1. Homework

Exercise 1. [1pt] Negate the following statements:
(i) Each continuous function is nice.
(ii) $\exists x \in \mathbb{R} \backslash\{1\} \forall n \in \mathbb{N}: x \cdot n>x^{2}-x \Rightarrow x \leq 2$.

Exercise 2. [1pt] Use mathematical induction to prove the following statement:

$$
\text { For any } n \in \mathbb{N} \text { there holds } \sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{n}{n+1} .
$$

Exercise 3. [1pt] Find the limit:

$$
\lim _{n \rightarrow \infty} \frac{3+n^{3}-4 n \sqrt{n}}{2 n^{3}-n^{2}+2}
$$

Exercise 4. [1pt] Find the limit:

$$
\lim _{n \rightarrow \infty} n \cdot\left(\sqrt{n^{2}+2}-\sqrt{n^{2}-1}\right) .
$$

Remark. When calculating limits you need to comment on the use of non-trivial results. So, you do not need to explain why e.g. $\frac{1}{n^{2}} \rightarrow 0$, but writing $\sqrt{1+\frac{1}{n}^{2}} \rightarrow 1$ is not enough; you need to explain why it is true (based on some known result). You should also mention the use of arithemitcs of limits ($=A L$).

The bonus part follows; you can earn one bonus point for each exercise and also feed your soul.
Bonus 1. [1pt] Find the limit:

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}+\sqrt[6]{n}+2}-\sqrt{n^{2}-2}}{\sqrt[3]{n^{2}+\sqrt{n}}-\sqrt[3]{n^{2}-\sqrt{n}}}
$$

Bonus 2 (Difficult). [1pt] Let us consider function $f(x)=x^{2}$ on an interval $I=[0,2]$. The task is to calculate the area between the curves $y=x^{2}$ and $y=0$ for $x \in I$.
(i) Let us fix $N \in \mathbb{N}$ and introduce the finite sequence $\left\{x_{n}\right\}_{n=0}^{N}$ in the form $x_{n}=\frac{2 n}{N}$, i.e. so-called partition of an interval I. We denote $I_{n}=\left[x_{n}, x_{n+1}\right], n=0, \ldots, N-1$ (i.e. n-th subinterval).
(ii) Draw the picture for $N=4,6$.
(iii) Let us now introduce an upper and lower approximation of the area, i.e.

$$
U_{N}=\sum_{n=0}^{N-1}\left(x_{n+1}-x_{n}\right) \cdot \sup _{x \in I_{n}} f(x) \quad \text { and } \quad L_{N}=\sum_{n=0}^{N-1}\left(x_{n+1}-x_{n}\right) \cdot \inf _{x \in I_{n}} f(x)
$$

(iv) Realize what are $\sup _{x \in I_{n}} f(x)$ and $\inf _{x \in I_{n}} f(x)$.
(v) Explain what U_{N} and L_{N} represent for $N=4,6$ (look for rectangles).
(vi) What happens for reeeally BIG N ?
(vii) Simplify the sums U_{N} and L_{N}. You should use the well-known formula for $\sum_{k=1}^{n} k^{2}$.
(viii) Show that

$$
\inf _{N \in \mathbb{N}} U_{N}=\sup _{N \in \mathbb{N}} L_{N}=\frac{8}{3}
$$

Based on your pictures you should now believe that this number corresponds to the looked-for quantity. In this way, you just calculated (using the definition) the so-called Riemann integral of f on I. In symbols, $(\mathcal{R}) \int_{0}^{2} f(x) \mathrm{d} x=\frac{8}{3}$. You will get familiar with it in the next semester.

Let me note that there will be a much more effective way of computing such a thing. It will rely on derivatives, which we will study in several weeks.

1. Homework - Solution

Solution to Exercise 1.

(i) There is a continuous function which is not nice./Some continuous function is not nice. [0,5pt]
(ii) $\forall x \in \mathbb{R} \backslash\{1\} \exists n \in \mathbb{N}: x \cdot n>x^{2}-x \wedge x>2$. [0,5pt]

Solution to Exercise 2. As usual, there will be three steps.
(1) First, we check the statement for the first admissible n, in our case it is $n=1$. So,

$$
L H S=\sum_{k=1}^{1} \frac{1}{k(k+1)}=\frac{1}{1(1+1)}=\frac{1}{2} \quad \text { and } \quad R H S=\frac{1}{2} .
$$

As we see, both quantities are the same and the first step is thus complete.
(2) Now, we suppose that the statement holds for fixed $n \in \mathbb{N}$, i.e. we suppose that

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{n}{n+1} \cdot[0,5 \mathrm{pt}] \tag{*}
\end{equation*}
$$

(3) Finally, we need to show that the statement holds for $n+1$, it means to verify

$$
\begin{equation*}
\sum_{k=1}^{n+1} \frac{1}{k(k+1)}=\frac{n+1}{n+2} \tag{**}
\end{equation*}
$$

We calculate

$$
\begin{aligned}
\sum_{k=1}^{n+1} \frac{1}{k(k+1)} & =\underbrace{\sum_{k=1}^{n} \frac{1}{k(k+1)}}_{=\frac{n}{n+1} \text { by }(*)}+\frac{1}{(n+1)(n+2)}=\frac{n}{n+1}+\frac{1}{(n+1)(n+2)} \\
& =\frac{n(n+2)+1}{(n+1)(n+2)}=\frac{n^{2}+2 n+1}{(n+1)(n+2)}=\frac{(n+1)^{2}}{(n+1)(n+2)}=\frac{n+1}{n+2} .
\end{aligned}
$$

This is exactly the right-hand side of $\left({ }^{* *}\right)$ and we are done. [0,5pt]
Solution to Exercise 3. We have

$$
\lim _{n \rightarrow \infty} \frac{3+n^{3}-4 n \sqrt{n}}{2 n^{3}-n^{2}+2}=\lim _{n \rightarrow \infty} \frac{n^{3}}{n^{3}} \cdot \frac{\frac{3}{n^{3}}+1-\frac{4 n^{3 / 2}}{n^{3}}}{2-\frac{n^{2}}{n^{3}}+\frac{2}{n^{3}}}=\lim _{n \rightarrow \infty} \frac{\frac{3}{n^{3}}+1-\frac{4}{n^{3 / 2}}}{2-\frac{1}{n}+\frac{2}{n^{3}}} \stackrel{A L}{=} \frac{0+1-0}{2-0+0}=\frac{1}{2} \cdot[1 \mathrm{pt}]
$$

Solution to Exercise 4. We compute

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n \cdot\left(\sqrt{n^{2}+2}-\sqrt{n^{2}-1}\right)=\lim _{n \rightarrow \infty} n \cdot\left(\sqrt{n^{2}+2}-\sqrt{n^{2}-1}\right) \cdot \frac{\sqrt{n^{2}+2}+\sqrt{n^{2}-1}}{\sqrt{n^{2}+2}+\sqrt{n^{2}-1}} \\
& \quad=\lim _{n \rightarrow \infty} n \cdot \frac{\left(n^{2}+2\right)-\left(n^{2}-1\right)}{\sqrt{n^{2}}\left(\sqrt{1+\frac{2}{n^{2}}}+\sqrt{1-\frac{1}{n^{2}}}\right)}=\lim _{n \rightarrow \infty} \frac{n}{n} \cdot \frac{3}{\sqrt{1+\frac{2}{n^{2}}}+\sqrt{1-\frac{1}{n^{2}}}} \\
& \quad=\lim _{n \rightarrow \infty} \frac{3}{\sqrt{1+\frac{2}{n^{2}}}+\sqrt{1-\frac{1}{n^{2}}}} \stackrel{A L}{=} \frac{3}{1+1}=\frac{3}{2} \cdot[0,5 \mathrm{pt}]
\end{aligned}
$$

We used AL to get

$$
1+\frac{2}{n^{2}} \rightarrow 1 \text { and } 1-\frac{1}{n^{2}} \rightarrow 1 \text { as } n \rightarrow+\infty
$$

and thanks to RL we see that

$$
\sqrt{1+\frac{2}{n^{2}}} \rightarrow 1 \text { and } \sqrt{1-\frac{1}{n^{2}}} \rightarrow 1 \text { as } n \rightarrow+\infty .[0,5 \mathrm{pt}]
$$

Solution to Exercise 5. For the difference of square roots we get

$$
\begin{aligned}
\sqrt{n^{2}+\sqrt[6]{n}+2}-\sqrt{n^{2}-2} & =\frac{\left(\sqrt{n^{2}+\sqrt[6]{n}+2}-\sqrt{n^{2}-2}\right)\left(\sqrt{n^{2}+\sqrt[6]{n}+2}+\sqrt{n^{2}-2}\right)}{\sqrt{n^{2}+\sqrt[6]{n}+2}+\sqrt{n^{2}-2}} \\
& =\frac{1}{\sqrt{n^{2}}} \cdot \frac{\left(n^{2}+\sqrt[6]{n}+2\right)-\left(n^{2}-2\right)}{\sqrt{1+\frac{n^{1 / 6}}{n^{2}}+\frac{2}{n^{2}}}+\sqrt{1-\frac{2}{n^{2}}}}=\frac{\sqrt[6]{n}+4}{n} \cdot \frac{1}{\sqrt{1+\frac{1}{n^{11 / 6}}+\frac{2}{n^{2}}}+\sqrt{1-\frac{2}{n^{2}}}}
\end{aligned}
$$

and for cubic roots we obtain

$$
\begin{aligned}
\frac{1}{\sqrt[3]{n^{2}+\sqrt{n}}-\sqrt[3]{n^{2}-\sqrt{n}}} & =\frac{1}{\sqrt[3]{n^{2}+\sqrt{n}}-\sqrt[3]{n^{2}-\sqrt{n}}} \cdot \frac{\sqrt[3]{\left(n^{2}+\sqrt{n}\right)^{2}}+\sqrt[3]{\left(n^{2}+\sqrt{n}\right)\left(n^{2}-\sqrt{n}\right)}+\sqrt[3]{\left(n^{2}-\sqrt{n}\right)^{2}}}{\sqrt[3]{\left(n^{2}+\sqrt{n}\right)^{2}}+\sqrt[3]{\left(n^{2}+\sqrt{n}\right)\left(n^{2}-\sqrt{n}\right)}+\sqrt[3]{\left(n^{2}-\sqrt{n}\right)^{2}}} \\
& =\frac{\sqrt[3]{n^{4}}}{\left(n^{2}+\sqrt{n}\right)-\left(n^{2}-\sqrt{n}\right)} \cdot\left[\sqrt[3]{\left(\left(1+\frac{\sqrt{n}}{n^{2}}\right)^{2}\right.}+\sqrt[3]{\left.\left(1+\frac{\sqrt{n}}{n^{2}}\right)\left(1-\frac{\sqrt{n}}{n^{2}}\right)+\sqrt[3]{\left(1-\frac{\sqrt{n}}{n^{2}}\right)^{2}}\right]}\right. \\
& =\frac{n \cdot \sqrt[3]{n}}{2 \sqrt{n}} \cdot\left[\sqrt[3]{\left(1+\frac{1}{n^{3 / 2}}\right)^{2}}+\sqrt[3]{\left(1+\frac{1}{n^{3 / 2}}\right)\left(1-\frac{1}{n^{3 / 2}}\right)}+\sqrt[3]{\left(1-\frac{1}{n^{3 / 2}}\right)^{2}}\right]
\end{aligned}
$$

Together,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}+\sqrt[6]{n}+2}-\sqrt{n^{2}-2}}{\sqrt[3]{n^{2}+\sqrt{n}}-\sqrt[3]{n^{2}-\sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{\sqrt[6]{n}+4}{n} \cdot \frac{n \cdot \sqrt[3]{n}}{2 \sqrt{n}} \cdot \frac{\sqrt[3]{\left(1+\frac{1}{n^{3 / 2}}\right)^{2}}+\sqrt[3]{\left(1+\frac{1}{n^{3 / 2}}\right)\left(1-\frac{1}{n^{3 / 2}}\right)}+\sqrt[3]{\left(1-\frac{1}{n^{3 / 2}}\right)^{2}}}{\sqrt{1+\frac{11}{n^{1 / 6}}+\frac{2}{n^{2}}}+\sqrt{1-\frac{2}{n^{2}}}} \\
& \rightarrow \rightarrow \frac{1+1+1}{1+1}=\frac{3}{2}, \text { as } n \rightarrow+\infty, \text { by AL. } \\
& \stackrel{A L}{=} \frac{3}{2} \lim _{n \rightarrow \infty} \frac{n^{1 / 3}\left(n^{1 / 6}+4\right)}{2 n^{1 / 2}}=\frac{3}{2} \lim _{n \rightarrow \infty} \frac{n^{3 / 6}+4 n^{2 / 6}}{2 n^{3 / 6}}=\frac{3}{2} \lim _{n \rightarrow \infty} \frac{1+\frac{4}{n^{1 / 3}}}{2} \stackrel{A L}{=} \frac{3}{4} \cdot[0,5 \mathrm{pt}]
\end{aligned}
$$

In the calculation we used that due to AL we have

$$
\left(1+\frac{1}{n^{3 / 2}}\right)\left(1-\frac{1}{n^{3 / 2}}\right) \rightarrow 1 \cdot 1=1 \text { as } n \rightarrow+\infty
$$

and together with RL it implies

$$
\sqrt[3]{\left(1+\frac{1}{n^{3 / 2}}\right)\left(1-\frac{1}{n^{3 / 2}}\right)} \rightarrow 1 \text { as } n \rightarrow+\infty
$$

Convergence of other roots is analogous. [$0,5 \mathrm{pt}$]
Solution to Exercise 6. See the picture below for the sketch of the whole situation for $N=6$. Because f is increasing function on $[0,+\infty)$ we see that (recall that $I_{n}=\left[x_{n}, x_{n+1}\right]$)

$$
\sup _{x \in I_{n}} f(x)=f\left(x_{n+1}\right) \quad \text { and } \quad \inf _{x \in I_{n}} f(x)=f\left(x_{n}\right)
$$

Therefore,

$$
\left(x_{n+1}-x_{n}\right) \cdot \sup _{x \in I_{n}} f(x)=\left(x_{n+1}-x_{n}\right) f\left(x_{n+1}\right)
$$

represents the area of a bigger (green) rectangle. So, e.g. the actual area of $x_{5} x_{6} G F$ is over-estimated by it because we add also the area of $F G M$. Similarly,

$$
\left(x_{n+1}-x_{n}\right) \cdot \inf _{x \in I_{n}} f(x)=\left(x_{n+1}-x_{n}\right) f\left(x_{n}\right)
$$

represents smaller (blackish) rectangle. Here, it under-estimate the actual area by ignoring the area of $F N G$. Hence, U_{N} represents sum of all bigger rectangles, it is over-estimation of the actual area and L_{N} is sum of all smaller rectangles and uder-estimation.

Next, if we would take e.g. $N=12$, then the added or neglected areas would be smaller. Therefore, both U_{N} and L_{N} would be more precise estimates of the actual area. And so on for bigger N 's. [$\left.0,5 \mathrm{pt}\right]$

Observe that we want to take $\lim _{N \rightarrow+\infty} U_{N}$ and $\lim _{N \rightarrow+\infty} L_{N}$. These numbers should be the same and it will be our area. Further, from the construction, U_{N} needs to be decreasing quantity (in N) and L_{N} needs to be increasing. Therefore, $\lim _{N \rightarrow+\infty} U_{N}=\inf _{n \in \mathbb{N}} U_{N}$ and $\lim _{N \rightarrow+\infty} L_{N}=\sup _{n \in \mathbb{N}} L_{N}$.

Finally, we can evaluate the quantities U_{N} and L_{N}, we get

$$
\begin{aligned}
U_{N} & =\sum_{n=0}^{N-1}\left(\frac{2(n+1)}{N}-\frac{2 n}{N}\right) \cdot x_{n+1}^{2}=\frac{2}{N} \sum_{n=0}^{N-1} \frac{4(n+1)^{2}}{N^{2}}=\frac{8}{N^{3}} \sum_{m=1}^{N} m^{2} \\
& =\frac{8}{N^{3}} \cdot \frac{N}{6}(N+1)(2 N+1)=\frac{4}{3} \cdot \frac{2 N^{2}+3 N+1}{N^{2}}=\frac{8}{3} \cdot\left(1+\frac{3}{2 N}+\frac{1}{2 N^{2}}\right) \\
L_{N} & =\sum_{n=0}^{N-1}\left(\frac{2(n+1)}{N}-\frac{2 n}{N}\right) \cdot x_{n}^{2}=\frac{2}{N} \sum_{n=0}^{N-1} \frac{4 n^{2}}{N^{2}}=\frac{8}{N^{3}} \sum_{n=1}^{N-1} n^{2}=\frac{8}{N^{3}} \cdot \frac{N-1}{6} N(2 N-1) \\
& =\frac{4}{3} \cdot \frac{(N-1)(2 N-1)}{N^{2}}=\frac{4}{3} \cdot \frac{2 N^{2}-3 N+1}{N^{2}}=\frac{8}{3} \cdot\left(1-\frac{3}{2 N}+\frac{1}{2 N^{2}}\right) .
\end{aligned}
$$

Now, we can either use limits to get the result (see the previous observation about limits and supremum/infimum) or we make a simple observation. Concerning U_{N} it is quite obvious (because the bracket is positive) that the smallest possible value is for $N \rightarrow+\infty$. Therefore, $\inf _{N \in \mathbb{N}} U_{N}=\frac{8}{3}$. For L_{N} it is not so obvious, but it is again true thanks to the following calculation

$$
\begin{aligned}
-\frac{3}{2 N}+\frac{1}{2 N^{2}} & <0 \\
\frac{1}{N} & <3 \\
\frac{1}{3} & <N
\end{aligned}
$$

which is clearly true for all $N \in \mathbb{N}$. Hence, $\sup _{N \in \mathbb{N}}\left(1-\frac{3}{2 N}+\frac{1}{2 N^{2}}\right)=1$ and we indeed have

$$
\inf _{N \in \mathbb{N}} U_{N}=\frac{8}{3} \quad \text { and } \quad \sup _{N \in \mathbb{N}} L_{N}=\frac{8}{3}
$$

which was our goal. [0,5pt]

