
1. Homework

Exercise 1. [1pt] Negate the following statements:

(i) Each continuous function is nice.

(ii) ∃x ∈ R \ {1} ∀n ∈ N : x · n > x2 − x ⇒ x ≤ 2.

Exercise 2. [1pt] Use mathematical induction to prove the following statement:

For any n ∈ N there holds
n∑

k=1

1
k(k + 1) = n

n + 1 .

Exercise 3. [1pt] Find the limit:

lim
n→∞

3 + n3 − 4n
√

n

2n3 − n2 + 2 .

Exercise 4. [1pt] Find the limit:

lim
n→∞

n · (
√

n2 + 2 −
√

n2 − 1) .

Remark. When calculating limits you need to comment on the use of non-trivial results. So, you do not
need to explain why e.g. 1

n2 → 0, but writing
√

1 + 1
n

2 → 1 is not enough; you need to explain why it is
true (based on some known result). You should also mention the use of arithemitcs of limits (=AL).

The bonus part follows; you can earn one bonus point for each exercise and also feed your soul.

Bonus 1. [1pt] Find the limit:

lim
n→∞

√
n2 + 6

√
n + 2 −

√
n2 − 2

3
√

n2 +
√

n − 3
√

n2 −
√

n
.

Bonus 2 (Difficult). [1pt] Let us consider function f(x) = x2 on an interval I = [0, 2]. The task is to
calculate the area between the curves y = x2 and y = 0 for x ∈ I.

(i) Let us fix N ∈ N and introduce the finite sequence {xn}N
n=0 in the form xn = 2n

N , i.e. so-called
partition of an interval I. We denote In = [xn, xn+1], n = 0, . . . , N − 1 (i.e. n-th subinterval).

(ii) Draw the picture for N = 4, 6.

(iii) Let us now introduce an upper and lower approximation of the area, i.e.

UN =
N−1∑
n=0

(xn+1 − xn) · sup
x∈In

f(x) and LN =
N−1∑
n=0

(xn+1 − xn) · inf
x∈In

f(x).

(iv) Realize what are sup
x∈In

f(x) and inf
x∈In

f(x).

(v) Explain what UN and LN represent for N = 4, 6 (look for rectangles).

(vi) What happens for reeeally BIG N?

(vii) Simplify the sums UN and LN . You should use the well-known formula for
∑n

k=1 k2.

(viii) Show that
inf

N∈N
UN = sup

N∈N
LN = 8

3 .

Based on your pictures you should now believe that this number corresponds to the looked-for quantity.
In this way, you just calculated (using the definition) the so-called Riemann integral of f on I. In symbols,

(R)
2∫
0

f(x)dx = 8
3 . You will get familiar with it in the next semester.

Let me note that there will be a much more effective way of computing such a thing. It will rely on
derivatives, which we will study in several weeks.
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1. Homework - Solution

Solution to Exercise 1.

(i) There is a continuous function which is not nice./Some continuous function is not nice. [0,5pt]

(ii) ∀x ∈ R \ {1} ∃n ∈ N : x · n > x2 − x ∧ x > 2. [0,5pt]

Solution to Exercise 2. As usual, there will be three steps.

(1) First, we check the statement for the first admissible n, in our case it is n = 1. So,

LHS =
1∑

k=1

1
k(k + 1) = 1

1(1 + 1) = 1
2 and RHS = 1

2 .

As we see, both quantities are the same and the first step is thus complete.

(2) Now, we suppose that the statement holds for fixed n ∈ N, i.e. we suppose that

n∑
k=1

1
k(k + 1) = n

n + 1 . [0,5pt] (*)

(3) Finally, we need to show that the statement holds for n + 1, it means to verify

n+1∑
k=1

1
k(k + 1) = n + 1

n + 2 . (**)

We calculate
n+1∑
k=1

1
k(k + 1) =

n∑
k=1

1
k(k + 1)  

= n
n+1 by (∗)

+ 1
(n + 1)(n + 2) = n

n + 1 + 1
(n + 1)(n + 2)

= n(n + 2) + 1
(n + 1)(n + 2) = n2 + 2n + 1

(n + 1)(n + 2) = (n + 1)2

(n + 1)(n + 2) = n + 1
n + 2 .

This is exactly the right-hand side of (**) and we are done. [0,5pt]

Solution to Exercise 3. We have

lim
n→∞

3 + n3 − 4n
√

n

2n3 − n2 + 2 = lim
n→∞

n3

n3 ·
3

n3 + 1 − 4n3/2

n3

2 − n2

n3 + 2
n3

= lim
n→∞

3
n3 + 1 − 4

n3/2

2 − 1
n + 2

n3

AL= 0 + 1 − 0
2 − 0 + 0 = 1

2 . [1pt]

Solution to Exercise 4. We compute

lim
n→∞

n · (
√

n2 + 2 −
√

n2 − 1) = lim
n→∞

n · (
√

n2 + 2 −
√

n2 − 1) ·
√

n2 + 2 +
√

n2 − 1√
n2 + 2 +

√
n2 − 1

= lim
n→∞

n · (n2 + 2) − (n2 − 1)
√

n2
(√

1 + 2
n2 +

√
1 − 1

n2

) = lim
n→∞

n

n
· 3√

1 + 2
n2 +

√
1 − 1

n2

= lim
n→∞

3√
1 + 2

n2 +
√

1 − 1
n2

AL= 3
1 + 1 = 3

2 . [0,5pt]

We used AL to get
1 + 2

n2 → 1 and 1 − 1
n2 → 1 as n → +∞

and thanks to RL we see that√
1 + 2

n2 → 1 and
√

1 − 1
n2 → 1 as n → +∞. [0,5pt]
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Solution to Exercise 5. For the difference of square roots we get√
n2 + 6

√
n + 2 −

√
n2 − 2 = (

√
n2 + 6

√
n + 2 −

√
n2 − 2)(

√
n2 + 6

√
n + 2 +

√
n2 − 2)√

n2 + 6
√

n + 2 +
√

n2 − 2

= 1√
n2

· (n2 + 6
√

n + 2) − (n2 − 2)√
1 + n1/6

n2 + 2
n2 +

√
1 − 2

n2

=
6
√

n + 4
n

· 1√
1 + 1

n11/6 + 2
n2 +

√
1 − 2

n2

and for cubic roots we obtain

1
3
√

n2 +
√

n − 3
√

n2 −
√

n
= 1

3
√

n2 +
√

n − 3
√

n2 −
√

n
·

3
√

(n2 +
√

n)2 + 3
√

(n2 +
√

n)(n2 −
√

n) + 3
√

(n2 −
√

n)2

3
√

(n2 +
√

n)2 + 3
√

(n2 +
√

n)(n2 −
√

n) + 3
√

(n2 −
√

n)2

=
3
√

n4

(n2 +
√

n) − (n2 −
√

n)
·

⎡⎣ 3

√(
(1 +

√
n

n2

)2

+ 3

√(
1 +

√
n

n2

) (
1 −

√
n

n2

)
+ 3

√(
1 −

√
n

n2

)2
⎤⎦

= n · 3
√

n

2
√

n
·

⎡⎣ 3

√(
1 + 1

n3/2

)2
+ 3

√(
1 + 1

n3/2

) (
1 − 1

n3/2

)
+ 3

√(
1 − 1

n3/2

)2
⎤⎦ .

Together,

lim
n→∞

√
n2 + 6

√
n + 2 −

√
n2 − 2

3
√

n2 +
√

n − 3
√

n2 −
√

n
= lim

n→∞

6
√

n + 4
n

· n · 3
√

n

2
√

n
·

3
√

(1 + 1
n3/2 )2 + 3

√
(1 + 1

n3/2 )(1 − 1
n3/2 ) + 3

√
(1 − 1

n3/2 )2√
1 + 1

n11/6 + 2
n2 +

√
1 − 2

n2  
→ 1+1+1

1+1 = 3
2 , as n→+∞, by AL.

AL= 3
2 lim

n→∞

n1/3(n1/6 + 4)
2n1/2 = 3

2 lim
n→∞

n3/6 + 4n2/6

2n3/6 = 3
2 lim

n→∞

1 + 4
n1/3

2
AL= 3

4 . [0,5pt]

In the calculation we used that due to AL we have(
1 + 1

n3/2

) (
1 − 1

n3/2

)
→ 1 · 1 = 1 as n → +∞

and together with RL it implies

3

√(
1 + 1

n3/2

) (
1 − 1

n3/2

)
→ 1 as n → +∞.

Convergence of other roots is analogous. [0,5pt]

Solution to Exercise 6. See the picture below for the sketch of the whole situation for N = 6. Because
f is increasing function on [0, +∞) we see that (recall that In = [xn, xn+1])

sup
x∈In

f(x) = f(xn+1) and inf
x∈In

f(x) = f(xn).

Therefore,
(xn+1 − xn) · sup

x∈In

f(x) = (xn+1 − xn)f(xn+1)

represents the area of a bigger (green) rectangle. So, e.g. the actual area of x5x6GF is over-estimated
by it because we add also the area of FGM . Similarly,

(xn+1 − xn) · inf
x∈In

f(x) = (xn+1 − xn)f(xn)

represents smaller (blackish) rectangle. Here, it under-estimate the actual area by ignoring the area of
FNG. Hence, UN represents sum of all bigger rectangles, it is over-estimation of the actual area and LN

is sum of all smaller rectangles and uder-estimation.
Next, if we would take e.g. N = 12, then the added or neglected areas would be smaller. Therefore,

both UN and LN would be more precise estimates of the actual area. And so on for bigger N ’s. [0,5pt]
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Observe that we want to take limN→+∞ UN and limN→+∞ LN . These numbers should be the same
and it will be our area. Further, from the construction, UN needs to be decreasing quantity (in N) and
LN needs to be increasing. Therefore, limN→+∞ UN = inf

n∈N
UN and limN→+∞ LN = sup

n∈N
LN .

Finally, we can evaluate the quantities UN and LN , we get

UN =
N−1∑
n=0

(
2(n + 1)

N
− 2n

N

)
· x2

n+1 = 2
N

N−1∑
n=0

4(n + 1)2

N2 = 8
N3

N∑
m=1

m2

= 8
N3 · N

6 (N + 1)(2N + 1) = 4
3 · 2N2 + 3N + 1

N2 = 8
3 ·

(
1 + 3

2N
+ 1

2N2

)
,

LN =
N−1∑
n=0

(
2(n + 1)

N
− 2n

N

)
· x2

n = 2
N

N−1∑
n=0

4n2

N2 = 8
N3

N−1∑
n=1

n2 = 8
N3 · N − 1

6 N(2N − 1)

= 4
3 · (N − 1)(2N − 1)

N2 = 4
3 · 2N2 − 3N + 1

N2 = 8
3 ·

(
1 − 3

2N
+ 1

2N2

)
.

Now, we can either use limits to get the result (see the previous observation about limits and supre-
mum/infimum) or we make a simple observation. Concerning UN it is quite obvious (because the bracket
is positive) that the smallest possible value is for N → +∞. Therefore, infN∈N UN = 8

3 . For LN it is not
so obvious, but it is again true thanks to the following calculation

− 3
2N

+ 1
2N2 < 0

1
N

< 3
1
3 < N,

which is clearly true for all N ∈ N. Hence, supN∈N
(
1 − 3

2N + 1
2N2

)
= 1 and we indeed have

inf
N∈N

UN = 8
3 and sup

N∈N
LN = 8

3 ,

which was our goal. [0,5pt]
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