Annotation for the $4^{\text {th }}$ week

We will start with the new topic - limits of sequences. First, we will understand the definition. You can try to think about the following examples

$$
\lim _{n \rightarrow \infty} \sqrt[3]{3 n}, \quad \lim _{n \rightarrow \infty}\left(\frac{1}{2}\right)^{n}, \quad \lim _{n \rightarrow \infty} \frac{n+2}{n+1} .
$$

Next, we will talk about indeterminate forms, i.e. how to work with $\pm \infty$. You can think about why are expressions like $\infty-\infty$ or $\frac{\infty}{\infty}$ not defined. It is closely connected with the theorem about arithmetics of limits.

We will continue with finding limits of things like $n^{5}-n^{3}+n-1$ or $\frac{-n+3 n^{3}+\sqrt{n}}{n^{2}+2 \sqrt[3]{n}}$. It is based on identifying the "dominant" term. You can recall the binomial theorem, it can be handy.

Finally, we will deal with the difference of roots, e.g. how to find $\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}+1}-\sqrt{n^{2}-1}}{\sqrt{n^{4}+n^{3}}-\sqrt{n^{4}-1}}$.

