Annotation for the Bonus week

We will solve the sample written exam, i.e. we will deal with the three following exercises:

1. Find the limit of a function:

$$
\lim _{x \rightarrow 0} \frac{1-e^{x^{3}}}{\sin x-\tan x}
$$

Answer: 2. Either one trivial LCI or not so nice (but doable) L'H.
2. Find the limit of a function:

$$
\lim _{x \rightarrow 0_{+}}(1-\sqrt{\arcsin x})^{\frac{1}{\sqrt[4]{1-\cos x}}} .
$$

Answer: $e^{-\sqrt[4]{2}}$. Either 3xLCC and 1xLCI (all trivial) or really ugly derivatives in L'H.
3. Sketch the graph of a function:

$$
f(x)=\arctan \frac{x+3}{x+4}
$$

Answer: $\mathcal{D}_{f}=\mathbb{R} \backslash\{-4\}, \lim _{x \rightarrow \pm \infty} f(x)=\frac{\pi}{4}, \lim _{x \rightarrow-4 \pm} f(x)=\mp \frac{\pi}{2}, f^{\prime}(x)=\frac{1}{2 x^{2}+14 x+25}$, f is increasing on $(-\infty,-4),(-4,+\infty)$, no extrema, $\mathcal{R}_{f}=\left(-\frac{\pi}{2}, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{4}, \frac{\pi}{2}\right), f^{\prime \prime}(x)=$ $\frac{-4 x-14}{\left(2 x^{2}+14 x+25\right)^{2}}, f$ is convex on $(-\infty,-4),\left(-4,-\frac{7}{2}\right)$ and concave on $\left(-\frac{7}{2},+\infty\right)$, at $x=-\frac{7}{2}$ f has the inflection point.

It is a good idea to try it by yourself at home and then check the solution with me. I will also try to answer your questions (you can send them prior by e-mail).

