## Annotation for the $7^{\text {th }}$ week

We will start with a new notion of continuity, which allows us to immediately solve limits like

$$
\lim _{x \rightarrow 2}(x+4)^{5}, \quad \lim _{x \rightarrow 0} \frac{1}{3+x}+\sin (x-\pi), \quad \lim _{x \rightarrow-4} e^{\frac{1}{x^{2}}}-\sqrt[3]{x}
$$

Next, we already know how to deal with the following limit

$$
\lim _{x \rightarrow+\infty} \frac{3 x^{3}-2 x+1}{x^{2}-2 x^{3}+x}
$$

and we will think about how to solve problems like

$$
\lim _{x \rightarrow 0} \frac{x\left(x^{2}+2 x+3\right)}{x^{3}+4 x} \text { or } \lim _{x \rightarrow 1} \frac{x^{2}+3 x-4}{(x-1)^{3}} .
$$

Finally, we know how to find an answer to

$$
\lim _{x \rightarrow+\infty} x\left(\sqrt{x^{2}+1}-\sqrt{x^{2}-1}\right)
$$

and we will extend the method also to the following limits

$$
\lim _{x \rightarrow 9} \frac{\sqrt{x-5}-\sqrt{13-x}}{\sqrt{x}-3}, \quad \lim _{x \rightarrow 1} \frac{\sqrt{2^{x-1}+1}-\sqrt{2^{x-1}+x}}{x^{2}-1}, \quad \lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt[3]{1+x}-\sqrt[3]{1-x}} .
$$

