6. Homework

Exercise 1. [1pt] Find f^{\prime} and determine also \mathcal{D}_{f} and $\mathcal{D}_{f^{\prime}}$:

$$
f(x)=\sqrt[3]{x} \arctan x+\frac{1}{x^{4}}-3^{x} \cos x
$$

Exercise 2. [1pt] Find f^{\prime} and determine also \mathcal{D}_{f} and $\mathcal{D}_{f^{\prime}}$:

$$
f(x)=\frac{\log x}{x^{2}+e^{x}}
$$

Exercise 3. [1pt] Find f^{\prime} and determine also \mathcal{D}_{f} and $\mathcal{D}_{f^{\prime}}$:

$$
f(x)=\arctan ^{2}\left(\log \frac{1}{x^{2}+1}\right)
$$

Exercise 4. [1pt] Find the following limit using L'Hôpital's rule:

$$
\lim _{x \rightarrow 1} \frac{\sin (\pi x)-3(x-1)^{2}}{e^{x^{2}}-e}
$$

Remark. Be careful about the differentiation of compound functions. Do not forget to write about domains of both f and f^{\prime}. Finally, you should also check the assumptions of L'Hôpital's rule.

Bonus 1. [1pt] Find f^{\prime} and determine also \mathcal{D}_{f} and $\mathcal{D}_{f^{\prime}}$:

$$
f(x)=\cos \left(\max \left\{x^{2}+x, 2 x+2\right\}\right)
$$

Hint: First, find when $x^{2}+x \geq 2 x+2$. Then, proceed as for piecewise-defined functions.
Bonus 2. [1pt] Until recently hamburgers at the city sports arena cost $\$ 4$ each. The food concessionaire sold an average of 10,000 hamburgers on a game night. When the price was raised to $\$ 4.40$, hamburger sales dropped off to an average of 8000 per night.
(a) Assuming a linear demand curve, find the price of a hamburger that will maximize the nightly hamburger revenue.
(b) If the concessionaire has fixed costs of $\$ 1000$ per night and the variable cost is $\$ 0.60$ per hamburger, find the price of a hamburger that will maximize the nightly hamburger profit.

6. Homework - Solution

Solution to Exercise 1. Obviously, $\mathcal{D}_{f}=\mathbb{R} \backslash\{0\}$ and we have

$$
\begin{aligned}
f^{\prime}(x) & =(\sqrt[3]{x})^{\prime} \arctan x+\sqrt[3]{x}(\arctan x)^{\prime}+\left(x^{-4}\right)^{\prime}-\left(3^{x}\right)^{\prime} \cos x-3^{x}(\cos x)^{\prime} \\
& =\frac{1}{3 \sqrt[3]{x^{2}}} \arctan x+\frac{\sqrt[3]{x}}{1+x^{2}}-\frac{4}{x^{5}}-3^{x} \log 3 \cdot \cos x+3^{x} \sin x
\end{aligned}
$$

which makes sense for all $x \in \mathcal{D}_{f}$. [1pt]
Solution to Exercise 2. Obviously, $\mathcal{D}_{f}=(0,+\infty)$ and we have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{\left(x^{2}+e^{x}\right)^{2}}\left[(\log x)^{\prime}\left(x^{2}+e^{x}\right)-\log x \cdot\left(x^{2}+e^{x}\right)^{\prime}\right] \\
& =\frac{1}{\left(x^{2}+e^{x}\right)^{2}}\left[\frac{x^{2}+e^{x}}{x}-\left(2 x+e^{x}\right) \log x\right],
\end{aligned}
$$

which makes sense for all $x \in \mathcal{D}_{f}$. [1pt]
Solution to Exercise 3. Function arctan is defined everywhere, we thus need $\log \frac{1}{x^{2}+1}$ to make sense, which is the case for all real numbers because $\frac{1}{x^{2}+1}$ is positive. Therefore, $\mathcal{D}_{f}=\mathbb{R}$, and we have

$$
\begin{aligned}
f^{\prime}(x) & =2 \arctan \left(\log \frac{1}{x^{2}+1}\right) \cdot\left(\arctan \left(\log \frac{1}{x^{2}+1}\right)\right)^{\prime}=\frac{2 \arctan \left(\log \frac{1}{x^{2}+1}\right)}{1+\log ^{2} \frac{1}{x^{2}+1}} \cdot\left(\log \frac{1}{x^{2}+1}\right)^{\prime} \\
& =\frac{2 \arctan \left(\log \frac{1}{x^{2}+1}\right)}{1+\log ^{2} \frac{1}{x^{2}+1}} \cdot \frac{1}{\frac{1}{x^{2}+1}} \cdot(\underbrace{\frac{1}{x^{2}+1}}_{\left(x^{2}+1\right)^{-1}})^{\prime}=\frac{2 \arctan \left(\log \frac{1}{x^{2}+1}\right)}{1+\log ^{2} \frac{1}{x^{2}+1}} \cdot\left(x^{2}+1\right) \cdot \frac{-1}{\left(x^{2}+1\right)^{2}} \cdot\left(x^{2}\right)^{\prime} \\
& =-\frac{4 x}{x^{2}+1} \cdot \frac{\arctan \left(\log \frac{1}{x^{2}+1}\right)}{1+\log ^{2} \frac{1}{x^{2}+1}}
\end{aligned}
$$

which makes sense for all $x \in \mathcal{D}_{f}$. [1pt]
Solution to Exercise 4. Due to continuity we see that $\sin (\pi x)-3(x-1)^{2} \rightarrow \sin \pi-0=0$ and $e^{x^{2}}-e \rightarrow e-e=0$ as $x \rightarrow 1$. We thus obtain

$$
\lim _{x \rightarrow 1} \frac{\sin (\pi x)-3(x-1)^{2}}{e^{x^{2}}-e} \stackrel{\mathrm{~L}}{ }{ }^{\prime} \mathrm{H}, \frac{0}{=} \lim _{x \rightarrow 1} \frac{\pi \cos (\pi x)-6(x-1)}{2 x e^{x^{2}}} \stackrel{\text { cont. }}{=} \frac{\pi \cos \pi-6 \cdot 0}{2 \cdot 1 \cdot e^{1}}=-\frac{\pi}{2 e} \cdot[1 \mathrm{pt}]
$$

Solution to Exercise 5. First, let's think about what the function actually looks like. So, what is $\max \left\{x^{2}+x, 2 x+2\right\}$ equal to? We have

$$
\begin{aligned}
x^{2}+x & \geq 2 x+2 \\
x^{2}-x-2 & \geq 0 \\
(x-2)(x+1) & \geq 0,
\end{aligned}
$$

and therefore,

$$
f(x)= \begin{cases}\cos \left(x^{2}+x\right), & x \in(-\infty,-1) \cup(2,+\infty) \\ \cos (2 x+2), & x \in[-1,2]\end{cases}
$$

(Note: It does not matter where we put closed brackets.) The function is now in a standard piecewisedefined form and we can differentiate it and obtain

$$
f^{\prime}(x)=\left\{\begin{array}{ll}
-(2 x+1) \sin \left(x^{2}+x\right), & x \in(-\infty,-1) \cup(2,+\infty) \\
-2 \sin (2 x+2), & x \in(-1,2)
\end{array} \cdot[0,5 \mathrm{pt}]\right.
$$

Now, we need to investigate the derivative at $x=-1$ and $x=2$. We can use either the definition (without any further assumptions) or the theorem about the computation of one-sided derivative. Let's
use the later, to apply it we need continuity of f at the respective point. It is kind of obvious, but let's check it via the definition. We have

$$
\begin{aligned}
f(-1) & =\cos 0=1 \\
\lim _{x \rightarrow-1_{+}} f(x) & =\lim _{x \rightarrow-1_{+}} \cos (2 x+2) \stackrel{\text { cont. }}{=} \cos 0=1 \\
\lim _{x \rightarrow-1_{-}} f(x) & =\lim _{x \rightarrow-1_{-}} \cos \left(x^{2}+x\right) \stackrel{\text { cont. }}{=} \cos 0=1
\end{aligned}
$$

and thus (because limits exist and are equal to the value of $f(-1)) f$ is continuous at -1 . Similarly,

$$
\begin{aligned}
f(2) & =\cos (4+2)=\cos 6 \\
\lim _{x \rightarrow 2_{+}} f(x) & =\lim _{x \rightarrow 2_{+}} \cos \left(x^{2}+x\right) \stackrel{\text { cont. }}{=} \cos 6 \\
\lim _{x \rightarrow 2_{-}} f(x) & =\lim _{x \rightarrow 2-} \cos (2 x+2) \stackrel{\text { cont. }}{=} \cos 6
\end{aligned}
$$

and f is continous at 2 . Now, we invoke the above-mentioned theorem to compute one-sided derivatives. We have

$$
\begin{aligned}
& f_{+}^{\prime}(-1)=\lim _{x \rightarrow-1_{+}} f^{\prime}(x)=\lim _{x \rightarrow-1_{+}}-2 \sin (2 x+2) \stackrel{\text { cont. }}{=}-2 \sin 0=0 \\
& f_{-}^{\prime}(-1)=\lim _{x \rightarrow-1_{-}} f^{\prime}(x)=\lim _{x \rightarrow-1_{-}}-(2 x+1) \sin \left(x^{2}+x\right) \stackrel{\text { cont. }}{=} \sin 0=0
\end{aligned}
$$

and thus (both limits exist and are the same) $f^{\prime}(-1)=0$. Similarly,

$$
\begin{aligned}
& f_{+}^{\prime}(2)=\lim _{x \rightarrow 2_{+}} f^{\prime}(x)=\lim _{x \rightarrow 2_{+}}-(2 x+1) \sin \left(x^{2}+x\right) \stackrel{\text { cont. }}{=}-5 \sin 6 \\
& f_{-}^{\prime}(2)=\lim _{x \rightarrow 2_{-}} f^{\prime}(x)=\lim _{x \rightarrow 2_{-}}-2 \sin (2 x+2) \stackrel{\text { cont. }}{=}-2 \sin 6,
\end{aligned}
$$

and thus $f^{\prime}(2)$ does not exist $(\sin 6 \neq 0$ and the values are thus different). [0,5pt]
Solution to Exercise 6. Let us denote by p the price of one hamburger and by q the number of them. Due to assumption of linear dependence, we know that

$$
q=a p+b
$$

where a and b are certain (real) parameters. Further, the following needs to be true

$$
\begin{aligned}
& 10000=4 a+b \\
& 80000=4.4 a+b
\end{aligned}
$$

It implies $2000=-0.4 a \Rightarrow a=-5000$, and also $b=30000$.
(a) Here, the profit is

$$
p q=a p^{2}+b p=\mathcal{P}(p)
$$

and its derivative is simply

$$
\mathcal{P}^{\prime}(p)=2 a p+b=-10000 p+30000=0 \Leftrightarrow p=3 .
$$

Because \mathcal{P} is a downward-oriented parabola this extremum needs to be maximum and the maximum profit is thus for the price $\$ 3$. [$0,5 \mathrm{pt}$]
(b) In this case, the profit is

$$
p q-1000-0.6 q=a p^{2}+b p-1000-0.6 a p-0.6 b=\mathcal{P}(p)
$$

The derivative is

$$
\mathcal{P}^{\prime}(p)=2 a p+b-0.6 a=-10000 p+30000+3000=0 \Leftrightarrow p=3.3 .
$$

For the same reason as before, the maximum profit is thus for the price $\$ 3.30$. [0,5pt]

