Annotation for the $8^{\text {th }}$ week

We will start with the midterm, which takes 60 minutes. Then, we learn how to deal with a new type of problems. For example, the simple limit like

$$
\lim _{x \rightarrow 0} \frac{1-\cos \frac{1}{4} x^{2}}{x^{4}}
$$

or a little bit harder one

$$
\lim _{x \rightarrow-\infty} \frac{\log \left(1+e^{x}\right)}{\sin \frac{1}{x}}
$$

and the exam-like question would be

$$
\lim _{x \rightarrow-1} \frac{e^{x^{3}-x}-\cos \left(\log x^{2}\right)}{\arcsin \left(x^{2}-1\right)}
$$

To solve these problems we will use two ingredients. First, there are the following well-known limits:

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1, \quad \lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1, \quad \lim _{x \rightarrow 1} \frac{\log x}{x-1}=1, \\
\lim _{x \rightarrow 0} \frac{\tan x}{x}=1, \quad \lim _{x \rightarrow 0} \frac{\arcsin x}{x}=1, \quad \lim _{x \rightarrow 0} \frac{\arctan x}{x}=1, \quad \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\frac{1}{2} .
\end{gathered}
$$

Second, we transform more complicated limits as above to the basic ones using the theorem about limit of a compostition with (I) variant.

