Annotation for the $12^{\text {th }}$ week

We will learn how to sketch the graph of a function. In the lecture you will see graph of

$$
f(x)=\log \left(x+\frac{1}{x}\right)
$$

On the tutorial we will deal either with

$$
f(x)=x+\frac{x}{\sqrt{x^{2}-1}} .
$$

Then, you can try it by yourself with the following example

$$
f(x)=\left(x^{2}-3\right) e^{-x}
$$

Further examples to practise:
Exercise (Warm-up).
(a) $f(x)=\sqrt{x}-x$.
(d) $f(x)=x e^{x}$.
(g) $f(x)=\arctan \frac{\sqrt{3}}{x^{2}}$.
(b) $f(x)=8 x+\frac{4}{x^{2}}$.
(e) $f(x)=x e^{-x^{2}}$.
(h) $f(x)=x \sqrt{1-x^{2}}$.
(c) $f(x)=x(x+2)^{3}$.
(f) $f(x)=x \log ^{2} x$.
(i) $f(x)=\frac{2 x}{1-x^{2}}$.

Exercise (Exam).
(a) $f(x)=\frac{x}{1+x^{4}}$.
(g) $f(x)=\arctan \left(x^{2}-1\right)$.
(m) $f(x)=\sqrt{\frac{x}{x+1}}$.
(b) $f(x)=\frac{x^{3}}{1+x^{2}}$.
(h) $f(x)=\frac{x}{\log x}$.
(n) $f(x)=e^{\sin x}$.
(c) $f(x)=(x-1) e^{-2 x+3}$.
(i) $f(x)=(x+2) e^{\frac{1}{x}}$.
(o) $f(x)=\sqrt{\frac{x^{2}}{x^{3}+1}}$.
(d) $f(x)=\log \left(x^{2}+4 x+4\right)$.
(j) $f(x)=\arctan \frac{2 x}{1-x^{2}}$.
(p) $f(x)=\log (\sin x)$.
(e) $f(x)=\log \left(x^{2}+2 x\right)$.
(k) $f(x)=\sqrt{x^{2}+x-6}$.
(q) $f(x)=\sin ^{2} x-2 \sin x$.
(f) $f(x)=\frac{2 x}{1-x^{2}}$.
(l) $f(x)=\log \left(x-\frac{1}{x}\right)$.
(r) $f(x)=x+\sqrt{\frac{x^{2}}{x^{2}-1}}$.

We want:

- The domain and continuity of f.
- Points of intersections with axes.
- Symmetries: oddness, evenness, periodicity.
- Limits at the "endpoints of the domain".
- Asymptotes of the function.
- The intervals of monotonicity; local and global extrema.
- The range of f.
- The intervals of concavity or convexity.
- The inflection points.
- The sketch of the graph of f.

