Annotation for the $6^{\text {th }}$ week

In the first circa 60 minutes, you will again solve limits of sequences by yourself. We can discuss ideas you are not sure about.

Next, we will move towards a new topic - functions of a real variable. We will probably quickly review some notions from the lecture, e.g. image, preimage, periodicity, and monotonicity.

Exercise. Let us consider the following function

$$
f(x)= \begin{cases}x^{2}, & x>0 \\ 1-x^{2}, & x \leq 0\end{cases}
$$

(1) What is \mathcal{D}_{f} ? What is \mathcal{R}_{f} ?
(2) Is f injective, surjective (=onto) or bijective? Is f even or odd? Is it periodic?
(3) Is f (non-)increasing or (non-)decreasing on some intervals?
(4) Find the image of $A_{1}=[-2,0), A_{2}=(-1,1), A_{3}=\left[0, \frac{1}{2}\right]$ under f.
(5) Find the preimage of $B_{1}=(2,+\infty), B_{2}=\{1\}, B_{3}=\left[\frac{1}{4}, 1\right]$ under f.
(6) What are $\lim _{x \rightarrow+\infty} f(x), \lim _{x \rightarrow-\infty} f(x)$?
(7) Is f continuous?

Then we will think about the concept of a limit of function. Some ideas are basically the same as in the previous chapter, e.g.

$$
\lim _{x \rightarrow+\infty} x^{2}, \lim _{x \rightarrow+\infty} e^{x}, \lim _{x \rightarrow+\infty} \frac{2^{x}+x+\log x}{2 \cdot 2^{x}+x^{2}}, \lim _{x \rightarrow-\infty} e^{x}, \lim _{x \rightarrow-\infty} \frac{x^{3}-x+1}{x^{3}-x^{2}+1} \lim _{x \rightarrow-\infty} \frac{1}{x} .
$$

Others are kind of new. You can try to think about what should be results of the following examples

$$
\begin{array}{ll}
\lim _{x \rightarrow 0} x^{2}, & \lim _{x \rightarrow 0} e^{x}, \quad \lim _{x \rightarrow \frac{\pi}{2}} \sin x, \\
\lim _{x \rightarrow 0} \sqrt{x}, & \lim _{x \rightarrow 0_{+}} \sqrt{x}, \quad \lim _{x \rightarrow 0} \sqrt[3]{x} \\
\lim _{x \rightarrow 0} \frac{1}{x}, & \lim _{x \rightarrow 0_{+}} \frac{1}{x}, \quad \lim _{x \rightarrow 0} \frac{1}{x^{2}} .
\end{array}
$$

