Annotation for the $9^{\text {th }}$ week

I need to show you two more examples, it should take circa 30 minutes:

$$
\lim _{x \rightarrow-1} \sin \frac{\pi x}{2} \cdot \frac{e^{2}-e^{2 x^{2}}}{x^{3}-4 x^{2}-5 x} \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{\sqrt{2+\sin x}-\sqrt{2+\tan x}}{\log \left(1-x^{3}\right)} .
$$

You can try to solve them at home; or at least think about them little bit. And we will make a short break. Then, you will have about 80 minutes to practice these kinds of problems. Examples to practise:
(Very Easy) 5b; 6b, e; 7b.
(Easy) 5e, f; 6i; 7c, d.
(Medium) 5h; 6g, k, l; 7f.
(Exam) 7g, h, j, m, o, p, q, r.
We will ignore the following examples: 7e, i, k, n, t, u, v.
In the last 50 minutes I will demonstrate how to deal the last type of examples. E.g.

$$
\lim _{x \rightarrow+\infty}\left(\frac{x^{2}+2 x-1}{2 x^{2}-3 x-2}\right)^{\frac{1}{x}} \quad \text { and } \quad \lim _{x \rightarrow 0}\left(2 e^{x}-1\right)^{\frac{\tan ^{2} x}{x^{3}}}
$$

It uses definition of general exponentiation, which is $a^{b}=e^{b \log a}$ for $a>0$ and $b \in \mathbb{R}$. So, thanks to the continuity of e^{x}, we will be able to solve these in the same way as previous examples. Finally, I will have some concluding remarks about the existence of a limit. In particular, why and how to show that the following limits do not exist:

$$
\lim _{x \rightarrow+\infty} \sin \pi x \text { and } \lim _{x \rightarrow 0_{+}} \frac{1}{x} \cos \frac{1}{x}
$$

