4. Homework

Exercise 1. [2pts] Find the limit:

$$
\lim _{x \rightarrow 1} \frac{e^{x^{3}-x}-1}{\arctan (x-1)}
$$

Exercise 2. [2pts] Find the limit:

$$
\lim _{x \rightarrow 0}(\sqrt{x+4}-1)^{\frac{1}{\sin x}}
$$

Remark. Do not forget to mention the use of arithmetics of limits and continuity; it is enough to indicate it above the relevant equality sign, e.g. "AL" or "cont.". Further, you have to explain in detail the application of both LCC and LCI.

Bonus 1. [2pts] Find the limit:

$$
\lim _{x \rightarrow-\infty}\left(1-\sin \frac{1}{x^{2}}\right)^{2 x^{2}+x+1}
$$

4. Homework - Solution

Solution to Exercise 1. We have

$$
\left.\begin{array}{rl}
\lim _{x \rightarrow 1} \frac{e^{x^{3}-x}-1}{\arctan (x-1)} & =\lim _{x \rightarrow 1} \underbrace{\frac{e^{x^{3}-x}-1}{x^{3}-x}}_{\rightarrow 1, \text { by }(1)} \cdot \underbrace{\frac{1}{\arctan (x-1)}}_{\rightarrow 1, \text { by }(2)} \cdot \frac{x^{3}-x}{x-1}
\end{array} \stackrel{\text { AL }}{=} \lim _{x \rightarrow 1} \frac{x(x-1)(x+1)}{x-1}\right)
$$

 $\lim _{y \rightarrow 0} f(y)=1$. The condition (I) asks if $\exists \eta>0: g(x) \neq 0 \forall x \in P(1, \eta)$. Clearly, $g(x)=0 \Leftrightarrow x \in$ $\{0, \pm 1\}$, and therefore, we take $\eta=\frac{1}{2}$ (or anything <1). LCI then says that $\lim _{x \rightarrow 1} f(g(x))=1$. [0,5pt]

Ad (2): We use LCI with $g(x)=x-1$ and $f(y)=\frac{\arctan y}{y}$. Of course, $\lim _{x \rightarrow 1} g(x) \stackrel{\text { cont. }}{=} 0$ and $\lim _{y \rightarrow 0} \overline{f(y)}=1$. The condition (I) asks if $\exists \eta>0: g(x) \neq 0 \forall x \in P(1, \eta)$. Clearly, $g(x)=0 \Leftrightarrow x=1$, and therefore, we can take any $\eta>0$. LCI then says that $\lim _{x \rightarrow 1} f(g(x))=1$. [0,5pt]

Alternative way:

$$
\lim _{x \rightarrow 1} \frac{e^{x^{3}-x}-1}{\arctan (x-1)} \stackrel{\mathrm{L}^{\prime} \mathrm{H}, \frac{0}{0}}{=} \lim _{x \rightarrow 1} \frac{\left(3 x^{2}-1\right) e^{x^{3}-x}}{1+(x-1)^{2}} \stackrel{\text { cont. }}{=} \frac{(3-1) e^{0}}{1+0}=2 .[2 \mathrm{pt}]
$$

Solution to Exercise 2. We have (according to the standard "exponential trick")

$$
\lim _{x \rightarrow 0}(\sqrt{x+4}-1)^{\frac{1}{\sin x}}=\lim _{x \rightarrow 0} e^{g(x)}
$$

where

$$
g(x)=\frac{1}{\sin x} \cdot \log (\sqrt{x+4}-1)
$$

We obtain,

$$
\begin{aligned}
\lim _{x \rightarrow 0} g(x) & =\lim _{x \rightarrow 0} \underbrace{\frac{1}{\frac{\sin x}{x}}}_{\rightarrow 1} \cdot \underbrace{\frac{\log (\sqrt{x+4}-1)}{\sqrt{x+4}-2}}_{\rightarrow 1, \text { by }(1)} \cdot \frac{\sqrt{x+4}-2}{x} \stackrel{\text { AL }}{=} \lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{x} \cdot \frac{\sqrt{x+4}+2}{\sqrt{x+4}+2} \\
& =\lim _{x \rightarrow 0} \frac{x}{x} \cdot \frac{1}{\sqrt{x+4}+2}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+4}+2} \stackrel{\text { cont. }}{=} \frac{1}{2+2}=\frac{1}{4} \cdot[1 \mathrm{pt}]
\end{aligned}
$$

Now, let $f(y)=e^{y}$, then f is continuous at $\frac{1}{4}$, and therefore, by LCC, we get

$$
\lim _{x \rightarrow 0}(\sqrt{x+4}-1)^{\frac{1}{\sin x}}=\lim _{x \rightarrow 0} f(g(x))=e^{\frac{1}{4}}=\sqrt[4]{e} \cdot[0,5 \mathrm{pt}]
$$

Ad (1): We use LCI with $g(x)=\sqrt{x+4}-2$ and $f(y)=\frac{\log (y+1)}{y}$. Of course, $\lim _{x \rightarrow 0} g(x) \stackrel{\text { cont. }}{=} 0$ and $\lim _{y \rightarrow 0} \overline{f(y)}=1$. The condition (I) asks if $\exists \eta>0: g(x) \neq 0 \forall x \in P(0, \eta)$. Clearly (g is monotone), $g(x)=0 \Leftrightarrow x=0$, and therefore, we can take any $\eta>0$. LCI then says that $\lim _{x \rightarrow 0} f(g(x))=1$. [0,5pt]

Alternative way:

$$
\lim _{x \rightarrow 0} g(x) \stackrel{\text { L'H }, \frac{0}{0}}{=} \lim _{x \rightarrow 0} \frac{\frac{1}{\sqrt{x+4}-1} \cdot \frac{1}{2 \sqrt{x+4}}}{\cos x} \stackrel{\text { cont. }}{=} \frac{\frac{1}{2-1} \cdot \frac{1}{2 \cdot 2}}{1}=\frac{1}{4} \cdot[1,5 \mathrm{pt}]
$$

Remark. A lot of you calculated $\lim _{x \rightarrow 0} \log (f(x))=\frac{1}{4}$. Then you said that

$$
\begin{aligned}
\lim _{x \rightarrow 0} \log (f(x)) & =\frac{1}{4} \\
\log \left(\lim _{x \rightarrow 0} f(x)\right) & =\frac{1}{4} \\
\lim _{x \rightarrow 0} f(x) & =\sqrt[4]{e}
\end{aligned}
$$

This is not enough. You need to explain why you can interchange $\lim _{x \rightarrow 0}$ and \log. This is done using the exponential trick, i.e.

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} e^{\log f(x)}=\sqrt[4]{e}
$$

due to continuity of e^{x} at $\frac{1}{4}$ and LCC.

Solution to Exercise 3. We have (according to the standard "exponential trick")

$$
\lim _{x \rightarrow-\infty}\left(1-\sin \frac{1}{x^{2}}\right)^{2 x^{2}+x+1}=\lim _{x \rightarrow-\infty} e^{g(x)}
$$

where

$$
g(x)=\left(2 x^{2}+x+1\right) \cdot \log \left(1-\sin \frac{1}{x^{2}}\right)
$$

We obtain,

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} g(x) & =\lim _{x \rightarrow-\infty}\left(2 x^{2}+x+1\right) \cdot \underbrace{\frac{\log \left(1-\sin \frac{1}{x^{2}}\right)}{-\sin \frac{1}{x^{2}}}}_{\rightarrow 1, \text { by }(1)} \cdot(-1) \cdot \underbrace{\frac{\sin \frac{1}{x^{2}}}{\frac{1}{x^{2}}}}_{\rightarrow 1, \text { by }(2)} \cdot \frac{1}{x^{2}} \\
& \stackrel{\text { AL }}{=}-\lim _{x \rightarrow-\infty}\left(2+\frac{1}{x}+\frac{1}{x^{2}}\right) \stackrel{\text { AL }}{=}-2 .
\end{aligned}
$$

Now, let $f(y)=e^{y}$, then f is continuous at -2 , and therefore, by LCC, we get

$$
\lim _{x \rightarrow-\infty}\left(1-\sin \frac{1}{x^{2}}\right)^{2 x^{2}+x+1}=\lim _{x \rightarrow-\infty} f(g(x))=e^{-2}=\frac{1}{e^{2}} \cdot[0,5 \mathrm{pt}]
$$

 below, and $\lim _{y \rightarrow 0} f(y)=1$. The condition (I) asks if $\exists \eta>0: g(x) \neq 0 \forall x \in P(-\infty, \eta)$. Clearly, solving

$$
-\sin \frac{1}{x^{2}}=0 \text { for } x \in\left(-\infty,-\frac{1}{\eta}\right) \Leftrightarrow \frac{1}{x} \in(-\eta, 0)
$$

is equivalent to solving

$$
\sin z=0 \text { for } z=\frac{1}{x^{2}} \in\left(0, \eta^{2}\right)
$$

All solutions of this equation are $z=k \pi, k \in \mathbb{Z}$. So, it is enough to take $\eta^{2}=\frac{\pi}{4}$, i.e. $\eta=\frac{\sqrt{\pi}}{2}$. [0,5pt]
Ad (2): We use LCI with $g(x)=\frac{1}{x^{2}}$ and $f(y)=\frac{\sin y}{y}$. Of course, $\lim _{x \rightarrow-\infty} g(x) \stackrel{\text { AL }}{=} 0$ and $\lim _{y \rightarrow 0} f(y)=$

1. The condition (I) asks if $\exists \eta>0: g(x) \neq 0 \forall x \in P(-\infty, \eta)$. Clearly, $g(x) \neq 0 \forall x \in \mathbb{R}$, and therefore, we can take any $\eta>0$. LCI then says that $\lim _{x \rightarrow-\infty} f(g(x))=1$. [0,5pt]
 course, $\lim _{x \rightarrow-\infty} g(x) \stackrel{\text { AL }}{=} 0$ and f is continous at $y=0$, and therefore, by LCC $\lim _{x \rightarrow-\infty} \sin \frac{1}{x^{2}}=$ $\lim _{x \rightarrow-\infty} f(g(x))=0$. [0,5pt]

Alternative way:

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} g(x)=\lim _{x \rightarrow-\infty} \frac{\log \left(1-\sin \frac{1}{x^{2}}\right)}{\frac{1}{2 x^{2}+x+1}} \stackrel{\text { L'H, } \frac{0}{0}}{\stackrel{\text { see }}{0}(4)} \lim _{x \rightarrow-\infty} \frac{\frac{2}{x^{3}} \cos \frac{1}{x^{2}}}{1-\sin \frac{1^{2}}{x^{2}}} \\
&-\frac{4 x+1}{\left(2 x^{2}+x+1\right)^{2}}
\end{aligned}=\lim _{x \rightarrow-\infty}-\frac{\left(2 x^{2}+x+1\right)^{2} \frac{2}{x^{3}} \cos \frac{1}{x^{2}}}{(4 x+1)\left(1-\sin \frac{1}{x^{2}}\right)}
$$

Ad (4): The fact that $\frac{1}{2 x^{2}+x+1} \rightarrow 0$ is clear due to AL. We need to check that also $\log \left(1-\sin \frac{1}{x^{2}}\right) \rightarrow 0$. We set $g(x)=1-\sin \frac{1}{x^{2}}$ and $f(y)=\log y$. Due to (5) we know that $\lim _{x \rightarrow-\infty} g(x)=1$ and because f is continuous at 1 we use LCC to get $\lim _{x \rightarrow-\infty} f(g(x))=\log 1=0$.

Remark. In the third exercise, the use of L'Hôpital's rule was not really effective.

