Annotation for the 12^{th} week

We will learn how to sketch the graph of a function. In the lecture you will see graph of

$$f(x) = \log\left(x + \frac{1}{x}\right).$$

On the tutorial we will deal either with

$$f(x) = x + \frac{x}{\sqrt{x^2 - 1}}$$
.

Then, you can try it by yourself with the following example

$$f(x) = (x^2 - 3)e^{-x}.$$

Further examples to practise:

Exercise (Warm-up).

- (a) $f(x) = \sqrt{x} x$. (d) $f(x) = xe^x$. (g) $f(x) = \arctan \frac{\sqrt{3}}{x^2}$.
- (b) $f(x) = 8x + \frac{4}{x^2}$. (e) $f(x) = xe^{-x^2}$. (h) $f(x) = x\sqrt{1-x^2}$.

(c)
$$f(x) = x(x+2)^3$$
. (f) $f(x) = x \log^2 x$. (i) $f(x) = \frac{2x}{1-x^2}$.

Exercise (Exam).

(a) $f(x) = \frac{x}{1+x^4}$. (g) $f(x) = \arctan(x^2 - 1)$. (m) $f(x) = \sqrt{\frac{x}{x+1}}$.

(b)
$$f(x) = \frac{x^3}{1+x^2}$$
. (h) $f(x) = \frac{x}{\log x}$.

(c)
$$f(x) = (x-1)e^{-2x+3}$$
. (i) $f(x) = (x+2)e^{\frac{1}{x}}$. (o) $f(x) = \sqrt{\frac{x^2}{x^3+1}}$.

(d)
$$f(x) = \log(x^2 + 4x + 4)$$
. (j) $f(x) = \arctan \frac{2x}{1-x^2}$. (p) $f(x) = \log(\sin x)$.

(n) $f(x) = e^{\sin x}$.

(e)
$$f(x) = \log(x^2 + 2x)$$
. (k) $f(x) = \sqrt{x^2 + x - 6}$. (q) $f(x) = \sin^2 x - 2\sin x$.

(f)
$$f(x) = \frac{2x}{1-x^2}$$
. (l) $f(x) = \log\left(x - \frac{1}{x}\right)$. (r) $f(x) = x + \sqrt{\frac{x^2}{x^2 - 1}}$.

We want:

- The domain and continuity of f.
- Points of intersections with axes.
- Symmetries: oddness, evenness, periodicity.
- Limits at the "endpoints of the domain".
- Asymptotes of the function.
- The intervals of monotonicity; local and global extrema.
- The range of f.
- The intervals of concavity or convexity.
- The inflection points.
- The sketch of the graph of f.