}}}=+\infty, \quad \lim _{x \rightarrow \pm \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \pm \infty} \frac{|x|}{x} \sqrt{1-\frac{2}{x^{3}}}= \pm 1 \\
\lim _{x \rightarrow+\infty} f(x)-1 \cdot x=\lim _{x \rightarrow+\infty} \sqrt{x^{2}-\frac{2}{x}}-x=\lim _{x \rightarrow+\infty} \frac{-\frac{2}{x}}{\sqrt{x^{2}-\frac{2}{x}}+x}=0 \\
\lim _{x \rightarrow-\infty} f(x)-(-1) \cdot x=\lim _{x \rightarrow-\infty} \sqrt{x^{2}-\frac{2}{x}}+x=\lim _{x \rightarrow-\infty} \frac{-\frac{2}{x}}{\sqrt{x^{2}-\frac{2}{x}}-x}=0
\end{gathered}
$$

and the function f thus has obligue asymptote $y=x$ at $+\infty$, and $y=-x$ at $-\infty$. We also need to find the one-sided limits at points excluded from the domain, i.e.

$$
\lim _{x \rightarrow 0-} f(x)=\sqrt{0-\frac{2}{0_{-}}}=+\infty, \quad \lim _{x \rightarrow \sqrt[3]{2}+} f(x)=f(\sqrt[3]{2})=0
$$

1. Derivative. In a straightforward way, we find

$$
f^{\prime}(x)=\frac{2 x+\frac{2}{x^{2}}}{2 \sqrt{x^{2}-\frac{2}{x}}}=\frac{x^{3}+1}{x^{2} \sqrt{x^{2}-\frac{2}{x}}} \text { for } x \in(-\infty, 0) \cup(\sqrt[3]{2},+\infty)
$$

The denominator is positive (when is defined), so $f^{\prime}>0$ if and only if $x^{3}+1>0$ which is for $x>-1$ and $f^{\prime}<0$ for $x<-1$. Therefore, f is increasing on $[-1,0),[\sqrt[3]{2},+\infty)$ and decreasing on $(-\infty,-1)$. At $x=-1$ and $x=\sqrt[3]{2}$ the function f has local minima, $f(-1)=\sqrt{3}$ and $f(\sqrt[3]{2})=0$. Therefore, $\mathcal{R}_{f}=[0,+\infty)$.
2. Derivative. In a standard way, we obtain

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{1}{x^{4}\left(x^{2}-\frac{2}{x}\right)}\left[3 x^{2} \cdot x^{2} \sqrt{x^{2}-\frac{2}{x}}-\left(x^{3}+1\right) \cdot\left(2 x \sqrt{x^{2}-\frac{2}{x}}+x^{2} \frac{x^{3}+1}{x^{2} \sqrt{x^{2}-\frac{2}{x}}}\right)\right] \\
& =\frac{1}{x^{4} \sqrt{\left(x^{2}-\frac{2}{x}\right)^{3}}}\left[3 x^{4}\left(x^{2}-\frac{2}{x}\right)-\left(x^{3}+1\right) \cdot\left(2 x\left(x^{2}-\frac{2}{x}\right)+x^{3}+1\right)\right] \\
& =\frac{3 x^{6}-6 x^{3}-\left(x^{3}+1\right)\left(2 x^{3}-4\right)-\left(x^{3}+1\right)^{2}}{x^{4} \sqrt{\left(x^{2}-\frac{2}{x}\right)^{3}}}=\frac{3 x^{6}-6 x^{3}-2 x^{6}+4 x^{3}-2 x^{3}+4-x^{6}-2 x^{3}-1}{x^{4} \sqrt{\left(x^{2}-\frac{2}{x}\right)^{3}}} \\
& =\frac{3\left(1-2 x^{3}\right)}{x^{4} \sqrt{\left(x^{2}-\frac{2}{x}\right)^{3}}}, x \in \mathcal{D}_{f} .
\end{aligned}
$$

Obviously, $f^{\prime \prime}>0$ if and only if $1-2 x^{3}>0$, i.e. for $x<\sqrt[3]{\frac{1}{2}}$ and $f^{\prime \prime}<0$ for $x>\sqrt[3]{\frac{1}{2}}$. Therefore, f is convex on $(-\infty, 0)$, and concave on $(\sqrt[3]{2},+\infty)$. There is no inflection point.
(ii) We see that $x^{2}+x-2=(x+2)(x-1)$, and therefore, $\mathcal{D}_{f}=\mathbb{R} \backslash\{-2,1\}$ and f is continuous here. If we set $x=0$, we find the intersection point $[0,0]$. Obviously, there are no more of them. There are no symmetries due to the shape of \mathcal{D}_{f}.
Limits. At infinities we find

$$
\begin{aligned}
\lim _{x \rightarrow \pm \infty} f(x) & =\lim _{x \rightarrow \pm \infty} \frac{x}{1+\frac{1}{x}-\frac{2}{x^{2}}}= \pm \infty, \quad \lim _{x \rightarrow \pm \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \pm \infty} \frac{1}{1+\frac{1}{x}-\frac{2}{x^{2}}}=1 \\
\lim _{x \rightarrow \pm \infty} f(x)-1 \cdot x & =\lim _{x \rightarrow \pm \infty} \frac{x}{1+\frac{1}{x}-\frac{2}{x^{2}}}-x=\lim _{x \rightarrow \pm \infty} \frac{-1+\frac{2}{x}}{1+\frac{1}{x}-\frac{2}{x^{2}}}=-1
\end{aligned}
$$

and the function f thus has obligue asymptote $y=x-1$ at both $\pm \infty$. We also need to find the one-sided limits at points excluded from the domain, i.e.

$$
\begin{aligned}
\lim _{x \rightarrow-2_{-}} f(x) & =\lim _{x \rightarrow-2_{-}} \frac{x^{3}}{(x+2)(x-1)}=\frac{-8}{0_{-} \cdot(-3)}=-\infty, \quad \lim _{x \rightarrow-2_{+}} f(x)=\frac{-8}{0_{+} \cdot(-3)}=+\infty, \\
\lim _{x \rightarrow 1_{-}} f(x) & =\frac{1}{3 \cdot\left(0_{-}\right)}=-\infty, \quad \lim _{x \rightarrow 1_{+}} f(x)=\frac{1}{3 \cdot\left(0_{+}\right)}=+\infty .
\end{aligned}
$$

1. Derivative. We directly find

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{[(x+2)(x-1)]^{2}}\left(3 x^{2} \cdot\left(x^{2}+x-2\right)-x^{3} \cdot(2 x+1)\right)=\frac{3 x^{4}+3 x^{3}-6 x^{2}-2 x^{4}-x^{3}}{[(x+2)(x-1)]^{2}} \\
& =\frac{x^{4}+2 x^{3}-6 x^{2}}{[(x+2)(x-1)]^{2}}=\frac{x^{2}\left(x^{2}+2 x-6\right)}{[(x+2)(x-1)]^{2}}, x \in \mathcal{D}_{f} .
\end{aligned}
$$

We need to factor the polynomial in the numerator. As usual, we find $x_{1,2}=-1 \pm \sqrt{7}$. We see that $f^{\prime}>0$ for $x \in\left(-\infty, x_{2}\right) \cup\left(x_{1},+\infty\right)$ and $f^{\prime}<0$ for $x \in\left(x_{2},-2\right) \cup(-2,1) \cup\left(1, x_{1}\right)$. It imples that f increases on $\left(-\infty, x_{2}\right],\left[x_{1},+\infty\right)$ and decreases on $\left[x_{2},-2\right),(-2,1),\left(1, x_{1}\right]$. At $x=-1-\sqrt{7}$ the function f has local maximum $f\left(x_{2}\right)<0$ and At $x=-1+\sqrt{7}$ it has local minimum, $f\left(x_{1}\right)>0$. Also, $\mathcal{R}_{f}=\mathbb{R}$ (we already know it due to the continuity of f and $\lim _{x \rightarrow-2_{+}} f(x), \lim _{x \rightarrow 1_{-}} f(x)$).
We need to realize that $-1-\sqrt{7}<-2<1<-1+\sqrt{7}$.
2. Derivative. In a standard way, we obtain

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{\left(4 x^{3}+6 x^{2}-12 x\right) \cdot[(x+2)(x-1)]^{2}-\left(x^{4}+2 x^{3}-6 x^{2}\right) \cdot 2[(x+2)(x-1)](2 x+1)}{[(x+2)(x-1)]^{4}} \\
& =\frac{2 x(x+2)(x-1)}{[(x+2)(x-1)]^{4}}(\left(2 x^{2}+3 x-6\right) \cdot(\underbrace{x^{2}+x-2}_{=(x+2)(x-1)})-\left(x^{3}+2 x^{2}-6 x\right) \cdot(2 x+1)) \\
& =\frac{2 x\left(2 x^{4}+3 x^{3}-6 x^{2}+2 x^{3}+3 x^{2}-6 x-4 x^{2}-6 x+12-2 x^{4}-4 x^{3}+12 x^{2}-x^{3}-2 x^{2}+6 x\right)}{[(x+2)(x-1)]^{3}} \\
& =\frac{2 x\left(3 x^{2}-6 x+12\right)}{[(x+2)(x-1)]^{3}}=\frac{6 x\left(x^{2}-2 x+4\right)}{[(x+2)(x-1)]^{3}}, x \in \mathcal{D}_{f} .
\end{aligned}
$$

As we see, the discriminant of $x^{2}-2 x+4$ is negative, therefore, $x^{2}-2 x+4>0$ on the whole domain. Signs of $f^{\prime \prime}$ are thus determined just by points $-2,0,1$. We see that $f^{\prime \prime}>0$ for $x \in(-2,0) \cup(1,+\infty)$ and $f^{\prime \prime}<0$ for $x \in(-\infty,-2) \cup(0,1)$. Therefore, f is convex on $(-2,0),(1,+\infty)$ and concave on $(-\infty,-2),(0,1)$, at $x=0$ the function f has the inflection point.
(iii) We know that $\mathcal{R}_{\sin }=[-1,1]$. It means that the denominator is always defined, i.e. $\mathcal{D}_{f}=\mathbb{R}$, and f is continuous here. If we set $x=0$, we obtain single intersection point with y-axis, which is $\left[0, \frac{1}{2}\right]$. Next, if $y=0$, we solve $\cos x=0$ which gives us all intersection points with x-axis, these are $\left[\frac{\pi}{2}+k \pi, 0\right], k \in \mathbb{Z}$. Finally, both $\cos x$ and $\sin x$ are 2π-periodic, therefore, f is also 2π-periodic function. Also, $f(-x)=\frac{\cos (-x)}{\sin (-x)+2}=\frac{\cos x}{-\sin x+2} \neq \pm f(x)$, which shows that f is neither even, nor odd. Due to the periodicity, we will focus our investigation of f just on the interval $[0,2 \pi]$.
Limits. We have $f(0)=f(2 \pi)=\frac{1}{2}$ and that is all. Asymptotes cannot exist.

1. Derivative. We get

$$
f^{\prime}(x)=\frac{-\sin x \cdot(\sin x+2)-\cos x \cdot \cos x}{(\sin x+2)^{2}}=\frac{-\sin ^{2} x-2 \sin x-\cos ^{2} x}{(\sin x+2)^{2}}=-\frac{1+2 \sin x}{(\sin x+2)^{2}}, x \in \mathcal{D}_{f}
$$

We should know that $1=\sin ^{2} x+\cos ^{2} x, x \in \mathbb{R}$.
We see that $f^{\prime}>0$ if and only if $1+2 \sin x<0$, i.e. $\sin x<-\frac{1}{2}$, which happens for $x \in\left(\frac{7 \pi}{6}, \frac{11 \pi}{6}\right)$. Therefore, f is increasing on $\left[\frac{7 \pi}{6}, \frac{11 \pi}{6}\right]$ and decreasing on $\left[0, \frac{7 \pi}{6}\right],\left[\frac{11 \pi}{6}, 2 \pi\right]$. At $x=\frac{7 \pi}{6}$ the function f has local minimum, $f\left(\frac{7 \pi}{6}\right)=\frac{-\frac{\sqrt{3}}{2}}{-\frac{1}{2}+2}=-\frac{1}{\sqrt{3}}$, and at $x=\frac{11 \pi}{6} f$ has local maximum, $f\left(\frac{11 \pi}{6}\right)=$ $\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}+2}=\frac{1}{\sqrt{3}}$. Finally, $\mathcal{R}_{f}=\left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$.
2. Derivative. In a standard way, we obtain

$$
\begin{aligned}
f^{\prime \prime}(x) & =-\frac{2 \cos x \cdot(\sin x+2)^{2}-(1+2 \sin x) \cdot 2(\sin x+2) \cos x}{(\sin x+2)^{4}} \\
& =-2 \cdot \frac{\cos x \cdot(\sin x+2)-(1+2 \sin x) \cdot \cos x}{(\sin x+2)^{3}}=-2 \cdot \frac{\sin x \cdot \cos x+2 \cos x-\cos x-2 \sin x \cdot \cos x}{(\sin x+2)^{3}} \\
& =\frac{-2(1-\sin x) \cos x}{(\sin x+2)^{3}}, x \in \mathcal{D}_{f} .
\end{aligned}
$$

We see that $f^{\prime \prime}>0$ exactly when $(1-\sin x) \cos x<0$. The bracket is positive up to the situation when it is equal to zero, which happens for $x=\frac{\pi}{2}$ and $\frac{3 \pi}{2}$. The second term is negative for $x \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$. So, $f^{\prime \prime}>0$ happens for $x \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ and $f^{\prime \prime}<0$ is for $x \in\left(0, \frac{\pi}{2}\right) \cup\left(\frac{3 \pi}{2}, 2 \pi\right)$. Therefore, f is convex on $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ and concave on $\left(0, \frac{\pi}{2}\right),\left(\frac{3 \pi}{2}, 2 \pi\right)$. At $x=\frac{\pi}{2}$ and $\frac{3 \pi}{2}$ the function f has the inflection points.
Finally, everything is extended periodically to the whole \mathbb{R}.

