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Chapter 1

Differentiation of measures

1.1 Covering theorems

Covering theorems provide a tool which enables us to infer global properties from local ones in
the context of measure theory.

Vitali theorem

Definition. Let A C R". We say that a system V consisting of closed balls from R" forms Vitali
cover of A, if
Vre AVe >03dBeV:xe€ B A diamB < ¢.

Notation.
* )\, ... Lebesgue measure on R"
* )\ ... outer Lebesgue measure on R”

n

e If B C R"isaball and o« > 0, then o x B denotes the ball, which is concentric with B
and with a-times greater radius than B.

Theorem 1.1 (Vitali). Let A C R"™ and V be a system of closed balls forming a Vitali cover of
A. Then there exists a countable disjoint subsystem A C V such that \,(A\ |J.A) = 0.

Proof. First assume that A is bounded. Take an open bounded set G C R"™ with A C G. Set
V'={BeV; BCG}

The system V* is a Vitali cover of A again. If there exists a finite disjoint subsystem V* covering
A, we are done. So assume

(%) there is no finite disjoint subsystem of V* covering A.

7
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1st step. We set
s; = sup{diam B; B € V*}

and choose a ball B; € V* such that diam B; > s;/2. We know that V* # () and s; < diam G <
0.

k-th step. Suppose that we have already chosen balls By, ..., By_1. We set

k1
si, = sup{diam B; B € V* A BN U B; =0}.

i=1

The supremum is considered for a nonempty set since the set Uf;ll B; is closed, which by (x) does
not cover A, and V* is a Vitali cover of A. We choose a ball B;, € V* such that B, N Uf;ll B, =10
and diam B, > Sk/2

This finishes the construction of the sequence (By)52,. Set A = {By; k € N}. We verify
that A is the desired system.

e A is countable. This follows immediately from the construction.
e A is disjoint. This follows from the construction.

e It holds \,(A\ |JA) = 0. We have
S A(By) = An<U BZ-) < A(G) < 0.
=1 =1

Thus the series >~ A\,(B;) is convergent, therefore lim; \,,(B;) = 0. Using the fact that B;,
1 € N, are balls we also have lim; diam B; = 0. We know that 2 diam B; > s;, consequently
‘We show that

Voe A\| JAVieNTjeN,j>i: z€5%DB;.

Take z € A\ |JAand i € N. Denote § = dist(z,J,_, B). It holds § > 0 and there exists
B € V* such that z € B and diam B < §. Then we have B N UZ;:1 By = (). Thus we have
diam B > s, for some p € N since lim; s; = 0. Therefore there exists j > 4 with B;NB # (). Let
J be the smallest number with this property. Then we have s; > diam B since BN U{;ll B, = 0.
Further we have diam B; > s; /2 > % diam B. Together we have 2 diam B; > diam B. This
impliesx € B C 5+ B;.

For any ¢« € N we have

A;;(A\UA) < )\n([j5*Bj) < i)\n@*Bj) = 5”§:An(3j).
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Using lim; o0 > oo A (B;) = 0 we get A (A A) = 0, and therefore \,, (A A) = 0.
J=1 J n

Now we assume that the set A is a general subset of R". Let (G)52, be a sequence of bounded
disjoint open sets such that \,(R" \ [J;Z, G;) = 0. Denote

Vi={BeV; BCG,}.

The system V7 forms a Vitali cover of the bounded set G; N A. Using the previous part of the
construction we find a countable disjoint system A; C V5 with X, ((G; N 4) \ J.A;) = 0. Now
we set A = J; A;. O

The end of the lecture no. 1, 3.10.2022

Definition. We say that a measure © on R” satisfies Vitali theorem, if for every M C R" and
every Vitali cover V of M there exists countable disjoint cover A C V such that p(M\|J A) = 0.

Remark. (1) By Theorem|[L[.1] A, satisfies Vitali theorem.

(2) If p satisfies Vitali theorem and v < p, then v satisfies Vitali theorem.

Remark. If 1. is the Borel measure on R? such that y(A4) = A\ (AN (R x {0})) forany B C R?
Borel, then Vitali theorem does not hold for .

Theorem 1.2. Let £ C R" be measurable and S be a finite system of closed balls covering E.
Then there exists a disjoint system L C S such that \,(E) < 3" Y 5., An(B).

Proof. Without any loss of generality we may assume that S is nonempty. Choose B; € S
with maximal radius among balls in S. Suppose that we have already constructed By, . .., Bj_;.
If possible, choose By, € S disjoint with | J,_, B; and with maximal radius among balls in S
satisfying this property. We construct a finite sequence of closed balls By, ..., By and set £ =
{Bi,...,Bn}. Wehave £ C |Jgz, 3* B. To this end consider = € E. Then there exists B € S
with z € B. We find minimal % such that B N By, # (). Then we have radius(B) < radius(By).
This implies that v € B C 3 * B;,.
Then we have

A(E) < /\n<U 3*3) <3S MBxB)=3"3 A(B).

BeLl BeL BeLl

Besicovitch theorem

Theorem 1.3 (Besicovitch). For each n € N there exists N € N with the following property. If
ACR"and A: A — (0,00) is a bounded function, then there exist sets Ay, . .., Ay such that

« {B(z,A(x)); x € A;} is disjoint for everyi € {1,..., N},
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v AC U{Ble.AW): w e UY, A

Proof. The case of a bounded set A. Let R = sup 4, A. Choose B, := B(ay,r1) suchthata; € A
and 1= A(ay) > %R. Assume that we have already chosen balls By, ..., B;_; where 7 > 2.
If

j—1

F;:= A\ UE(ai,n) =,

i=1

then the process stops and we set J = j. If F; # (), we continue by choosing B; := B(a;, ;)
such that a; € F; and
rj = A(a;) > 3sup A (1.1)

FJ
If F; # () for all j, then we set J = co. In this case lim;_,, r; = 0 because A is bounded and
the inequalities

1 2
Hai —ajH >r, = gri—i—gn’ > §Ti+ §Tj > gT’i—i-gTj
fori < j < J imply that
{1 * Bj; j < J} is adisjoint family. (1.2)

In case J < oo, we have A C | ;< Bj. This is also true in the case J = co. Otherwise there

exista € (2, Fj and jo € N with rj, < 3 A(a), contradicting the choice of 7.

Fix k < J. Weset = {i < k; B; N B, # (0}. We now prove that there exists M/ € N
depending only on n which estimates |/|. To this end we split [ into I; and I, and we estimate
their cardinality separately.

I :{Z < k; BiﬂBk?éw,?"i < 10Tk},
]2:{2 < k’; BiﬁBk#@,Ti > 10rk}

The estimate of |11|. We have % * B; C 15x By, for every i € I. Indeed, if x € % * B;, then

10 43
H.% — CLkH < ”SL’ — CLZH + HCLl — CLkH < ET]C + i+ < ET}C < 157.
Hence, there are at most 60" elements of /1, because for any © € I; we have

An(3x Bi) = A\ (B(0,1)) - (3r:)" > \u(B(0,1)) - (3m)" = %)\n(M*Bk).

The end of the lecture no. 2, 10. 10.2022

See .71



1.1. COVERING THEOREMS 11

The end of the lecture no. 3, 24. 10.2022

The estimate of |I5|. Denote b; = a; — aj. An elementary mesh-like construction gives a family

{Qm; 1 < m < (22n)"} of closed cubes with edge length 1/(11n) (so that diam @,,, < 1/11),

which cover [—1, 1]" and thus in particular the unit sphere. We claim that for each 1 < m <

(22n)™ there is at most one ¢ € I, such that b;/||b;|| € @,,,, which estimates the cardinality of /5.
If the claim were not valid, then there would exist 7, j € I5,7 < j, such that

1
< —.
’—11

” loall 11t

Notice that
ri < |bill <ri+re and v < ||bl] <7+, (1.3)

as the balls B;, B; intersect B}, but does not contain a;. Hence

1
L g R e
and ) 1
o]l <7j+ri <71+ — 10 Erj. (1.4)
We have
_ ol [1;l
la = ayll = llos = ;]| < + |t
’ ’ s || 4]
_ ‘ [1Bil[bi [b H b H il
ol 16 H |0 H Il

< 1Bl = 15,1l + = 1B,
< sl = gl + 1)
1 1
g]ri—rj]+ﬁrj~l—ﬁrj (using (T.3) and (T.4))

i %rj < ifr; >rj,
o —ri+§rj§—ri+§ri<ri ifﬁ'é?“j.

In the last inequality we have used that i < j and thus r; < gr; by (II). We arrived at a
contradiction as i < j and thus a; ¢ B,. Hence |I5| < (22n)".

Thus it is sufficient to choose M > 60™ + (22n)".

Choice of Ay, ..., Ay. For each k € N we define A\, € {1,2,..., M} such that A\, = k
whenever k£ < M and for £ > M we define A inductively as follows. Thereis A\, € {1,..., M}

such that
BN JBii i <k, di =M} =0

Now weset A; = {a;; \i=j}hj=1,..., M.
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The case of a general set A. For each | € N apply the previously obtained result with A replaced
by
A= An{x; 31— DR < ||z|| < 3R},

and denote resulting sets as AL, i = 1,..., M. Then we set

A= AL Aun= | AL i=1. M

[ is odd [ is even

Then we constructed N := 2M subsets which have the required properties. O]

Definition. Let P be a locally compact space and S be a o-algebra of subsets of P. We say that
 is a Radon measure on (P, S) if

(a) S contains all Borel subsets of P,
(b) u(K) < oo for every compact set K C P,
(¢) u(G) =sup{u(K); K C G is compact} for every open set G C P,
(d) p(A) =inf{u(G); A C G,Gisopen} forevery A € S,
(e) p is complete.
Definition. Let ;4 be a measure on X. Outer measure corresponding to 1 is defined by
p*(A) = inf{p(B); A C B, B is u-measurable}.

Remark. Let ;2 be a Radon measure on (R”,S) and A € S. Then there exist a Borel set B C R
such that A C B and (B \ A) = 0. If v is a Radon measure on (R",S’) with v < p, then
Scs.

Lemma 1.4. Let ;1 be a measure on X and {A; };”;1 be an increasing sequence of subset of X.
Then lim p*(A;) = p (U2, 4)).

Theorem 1.5. Let ;1 be a Radon measure on R" and F be a system of closed balls in R". Let
A denote the set of centers of the balls in F. Assume inf{r; B(a,r) € F} = 0 for each a € A.
Then there exists a countable disjoint system G C F such that M(A \U g) =0.

Proof. The case 1*(A) < oo. Let N be the natural number from Theorem [1.3] Fix 6 such that
-+ <0<l
N

Claim. Let U C R" be an open set. There exists a disjoint finite system H C F such that
U#H C U and

p AN\ JH) <p(ANTD). (1.5)

The end of the lecture no. 4, 31.10.2022
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Proof of Claim. We may assume that ©*(ANU) > 0. Let F; = {B € F; diam B < 1,B C U}.
By Theorem [I.3]there exist disjoint families Gi, . . ., Gy C JF; such that

N
AmUcUUg,-.
=1
Thus
N
“(ANU) Z (AnUunlJg).

Consequently, there exists an integer 1 < 5 < N for which
wanunlJg) > %u*(/& AU) > (1— 0 (ANT).
Using Lemma[[.4] we find a finite system H C G; such that
pr(AnUN|(JH) > (1 -0 (AnT).
The set | J H is p-measurable and therefore
pANU) = (AnUn{JH) +w (AnU\ [ JH)
> (1= ) (ANU) +p (ANTU\ | JH).

This gives (L.5). O

Set U; = R™. Using Claim we find a disjoint finite system H; C JF such that | J#; C U; and
p((ANU)\ (M) < opr(AnTh).

Continuing by induction we obtain a sequence of open set (U;) and finite disjoint finite systems
(H;) such that U; 1y = U; \UH,;, H; € F,UH; C Uj, and

ANU) = (AN U\ JHy) <o (AN ;)
for every 5 € N. Together we have
p (AN 0) < 04 (4)

for every j € N. Since p*(A) < co we get p* (A \ Uiz, UH,;) = 0. Thus we set G = Ui H
and we are done.

The general case. We find a sequence of bounded disjoint open sets (G;)52, such that u(R™ \
U;’;l G j) = 0. Then p(G;) < oo for every j € IN and we proceed as in the proof of Theorem.
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1.2 Differentiation of measures

Notation. The symbol B stands for the family of all closed balls in R".
Definition. Let v and y are measures on R™ and x € R". Then we define

* upper derivative of » with respect to ;. at x by

D(v,p,x) = h%l+ (sup{v(B)/u(B); x € B, B € B, diam B < r}),

if the term at the right side is defined,

* lower derivative of  with respect to ;. at = by

D(v,u,z) = lim (inf{v(B)/u(B); z € B, B € B, diam B < r}),

r—0+
if the term at the right side is defined,

* derivative of v with respect to ;1 at x (denoting D(v, 1, x)) as the common value of

D(v, p, x) and D(v, u, x), if it is defined.
Remark. The value D(v, i, 2) (D (v, i1, 7)) is well defined if and only if
VB e B, ze€ B: u(B)>0.

Theorem 1.6. Let v and 1 be Radon measures on R" and y satisfy Vitali theorem. Then

D(v, pu,z) and D(v, u, ) exist u-a.e.
Proof. Denote

M = {z € R"; D(v,u,x) is not defined},
V={B e B; uB) =0}

The family V is a Vitali cover of M. We find a countable disjoint system A C V such that
pu(M\ |JA) =0. The we have

n(JA) =D u(B) =0,

BeA

therefore (M) = 0.
The proof for D(v, u, z) is analogous. O

Theorem 1.7. Let v and 11 be Radon measures on R", 1 satisfy Vitali theorem, ¢ € (0, 00), and
M C R"™

() Iffor every x € M we have D(v, pi, z) > ¢, then v*(M) > cp*(M).
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(ii) Ifforevery x € M we have D(v, i1, x) < c, then there exists H C M such that ( M\ H) =
Oand v*(H) < eu*(M).

Proof. (i) Choose ¢ > 0. There exists an open set G C R"” with M C G and v(G) < v*(M) +e.
Set

V={Be€B; BCG,v(B)>cuB)}.

The family V is a Vitali cover of M. There exists a disjoint countable subfamily .4 C V with
u(M\ |J.A) = 0. Then we have

Vi (M) +e>v(G) = v(JA) =D v(B)

BeA

> eu(B) = cp(| JA) > ep (M),

BeA

Taking ¢ — 0+ we get the desired inequality.
The end of the lecture no. 5, 7. 11.2022

(ii) Choose k € N. There exists an open set G, C R™ such that M C Gy and pu(Gy) <
(M) + 1/k. Set
Vi ={B € B; BC Gy,v(B) < cu(B)}.

The system V) is a Vitali cover of M. Thus there exists a countable disjoint subfamily A, C Vj
such that u(M \ |J Ax) = 0. Set H, = M N|J Ag. Then u(M \ Hy,) = 0, H, C M and we have

v (Hy) <v((JA) = D v(B) < ey uB) = eu(( JA)

BeA BeA
< cpu(Gr) < (' (M) + ).

Now we set H = (),—, Hy. Then we have v*(H) < ¢u*(M) and
p(M\ H) = p*(M\ H) <) p*(M\ Hy) =0.
k=1

[]

Theorem 1.8. Let v and p be Radon measures on R™ and y satisfies Vitali theorem. Then
D(v, u, x) is finite p-a.e.

Proof. Denote

D= {x e R" D(v,p,z) € (0,00)},
= {x € R"; D(v, u,x) is not defined},
Ny = {x € R"; D(v, u, ) is not defined},
= {z € R"; D(v, 1, z) = oo},
Ny = {z € R"; D(v,p1,z) < D(v, 1, )}.

Then we have
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b D:Rn\(N1UN2UN3UN4),
* u(Ny) = p(N2) = 0 (Theorem|[L.6).
Further we define

A, ={z € R"; D(v,u,z) > k},
A(r,s) ={z € R"; D(v,p,z) <s<r < D(v,u,)}, srecQt,s<r

The we have

N3 = ﬂ A,
k=1

Ny = U{A(r, s); r,s € QT s <1}

We show 11(N3) = 0. Choose Q C N3 bounded. By Theorem[1.7(i) we have

kpt(Q) < vi(Q) < oo

for every k € N. Therefore p*(Q)) = 0 and thus also p(/N3) = 0, since V5 is a countable union
of bounded sets.

We show 1(Ny) = 0. It is sufficient to show p(A(r, s)) = 0 for every s, € QT, s < r. Choose
@ C A(r,s) bounded. By Theorem [1.7(ii) there exists H C @ such that u(Q \ H) = 0 and
v*(H) < sp*(Q). By Theorem[1.7(i) we have rp*(H) < v*(H). We may conclude

rp(Q) = rp*(H) < v'(H) < sp™(Q) < o0,
Since r > s > 0, we have ;*(Q) = 0. This implies u(A(r, s)) = 0. O

Lemma 1.9. Let v and ju be Radon measures on R™ and (i satisfies Vitali theorem. Then the
mappings x© — D(v, pu, x), x — D(v, u, x) are p-measurable.

Proof. We start with the following observation.

The set

M(r,a) ={z e R"; 3B € B: diam B <r Az € BA

v(B)
o < o

is open for every » > 0 and a € R.

If z € M(r, a), then there exist y € R" and s > 0 with x € B(y, s), 25 < r,

—V(Ew’s)) < a.

1(B(y,s))
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We find s’ > s such that 25’ < r, v(B(y, s'))/u(B(y,s')) < a. Now we have z € B(y,s') C
M (r, o). This finishes the proof of the observation.

Denote D = {z € R"; D(v, j1, ) exists finite}. The set D is p-measurable by Theorem [1.8]
For every x € D we have
D(v,p,7) < @

B
SdreQ,r>0vVreQ,r>0dB € B: diamB<r,x€B,%<a—T
1

SITeQr>0VreQ,r>0: z€ M(r,a—r1).

The set {z € R™; D(v,u,z) < «} is intersection of D with a Borel set. This implies that
the mapping x — D(v, j1, ¥) is p-measurable.
Measurability of the mapping x +— D(v, i, x) can be proved analogously. ]

Theorem 1.10. Let v and p be Radon measures on R", . satisfies Vitali theorem, v < p, and
B C R" is u-measurable. Then we have

[ D) duta) = v(B).

B

Proof. Let B C R" be a u-measurable set. Choose 5 € R, 5 > 1. Define
B, ={z € B; f* < D(v,p,z) < "}, kelZ,
N ={x € B; D(v,u,z) = 0}.

These sets are ;i-measurable by Lemma[I.9] Using Theorem[I.8 we have

u(B\ ( G BLUN)) =0.

k=—o0

Then we have

| Pwpa)ine) = Y [ D) dnte) < 30 8 B

k=—o0
oo

< Y BBTRU(BY) < Bu(B).

k=—00
Going  — 1+ we get
[ Do) duta) < v(B).
B

Now let 5 > 1 again. Define

By, ={x € B; ¥ < D(v,p,z) < g},
N ={x € B; D(v,u,z) = 0}.
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Besides the equality
M(B\( U BkUN)> — 0,
k=—o00

we have also v(B \ (U, ., By UN)) = 0, since v < p. By Theorem ii) and absolute
continuity of v with respect to 1 we obtain v*(Q) < cu*(Q) < oo forany ¢ > 0and Q C N
bounded. Similarly as in the proof of Theorem [1.8|we get (V) = 0. Then we have

/BD(V,M, Z D (v, o) dp(z) > > Bu(By)
k=—00
1
kg-(kt1), _1
Now it follows [, D(v, u, x) du(x) > v(B). O

The end of the lecture no. 6, 14.11.2022

1.3 Lebesgue points

Definition. Let ;2 be a Radon measure on R". The symbol L], (1) denotes the set of all functions
f: R" — C, which are p-measurable and for every z € R” there exists r > 0 such that

Jn@n 1T O] du(t) < oo

Definition. Let f € £} (11). We say that x € R"™ is Lebesgue point of f (with respect to 1), if
it holds

— f(@)| du(t)
1(B) =

Theorem 1.11. Let y be a Radon measure on R™ satisfying Vitali theorem and f € L, .(u).
Then p-a.e. points of f are Lebesgue points.

t
Ve>036>0YB € B,a € B,diam B < 5: 42170

Proof. Without any loss of generality we may assume that u(R"™) < oo and f € L£'(u). Let
(Cr) be a sequence of closed discs in C, which forms a basis of C. We denote

gr(x) == dist(f(z), Cy), x e R"

The function gy, is nonnegative y-measurable function satisfying g, € £'(u). Let vy, = [ gi. dp.
By Theorem we have D (v, p, x) = gi(z) p-a.e. Denote

Py = {x € f7H(Ch); (D, p, ) = 0)}.

We have g;, = 0 on f~*(C}), therefore u(P;) = 0. We show that every point from R™ \ ;= | P
is a Lebesgue point of f.
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Let z € R" \ U,—, Pi. Choose ¢ > 0. We find Cj, such that f(z) € Cj and Cy C
B(f(z),e/2). For any t € R™ it holds

1f(t) = f(z)] < gx(t) + e
There exists 6 > 0 such that

Jp 9x(t) dp(t)
1(B)

since D(vg, i1, ) = 0. Take B € Bwith z € B, diam B < § we get
Jplf @) = @) dpt) _ Jp 9x(t) dp(t) + en(B)
pu(B) N p(B)
This finishes the proof. [

VBeB, x€B, diamB < : <&,

< 2e.

1.4 Density theorem

Definition. Let 1 be a measure on R"”, A C R” be y-measurable, and z € R™. We say that
c € [0,1] is u-density of the set A at z, if

1(ANB)

Ve>0d6 >0VB € B, = € B, diamB<5:{
n(B)

— <e.

We denote d,(A4, ) = c.

Theorem 1.12. Let 11 be a Radon measure on R" satisfying Vitali theorem and M C R" be
pu-measurable. Then

* d,(M,x) =1 for p-a.e. x € M,

* d,(M,z) =0 for p-a.e. € R" \ M.
Proof. Define v on R" by

v(A) =pu(AN M) forevery A C R" u-measurable.

Then we have

* d,(M,x) = D(v, i, x), if at least one term is well defined,

c v W,

c v= [ xumdpu.

By Theorem we have v = [ D(v,p,z)du(z) therefore d,(M,z) = D(v,u,z) =
Xum(x) p-ae. O
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1.5 AC and BYV functions
Remark. Fora,c,b € R,a < ¢ < b, it holds
* Vo f=Vif+ Vi,
* |f) = fla)| < Vo f

Example Let f be a function with continuous derivative on an interval [a,b]. Then V° f =

S 1 (@)] de.

Remark. Let / be a closed nonempty interval. Then we have
@ f,g€ AC(I) = f+g € AC(I),
(b) fe AC(I),a e R= af € AC(I).

Theorem 1.13. Let f: [a,b] — R, a < b. Then f is absolutely continuous on [a, b] if and only if
f is difference of of two nondecreasing absolutely continuous functions on [a, b|.

Proof. = We denote v(z) = VI f, x € [a,b]. Forevery z,y € [ := [a,b], z < y, we have
v(y) —v(x) = VY f. The function v is well defined since f € BV ([a, x]), x € [a, b].

The function v is nondecreasing. This is obvious.

The function v — f is nondecreasing. For every =,y € I, x < y we have

(v(y) = f(y) — (v(x) = f(2) = (v(y) —v(x)) = (fly) = f(z) = VI = (f(y) = fz)) > 0.

The function v is absolutely continuous. Choose € > 0. We find 6 > 0 such that

m
Z flaj)| <e,

whenever a1 < by < ag < by < -+ < a,, < by, are points from I = [a, b] with Z;.n:l(bj —aj) <
0. Now assume that we have points A; < By < Ay < By < --- < A, < B, from [ satisfying
i_1(Bj — Aj) <. Foreach j € {1,...,p} we find points
Aj=d], <l =d)<by=---<l =B

such that

The we have
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and
p
S u(By) — v |<Z<Z|fb] al)| + ><€+€:25
Jj=1 1=
Now we can write f =v — (v — f). O

The end of the lecture no. 7, 21.11.2022

Remark. Let F': R — R be nondecreasing function which is continuous at each point from the
right. Then there exists a Radon measure v such that F' is the distribution function of v, i.e.,

vr((a, b)) = F(b) — F(a), a,beR,a <b.
Lemma 1.14. Let f: (a,b) = R, 29 € (a,b), and f'(zo) € R. Then we have

lim f(z2) — f(x1)

[z1,x2]—[T0,20] To — X1
z1<zo<z2,r1FT2

= ['(z0).

Lemma 1.15. Let f: (a,b) — R be nondecreasing on (a,b), C(f) be the set of all points of
continuity of f, and A € R. Then for every xo € C(f) it holds

X — x
fllag) =As lim flas) = flay) — A.
[z1,22]—[z0,%0] To — X1
71T <T2,T1F£T2
z1,22€C(f)

Lemma 1.16. Let f be a distribution function of a measure pon R, o € C(f), A € R. Then
(o) = A< D(u, A\, 1) = A.
Theorem 1.17 (Lebesgue). Let f be a monotone function on an interval I. Then we have
» f'(x) exists a.e. in I,
* ["is measurable and U; F| < 1£() = f(a)l,

° [ e Ly (D).
Theorem 1.18. Let I be a nonempty interval and f € BV (I). Then f'(x) exists finite a.e. in I.

The end of the lecture no. 8, 23.11.2022

Theorem 1.19. Let f: [a,b] — R, a < b. Then the following assertions are equivalent.

(i) f € AC([a,b)).
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(ii) We have ¢ € L*([a,b]) such that
f@ =@+ [ et welab)
(iii) f'(z) exists a.e. in [a,b], [’ € L'([a,b]) and

f(z) = f(a) + /f f'(t) dt, x € [a,b].

Theorem 1.20 (per partes for Lebesgue integral). Let f,g € AC([a,b]). Then we have

/ab flg=1fal - /: g

Theorem 1.21. Let g be a nonnegative function on [a, b] with g € L'([a,b]). Let f be a continu-
ous function on [a, b|. The there exists £ € [a,b] such that

/abfng(@/abg-

Theorem 1.22. Let f € L'([a,b]) and g be a monotone function on |a,b|. Then there exists
€ € [a, b] such that
b ¢ b
[ ta=s@ [ 50 [ s
a a §

1.6 Rademacher theorem

Definition. Let M/ C R". We say that f: M — R is Lipschitz (on }), if there exists K > 0
such that

Va,y € M:|f(x) — f(y)] < K|z —yll.
Remark. If f is Lipschitz on M, then f is continuous on M.

Theorem 1.23. Let G C R" be open nonempty and f: G — R be Lipschitz on G. Then f is
differentiable a.e. on G.

Lemma 1.24. Let f: R" — R be continuous and i € {1, ... ,n}. Then the set
D; = {z € R"; %(m) exists }

is Borel.
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Proof. We have

) exists
B (z)

& Ve > 030 >0V, ty € (—6,0) \ {0} |Lethelt)  Jatbea) J@)| o ¢

[2)

SVee QrI e QF Vi, € ((—6,0)NQ) \{0} | fethe)=Jle) _ Jlatbe) J@)| o g,

)

The end of the lecture no. 9, 28.11.2022
For £ > 0 and nonzero ¢, t5 denote

D(&,t17t2) = {CL’ e R"; |f(m+tlei)_f(w) - f(x+t26i)_f(x)| < 5}.

t1 to

The set D(¢, t1,t,) is open since f is continuous. We have

-NU N N pent)

e€eQt 0eQt t1€(—0,0)NQ t2€(—94,0)NQ
t1#£0 t2#0

therefore D, is Borel. ]

Lemma 1.25. Let 3 > 0, A # 0, f,,a € A, be B3-Lipschitz function on R™ and x € R" be such
that Sup,c 4 fo() is finite. Then the function z — sup,c 4 fa(2) is 5-Lipschitz on R".

Proof. Letu,v € R". Then |f,(u) — f,(z)| < B||u — z|| for any v € A, therefore

H(w) < f(z) + Bllu = 2l < sup falw) + Bl|u — 2]

This implies

sup f(u) < sup fa(z) + Bllu — =],
yEA acA

thus sup. 4 f,(u) € R. Further we have
Jo(w) < f(v) + Bllu — vl < sup fa(v) + Blju —vf| foreveryy € A.
ae

We get

sup f,(u) < sup fo(v) + Bllu = v||.
YEA acA

Thus we have

sup fo(u) — Sup fa(v) < Bllu—].

a€A
Interchanging the roles of u and v we obtain

Supfa(v) - Slelgfa(u) < BHU - U||>

acA

which proves S-Lipschitzness. [
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Lemma 1.26. Let E C R" be nonempty and f: E — R be [3-Lipschitz. Then there exists
B-Lipschitz function f: R™ — R with f|g = f.

Proof. The function f,: y — f(z) — S - ||y — || is S-Lipschitz for every = € E since

[fa(w) = fo(w)| = |B - llu— || = B~ |lv— =] < Bllu—v]

for every u,v € R™. For every y € E we have sup, 5 f.(y) < f(y). Using Lemma we get
the mapping defined by

f(y) =sup(f(z) — Blly — =|])

el
is B-Lipschitz on R". For z € E we have f(z) > f.(z) = f(z). Moreover f,(z) = f(z) —
B|lz — z|| < f(2), which gives f(z) < f(z). Thus we prove f(z) = f(=). O

Proof of Theorem[1.23] By Lemma we may suppose that f is Lipschitz with the constant 3
on R", ie.,
Vr,y € R": [f(z) — f(y)| < Bllz—yll.

We show that f is differentiable a.e. This gives also the statement of the theorem. Let £ C R”
be a set of those points where at least one partial derivative does not exist. The set R" \ D; is
by Lemma [I.24] measurable. We use Fubini theorem and Rademacher theorem for n = 1 (see
Remark) to get A\,(R" \ D;) = 0. Then we have \,,(E) = 0, since £ = |J;_,(R™\ D;).

For p,q € Q", m € N, denote

S(p,q,m) = {x ER™ Vie{l,... n}Vte (=1/m,1/m)\{0}: p; < Lletted=i@) q}

It is easy to verify that the set S(p, ¢, m) is Borel. Let S(p,q,m) be the set of all points of
S(p,q,m), where S(p, ¢, m) has density 1. Then Theorem gives

The set _
N = J{S(p,q,m)\ S(p,q,m); p,q € Q",m € N}

is of measure zero.
We show that f is differentiable at each point z € R" \ (E U N). Take z € R"\ (F U N)
and ¢ € (0,1). Choose p, g € Q™ such that

of

L @)y<q i=1,....n
axi(ﬂf) G, i n

g — € <p <

Then there is m € N such that z € S(p, g, m). Since x ¢ N, the point z is a point of density of
the set S(p, ¢, m). Denote S = S(p, ¢, m).
We find 6 € (0,1/m) such that

An(B(z,1)\ S) < (5)" A(B(x, 7))
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for every r € (0,20). Notice that the set B(z, (1 + ¢)7) \ S does not contain a ball with radius
eT, whenever 7 € (0, d). Otherwise it would hold

cn(eT)" < (e/2)"en(1 +€)"7",

a contradiction. (The symbol ¢,, denotes n-dimensional measure of the unit ball.)
Choose y € B(z,§), y # x. Denote

yi = [y17y27"'7yiaxi+17"'7l’n}-

For every ¢ € {0,...,n} define a ball B; = B(y', ||y — z||). Using the preceding observation
we have B;NS # (). Find points 2 € SNB;,i =0,...,n—1, and denote w' = 21+ (y; —z;) e,
1=1,...,n.

The end of the lecture no. 10, 5.12.2022
Then we have
fw') = f(z'7)
Yi — T

(7) < q,

pi < <gq ifz; #y,

of
axi

pi <
therefore

< (¢ —pi)lyi — x| <elly—x|.

7w = FE = @) )

Then we have

< S Jr) = 16 = S - a) ]+ 0500 - P+ 15— 1)

i=1 i=1
< nelly — x[| + 2nfelly — z[| = e(n + 2np)|ly — |,

thus the proof is finished. [

Remark. Let us mention the following two deep results of D. Preiss ([2]).

1. Let H be a Hilbert space and f: H — R be Lipschitz. Then there exists x € H, where
f is Fréchet differentiable, i.e., there exists a continuous linear mapping L: H — R such

that
o @) = f(a) = Lw)

=0.
h—0 [|h]

2. There exists a closed measure zero set ' C R? such that any Lipschitz function on R? is
differentiable at some point of F'.
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(1.7 Maximal operator

Definition. Let f: R™ — R be measurable. For x € R" we define

M@ = s s [ 1

BeB,zeB >\n
Theorem 1.27 (Hardy-Littlewood-Wiener).
ect .3
cetre o (@) If f € LP(R™), 1 < p < o0, then M f is finite a.e.

(b) There exists ¢ > 0 such that for every f € L*(R") and a > 0 we have

Mo(fe € R M () > a}) < = fll.

(c) Let p € (1,00|. Then there exists A such that for every f € LP(R™) we have || M f||, <
AllFNlp-
\

1.8 Lipschitz functions and 1>
Remark. We have
Whe(Q) = LP(Q) N {u; d;u € L>(2) (in the sense of distributions), i € {1,...,n}}.

Theorem 1.28. Let U C R" be open. Then f: U — R is local Lipschitz on U if and only if
f € W (U).

Without proof.
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Hausdorff measures

2.1 Basic notions

Convention. We will assume that (P, p) is a metric space.

Definition. Let p > 0, A C P. Denote

Hy(A,0) = inf{Z(diamAj)p; AC U A;, diam A; <6}, 5> 0;
j=1 j=1

H,(A) = sup H_p(A, J).

>0

The function A — H,(A) is called p-dimensional outer Hausdorff measure.
Remark. Definice H, se nezméni, pokud budeme uvazovat A,, uzaviené (resp. oteviené).

Definition. Outer measure «y on P is called metric, if for every A, B C P with inf{p(x,y); = €
A,y € B} > 0wehave y(AU B) =~(A) + ~(B).

Theorem 2.1. Let v be a metric outer measure on P. Then every Borel subset of P is -
measurable.

The end of the lecture no. 11, 12.12.2022

Theorem 2.2. H, is a metric outer measure.

Corollary 2.3. Every Borel subset of P is H,-measurable.

Theorem 2.4. Let k,n € N, k <n, K =[0,1)" x {0}"* C R"™ Then 0 < H(K) < co.
Remark. It can be shown that , := H; ([0, 1]% x {0}"7F) = (4/7)"*T(1 + £).

Definition. Let £ € N. The k-dimensional normalized Hausdorff measure is defined by

HF = lka-

Theorem 2.5 (regularity of Hausdorff measure). Let k,n € N,k < n, and A C R". Then there
exists a Borel set B C R" such that A C B and H*(A) = H*(B).

Theorem 2.6. Letn € N and A C R". Then H"(A) = A" (A).

27



28 CHAPTER 2. HAUSDORFF MEASURES

2.2 Area formula

Notation. Let k,n € N,k < n, and L: R* — R" be a linear mapping. We denote vol L, =

Vdet LTL.

Definition. Let k,n € N, k < n, and G C R* be open. A mapping f: G — R" is said to be
regular, if f € C!(G) and for every = € G the rank of f'(a) is k.

Theorem 2.7 (area formula). Let k,n € N,k < n, G C R¥ be an open set, p: G — R" be an
injective regular mapping and f: o(G) — R be H*-measurable. Then we have

/ Fa)d HE (o /f 1) vol /(1) d NF(8),

if the integral at the right side converges.

The end of the lecture no. 12, 19. 12.2022

2.3 Hausdorff dimension

Lemma 2.8. Let0 <p < g A C P, and H,(A) < oc. Then H,(A) = 0.
Proof. Let 0 € (0,1) and {A;}52, be a sequence of subsets of P such that A C [J7Z, A
diam A; < ¢ forevery j € N, and > 72 | (diam A;)? < H,(A) + 1. Then we have
H,(A,9) < Z (diam A;) Z (diam A;)P - (diam A;)?7P
7=1

(diam A;)P - 8977 < §T7P(H,(A) + 1).

Sending § — 0+ we get H,(A) = 0. O
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Definition. Let A C P. Hausdorff dimension of A is defined by
dim A = inf{t > 0; H(A) < oco}.
Remark. By Lemma 2.8/ we have

oo fort < dim(A),
0  fort > dim(A).

Hi(A) = {
Corollary 2.9. (i) Forevery A C B C P we have dim A < dim B.
(i) Forevery A; C P,i € N, we have dim(|J;-, A;) = sup, dim A;.
(iii) We have dim([0, 1]* x {0}"~*) = k, in particular, dim[0, 1]" = n.

Example (Cantor set). For s € {0} U J;~,{0,1}* we define inductively closed intervals I; as
follows

° I@ = [O, 1],

la,a+3(b—a)], ifi=0,

o if I, = [a, b], then [;r; = ) .
[b—3(b—a),b], ifi=1.

Cantor set is defined by

C:ﬁ U =

k=0 se{0,1}*

The set C' has the following properties:
e ('is compact,

* (' is nowhere dense,

» (' is uncountable.

Theorem 2.10. We have dim C' = %.

Proof. Denote d = }Og?.
og3

We prove Hq(C') < 1. We have C' C [J,e(g1yx Is and diam I, < 37%, s € {0, 1}*. We infer

> (diam )" = 2% (37F)! = 1.

s€{0,1}k

Then we have H,(C) < 1.
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We prove H,(C') > 1/4. Tt is sufficient to prove that

o0

> (diam I))* > 1/4,

Jj=1

where I;, j € N, are open intervals and C' C U;’il I;. Convex envelope of an open set G C R is
an open interval with the same diameter as G. The set C' is compact, therefore there exist intervals
Ii,..., I, covering C. Since C' is nowhere dense, we may assume that, that the endpoints of
I, ..., I, are not in C'. Then there exists 6 > 0 such that

dist(C, endpoints of I1,...,1,) > 0.
Let k € N and 37% < 4. Then we have
Vs e {0,1}F 35 € {1,...,n}: I, C I;. Q.1)
Claim. Let / C R be an interval and [ € N we have
> (diam I,)? < 4(diam I)*.

I,cI
se{0,1}!

Proof of Claim. Suppose that the sum at the left side is nonzero. Let m be the smallest natural
number such that  contains some I, t € {0, 1}™. Then we have obviously m < [. Let J, ..., J,
are those intervals among I, s € {0, 1}, which intersect /. The we have p < 4 by the choice
of m. Then we have

4(diam 1)? > Z (diam .J;)* Z Z (diam I,)?

=1 =1 IsCJ;

s€{0,1}}
> Z (diam I,,)?

I,CI
se{0,1}!

Indeed, we have
(diam J;)¢ = (37™)% = 27™,
> (diamI,)* =27 (374 =27,

IsCJ;
s€{0,1}!

Then we have

4i(diam1 Clgmz Z (diam 1) > Z (diam I;)
j=1

Jj=1 IsCl; s€{0,1}k
sE{O,l}k

This finishes the proof. [
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The end of the lecture no. 13, 2.1.2023

The end of Winter Semester
(Example. Let o > 0. We define

E, = {z € R; there exists infinitely many pairs (p, ¢) € Z x N such that |x — %} < q_(2+°‘)}.

2

Jarnik’s theorem says that dim £, = 5.

Definition. The mapping f: R" — R" is called similitude with ratio r if || f(z) — f(y)|| =
r||x — y|| for every x,y € R™.

Theorem 2.11. Let m € N and i1, . . ., {y, be similitudes of R" with ratios r1, ... ,r, € (0,1)
such that there exists an open set V. C R" such that (V) C V and for every i,j €
{1,....m},i # j, we have ¥;(V) N;(V) = 0. Let E be a nonempty compact set satisfy-
ing E =", ¥i(E) and s satisfies Y ", r§ = 1. Then we have 0 < H,(E) < oc.

)

Without proof.

Example (Koch curve). One can use Theorem to prove Theorem[2.10]or to infer that Haus-
dorff dimension of Koch curve is }gig. Here we have several approximations of Koch curve.

\
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Chapter 3

Area and coarea formulae

Theorem 3.1. Let (P, p1) and (P, po) be metric spaces, s > 0, and f: Py — P, be B-Lipschitz.
Then H, (f( )) < B*Hs(Py).

Proof. Choose 0 > 0. Letsets A;,j € N, satisfy P, = (J;2, A; and diam A; < ¢ for every
j € N. Then we have f(P) = ;2 f(A;) and diam f(A;) < 8 diam A; < 4. Then we have

A), B8) < Z diam f(A4;))* <) B*(diam A;)*.
: j:l

This implies H(f(A), 59) < 5°Hs(A,d). Sending 6 — 0+, we get Hs(f(A)) < *H(A). O

Lemma 3.2. Let k,n € N,k < n, a L: R* — R" be an injective linear mapping. Then for
every N¥-measurable set A C R” it holds

H*(L(A)) = Vdet LTL - X*(A). (3.1

Proof. The mapping L is linear and injective, therefore the dimension of the vector space L(R*)
is k. Thus there exists a linear isometry Q: R¥ — R™ such that Q(R*) = L(R*). Then we have

H*(L(A)) = HY(Q ' o L(A)) = \¥(Q ' o L(A))

= | det(Q71L)| - N¥(A). (3.2)

(det(Q7'L))* = det (Q'L)TQ'L)
det(((Q_lLei,Q "Lep)t 1) (3.3)
det (({Lei, Ley))!,_, ) = det(L"L).

The desired inequality (3.1)) follows from (3.2) a (3.3). O

Notation. Let k,n € N,k < n, and L: R* — R" be a linear mapping. We denote vol L, =

Vdet LTL.

35
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Remark. (a) The matrix L7 L is called Gram matrix. By Lemmatu[3.2]we have H*(L([0, 1]*))
vol L, thus vol L is k-dimensional volume of L([0,1]*). If ¢ € C'(G), then the mapping
t — vol ¢/(t) is continuous on the set G.

(b) If L is a matrix of the type n x k, then the matrix L” L is symmetric and of the type k x k.

(c) Gram determinant is nonnegative, since for every matrix A of the type n x k and for every
r € R* we have (AT Az, x) = (Az, Ar) > 0. Gram determinant is positive, whenever the rank
of Lis k.

Lemma 3.3. Let k,n € N,k < n, G C RF be open set, p: G — R" be an injective regular
mapping, v € G, and 3 > 1. Then there exists a neighbourhood V' of the point x such that

(a) the mapping y — ¢(¢'(x)"(y)) is B-Lipschitz on ¢'(z)(V),

(b) the mapping z — ¢'(z)(p~'(2)) is B-Lipschitz on o(V').

p(V)

Figure 3.1:

Proof. First we infer several auxiliary inequalities. The linear mapping v — ¢'(z)(v) is injec-
tive, therefore there exists > 0 such that

Vo € R ||/ (2)(v)]| = nllvll. (3.4)
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We set n = inf{||¢'(z)(v)||; v € R¥, [Jv|| = 1}. The mapping v — ¢'(z)(v) is continuous and
the unit sphere {v € R*; ||v|| = 1} is compact, therefore the infimum is attained at a point vo.
Since ¢'(z)(vy) # 0, n is positive.

We find € € (0, 37) such that

% +1<p. (3.5)
Further we find a ball V' centered at the point = such that
VyeV:['(y) - @)l <e

We show that for every u,v € V it holds

lo(w) — (v) = @' (@)(u —v)l| < eflu—wv]. (3.6)
Fix v € V and consider the mapping

g:wr pw) — o) (@) (w-v), weV.

For w € V we have ¢'(w) = ¢/(w) — ¢'(x). Then we have

[p(w) — @(v) — ¢'(z)(u —v)|| = [|g(u) — g(v)||
< sup{|lg'(w)[|; w e V} - lu— |

S 5”” - UHa

this implies (3.6)).
Further we show that for every u,v € V' we have

i) = (@)l > Znllu— ol 37
For u,v € V we compute
lio(w) = o)l > ~llp(e) — o(v) — ¢ @)~ )] + ')~ v)]

1
—ellu = vl +nllu = vl} = 5nflu =],

v

this gives (3.7).
(a) Choose a,b € ¢'(z)(V). We find u,v € V such that ¢'(z)(u) = a, ¢'(z)(v) = b. We
compute
le(¢' ()7 (@) — (&' (@)1 (0)) | = lle(u) — (V)]
< Jlp(u) = p(v) = @' (@) (u = V)| + [I¢' () (w = v)]|
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(b) Choose p, ¢ € (V). We find u,v € V with p(u) = p, ¢(v) = ¢q. Compute

l¢'(z) (7 (p) — ¢'(2)(¢™ (@) | = ¢ () (u) — &' () (V)]
= ll¢'(z)(u — V)|
< llp(u) = @(v) = (@) (u = )| + o (w) = (V)|

(EX)
< ellu—vll + [lp — qll
=) = o) +llp = all = (% + 1)[lp — g
2 Bllp - al.
This finishes the proof. [

The end of the lecture no. 1, 13.2.2023

Lemma 3.4. Let k,n € Nk < n, G C R be an open set, ¢: G — R" be an injective
regular mapping, x € G a a > 1. Then there exists a neighbourhood V' of x such that for every
Ne-measurable E C 'V we have

04_1/ vol ' (t) dN*(t) < H*(p(E)) < a/ vol ' (t) d NF ().

Proof. Find > 1 a7 > 1 such that
grr < a. (3.8)

By Lemma we find V; of x such that for ¢ and 5 (a) and (b) of the lemma holds. Using
continuity of the mapping ¢ — vol ¢’(t) on G we find a neighbourhood V5 of x such that

Vt € Vo: 71 vol ¢/ (x) < vol ¢/ (t) < 7vol ¢ (z). (3.9)

Set V=V N V5. We show that V' is the desired neighbourhood.
Let £ C V be \*-measurable. By (3.9) we get

T vol ¢ (z) - \(E) < / vol ¢/ (t) A XF(t) < Tvol ¢ (z) - \F(E). (3.10)
B

By Lemmal[3.2] we have vol ¢'(z) - M(E) = H*(¢/()(E)), and we can write

T HY (¢ (2)(E)) < /Evolgpl(t)d/\k(t) < 7H"(¢'(z)(E)). (3.11)

By Lemma [3.3(a) and by the choice of V; we get
H*(p(E)) = H (9o ¢'(x)™" o ¢/ (2)(B)) < B*H* (¢ (2)(E))
@ 5’“7/ vol /() d A¥(t) @ a/ vol ' (t) d NF ().
E E
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By Lemma [3.3(b) and by the choice of V; we get
H(p(E)) > B7°H (¢ (x) 0 7t 0 p(E)) = B7°H* (¢ () (E))

@ﬂ_kT_l/volgol(t)d/\k(t)@a‘l/volgo'(t)d)\k(t).
B E

]

Theorem 3.5 (area formula). Let k,n € N,k < n, G C R* be an open set, o: G — R" be an
injective regular mapping and f: o(G) — R be H*-measurable. Then we have

/ flz)d H*(x /f )) vol () d ¥ (1),

if the integral at the right side converges.

Figure 3.2:

Proof. The mapping ¢ is injective, therefore there exists an inverse mapping ¢~ '. Each open set
H C G is a countable union of compact sets, therefore ¢(H) is a countable union of compact
sets. Thus we get that ¢! is Borel and the set ¢(G) is Borel.

The mappings o, ¢! are locally Lipschitz by Lemma Therefore o(G) is H*-o-finite by
Theorem [3.11

1. Suppose that f =y, where L C ¢(G) is H*-measurable. We show

H*(L) = / vol ' (1) d \¥(¢). (3.12)
e~ 1(L)
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Choose o > 1. By Lemma [3.4] we find for every y € G a neighbourhood V,, C G of the point y
such that for every \*-measurable set £ C V, we have

041/Evolgo'(t)d)\k(t) < Hf(p(E)) < a/ vol ' (t) d NF (). (3.13)

E

It holds (| J{V},; ¥ € G} = G. The space R" is separable, therefore we can find a sequence
{y;} of elements of G such that, we have | J7Z, V,, = G. The measure H * restricted to o(G) is
o-finite. Using Lemma [2.5] we find Borel sets B N ¢(G) such that B C L C BUN and
HY(N) = 0. Using local lipschitzness of ¢! we get \*(¢~*(N)) = H¥(p"1(N)) = 0. Thus
we obtain that the set ¢ ~!(L) is \¥-measurable. Set

j—1
A=) (Vi \ U V).
=1
Then we have

(a) the set A; is \*-measurable for every j € N,
(b) A; CV,, forevery j € N,

() Vi, i €N, j#5+ AN Ay =0,

d) Uiz, A =9 (D),

(e) forevery j € N we have

oz_l/ vol ¢ (t) dNF(t) < H*(p(4;)) < a/ vol ' (t) d NF (),
A A

J J

(f) forevery j € N the set p(A;) is H*-measurable.

From (a) and (c)—(e) we get

oL /_1(L) V01¢’(t)dAk(t) < Hk<g0(g0_1(L))) < a/ VOlgOl(t)dAk(t),

—H(L)

Since « has been chosen arbitrarily, we get (3.12)).

2. Suppose that f is a nonnegative simple \*-measurable function, i.e., f = Z§=1 ¢jXr,» where
L; C ¢(G) is H*-measurable and ¢; > 0, j = 1,...,p. Then by (3.12) we have

flz)d H*(z chH’c Zc]/ Volgo () d \e(t)

= ch/ X1, © @(t) vol ' (t) d X (1) (3.14)
j=1 “C

»(G)

_ /G £ o o(t) vol o (£) A A (1)
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3. Let f be anonnegative H*-measurable function. We find a nonnegative simple H*-measurable
functions f;: ¢(G) — R, j € N, such that f; — fa f; < f;41. Then by Levi theorem we get

leIEO/ fi(z)d H* (z / f(z)d H*(2),

tim [ feO)vol ¢ 0 AN0) = [ 7 0) vl ¢ (0)a ).
~Ja
Since using the point 2 we have for every j € N the equality
[ e ane = [ et vl axo
we get

/ flz)d H*(x /f )) vol ' (t) d A¥(¢).

4. Let f be a H*-measurable function and the integral [, f(¢(t)) vol () d A*(t) converges.
Set /T =max{f,0} a f~ = max{—f,0}. By the point 3 it holds

/ fH(z)d H"(x /f+ t)) vol ¢ (t) d N¥(t). (3.15)

The last integral equals [,,(f((t)) vol¢'(t))™ d A¥(¢), thus it is finite by assumption. Similarly
we get

f () d H (z) = /G (Flo(t)) vol (1)~ d A1), (3.16)

the last integral is finite again. This implies

»(G)

flz)d H*(x /f )) vol ' (t) d A¥(t).

»(G)

The end of the lecture no. 2, 20.2.2023
Remark. Area formula holds even for locally Lipschitz ¢ (cf. [, F.34]).
Example. Compute H*(S,), where S, = {z € R?; ||z| = 1}.
The set S, can be written as a disjoint union S; = A; U A; U A3, where

Ay ={[0,0,1], 10,0, -1]},
AQ = {37 € SQ, i) :O,Jfl < 0},
As =S, \ (A; U Ay).
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Using area formula we compute H?(A3). We use spherical coordinate system ¢: G — R3,
where G = (—m,7) X (—7/2,7/2) a

(e, y) = [cos(y) cos(), cos(7) sin(a), sin(7y)].

The mapping ¢ is injective regular and it holds p(G) = Aj. We infer vol ¢’(«,y) = cos~y for
(a, ) € G. Then we have

H2(<,0(G)):/ 1dH2:/volgo’d/\2

»(G) G
T g ™

= / Cosydydoc—27r/ cosydy = 4.
—rJ-Z _

It remains to show H?(A; U Ay) = 0. The set A; has just two elements, thus we have
H?(A;) = 0. The set A, can be parameterized by the mapping ¢: (—%,%) — R?, which is
defined by ¥ (t) = [~ cost, 0, sint]. The mapping 1 is injective regular and ¢)(—7, 7) = As. By
area formula we obtain

N

[SIEY

By Theorem 3.1 we get H?(A,) = 0. We may conclude H2(S,) = 4.

Theorem 3.6 (coarea formula). Let k,n € N,k > n, ¢: R¥ — R" be Lipschitz mapping,
f: R*¥ — R be N-integrable function. Then we have

RGN EE BRI

_ /n<[0_1({y}) Fla) d HY"(2)) X' ().

Without proof.

Theorem 3.7. Let f: R* — R be \F-integrable function. Then we have

RK fe)d /\k(x) - /0OO </{zeR’“; ll2ll=r} flo)d Hk_l@)) X’ (r).



Chapter 4

Semicontinuous functions

Definition. let X be a topological space and f: X — R*. We say that f is lower semicon-
tinuous, if the set {x € X; f(x) > a} is open for every a € R. We say that f is upper
semicontinuous, if the set {z € X; f(x) < a} is open for every a € R.

Notation. The abbreviations Isc and usc are used.

Theorem 4.1. Let X be a metrizable topological space and f: X — R* be bounded from below.
Then the function f is Isc, if and only if there exists a nondecreasing sequence { f,,} of continuous
functions from X to R such that f,, — f.
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Chapter 5

Functions of Baire class 1

Definition. Let X and Y be metrizable topological spaces. A function f: X — Y is of
Baire class 1 (B;-function) if for every open set U the set f~1(U) is F,.

Theorem 5.1 (Lebesgue—Hausdorff-Banach). Let X be a metrizable topological space and
f: X — R be a By-function. Then there exists a sequence { f,,} of continuous functions from X
to R with f,, — f.

Lemma 5.2. Let X be a metrizable topological space and A C X be G5 and F, set. Then x 4 is
a pointwise limit of a sequence of continuous functions.

The end of the lecture no. 3, 27.2.2023

Lemma 5.3. Let X be a metrizable topological space, p,,: X — R, n € w, be a pointwise limit
of continuous functions. If the sequence {p,} converges uniformly to p, then p is a pointwise
limit of continuous functions.

Lemma 5.4 (reduction for F, sets). Let X be a metrizable topological space, A,, be F, set for
every n € w. Then there are F, sets AX C A,, n € w, such that AX N A% = (), whenever
n,m € w,n#m,andJ,c, Ay = U, An-

Remark. Theorem 5.1]holds also for X zero-dimensional and Y separable metrizable.
Theorem 5.5 (Baire). Let X, Y be metrizable topological spaces, Y be separable, and f: X —
Y be By-function. Then the set of points of continuity of f is residual and Gj.

The end of the lecture no. 4, 6.3.2023

Lemma 5.6. Let X be a Polish topological space, i.e., separable topological space metrizable
by a complete metric, A, B C X, ANB = (. If there is no set C which is G5 and F, with A C C
and C N B = ), then there exists closed nonempty set F such that ANF, BN F are dense in F.

Proof. We define Fy = X, F,p1 = ANF, N BNF,, whenever a < wy, and F;, = ﬂa<n F,,
whenever 77 < wy is a limit ordinal. Then (F},),<,, is a nonincreasing sequence of closed sets in
X. One can infer that there exists ( < w; such that Fi = Fe .
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Claim. F; # (

Proof of Claim. We assume towards contradiction that F = (). Then we can write

X = J(Fa\ Fany). (5.1)

a<(

We set C' = Ua«(A N F, \ Fay1). Then one can get A C C and C'N B = (). We have that C
is F, as well as Gi5. To check the latter fact we define G5 sets

Go=ANF,U(X\ Fo) U Foyq, a < (¢,

and we verify that

C=()Goa

a<(

The inclusion C. For x € C there exists oy < wy such thatz € AN F,, \ F,,+1. Take o < wy.
We distinguish the following three possibilities. If v < «y, then

reANF,, CF, CF, CG,.

If « = o, then
r € ANE,, C Gy =G,

If o« > ag then
€ X\ Fopr1 C X\ Fy CG,.

The inclusion >. Now suppose that x € [, G,. By (B.I) there exists § < ¢ with z €
F3\ Fsi1. We also have © € Gg. This implies that . € AN Fj \ Fyq C C.

Thus C' is a G5 and F, set separating A form B, a contradiction. This finishes the proof of
Claim. L

Now it is sufficient to set ' = F. [

Theorem 5.7 (Baire). Let X be Polish, Y separable metrizable, and f: X — Y. Then the
following are equivalent

(1) f is a By-function.

(ii) f|r has a point of continuity for every F' C X closed.



Chapter 6

Density topology, approximate continuity
and differentiability

Definition. Let f be a function from Rto R, a € R, and L € R. We say that f has approximate
limit L at the point a if

Ve >036 > 0VB € B,a€ B, diamB < §: \;({z € B; |f(z) — L| > £}) < eA,(DB).

Theorem 6.1. Let [ be a function from R to R, a € R. Then [ has at most one approximate
limit at a.

Notation. Let f be a function from R to R. The approximate limit of f at a € R is denoted by
ap-lim, ., f(z).

Definition. A function from R to R is approximately continuous at « € R if ap-lim,_,, f(z) =

f(a).
The end of the lecture no. 5, 20.3.2023

Definition. We say that a measurable set A C R is d-open, if each point of A is a point of
density of A.

Theorem 6.2. The system of d-open sets forms a topology.

Notation. The symbol 7, stands for the density topology from the previous theorem.

PROPERTIES OF DENSITY TOPOLOGY

* The topology 7, is finer than the standard topology.
* The topology 7, is not metrizable.

* Aset K C Ris 74-compact if and only if K is finite.
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* The topology 74 is not normal.

* Baire theorem holds in (R, 7).

Theorem 6.3. The topology T, is completely regular, i.e., if F' C R is 74-closed and xy € R\ F,
then there exists Tq4-continuous function f: R — [0, 1] such that f(y) = 0 for everyy € F and

Lemma 6.4. Let E C R be measurable, X C FE is closed and d(E,z) = 1 for every x € X.
Then there exists a closed set P C R such that

« XCPCE,
e Ve X: d(Px)=1,

e VzxeP: d(E,z)=1.
The end of the lecture no. 6, video lecture

Remark. Let f be a function from R to R.
(a) The function f is approximately continuous at ¢ € R if and only if f is 74-continuous at a.

(b) The function f is approximately continuous at ¢ € R if and only there exists a measurable
set M C R suchthat d(M,a) = 1 and lim,_,, .en f(2) = f(a).

Theorem 6.5 (Denjoy). Let f: R — R. Then the function f is approximately continuous a.e. if
and only if f is measurable.

Proof. = We set

N = {z € R; f is not approximately continuous at z }.

Then we have \;(N) = 0. Choose ¢ € R and set M = {z € R; f(x) > ¢}. Theset M \ N
is d-open, therefore it is a measurable set. This implies that M is measurable. Consequently, we
have that f is measurable.

<« Choose ¢ > 0. By Luzin theorem there exist a closed set F' C R with \;(R \ ') < cand a
function ¢g: F' — R which is continuous on F satisfying f|r = g. We have that a.e. point in F’
is a density point of F, therefore f is approximately continuous at a.e. point in F'. This implies
that f is approximately continuous a.e. in R. ]

Theorem 6.6. Let f: R — R be a bounded approximately continuous function. Then f has an
antiderivative on R.
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Proof. Find K € R such that |f(z)| < K for every « € R. We set F(z) = [, f. The function
f is measurable by Theorem|[6.5]and is bounded, therefore I is well deﬁned Choose x € R. Let
e > 0. We find § > 0 such that for every h € (0, 0) it holds

Iy € [+ B 1F(0) — (@) 2 <)) <<

Fix h € (0,6) and denote M = {y € [z,z + h; |f(y) — f(x)| > £}. It holds

1 1 z+h
T (Fa+n) - F@) - f@)|=3| [ 6 - r@)a
1
<1 / 0= s@ldirg [ 1)~ sl
< h2K 5h—i—ﬁ he = (2K + 1)e.
This implies I (x) = f(x). One can infer F’ (x) = f(x) analogously. O

The end of the lecture no. 7, 27.3.2023

Corollary 6.7. Let f: R — R be a bounded approximately continuous function. Then f has
Darboux property and is in B;.

Theorem 6.8. There exists a differentiable function f: R — R such that the sets {x € R; f'(x) >
0} and {x € R; f'(x) < 0} are dense.

Proof. Let A, B C R be countable, dense, and disjoint. Suppose that A = {a,; n € N} and
B = {b,; n € N}. Observe that A and B are 7;-closed. Using Theorem [6.3| we find for every
n € N approximately continuous functions g,, and h,, such that

gn(an> = 17 hn<bn) - 17
0<g, <1, 0<h, <1,

gn|B:O, hn|A:O
We define - -
S RAAO R
n=1 n=1

Then the function ) is bounded, approximately continuous, positive on A, and negative on B.
By Theorem [6.6] there is a function f such that f/ = 1) and we are done. O

Remark. We say that a differentiable function g is of Kopcke type if ¢’ is bounded and the sets
{g’ > 0} and {¢' < 0} are dense.
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Chapter 7

More on derivatives

Notation. Let / be a nonempty open interval. The set of all real functions defined on / which
have an antiderivative on [ is denoted by A’(1).

Remark. We have ap — C,(I) C A'(I) C DBy(I).

Theorem 7.1. Let I be a nonempty open interval and f € A'(I) The f has Denjoy-Clarskon
property, i.e., for every open G C R we have that either f~'(G) = 0 or \(f~1(G)) > 0.

Proof. To be added. O]
The end of the lecture no. 8, 3.4.2023

Lemma 7.2. Let F be a differentiable at each point of the interval [a,b] C R and F' is bounded
from below. Then F is absolutely continuous on [a, b].

Proof. To be added. ]
Theorem 7.3. Let f be differentiable at each point of [a,b] C R and f' € L'(|a,b]). Then we
have

F() - fla) = (L) / Fode,  zelad.
Proof. To be added. See [3, 7.21]. O

Theorem 7.4 (Caratheodory—Vitali). Let f: R — R satisfy f € L'(\) and € > 0. Then there
exists u,v: R — R* such that

cu< f<uv,
* u is usc and bounded from above,

* v is Isc and bounded from below,
o [(u—v)d<e
Proof. To be added. See [3]]. ]

The end of the lecture no. 9, 17.4.2023
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ZahorsKki classes

Definition. Let £ C R be an F,, set. We say that F belongs to class
M if every point of £ is a point of bilateral accumulation of £,
M if every point fo £ is a point of bilateral condensation of F,
M, if each one sided neighbourhood of each z € E intersects £ in a set of positive measure,

Ms if for each € FE and each sequence {I;} of closed intervals converging to x such that
A(I, N E) = 0 for each n, we have

. A(In)
lim —_ —
nSoo dist(z, I,)

M, if there exists a sequence of closed sets { K, } and a sequence of positive numbers 7,, such
that £ = | J 7, K, and

Vne NVx e K,Ve>0de >0
MEN(x+h,z+h+hy))
1] > M-

h
Vh,hIER,hhl>O7h—<C,|h+h1|<€Z
1

M5 if every point of £ is a point of density of E.

TO BE COMPLETED



Chapter 8

Sets with a finite perimeter and divergence
theorem

8.1 Motivation

Lemma 8.1. Let F be distribution function of a signed Radon measure . and p € C:(R). Then
[odp=—[FgdM

Theorem 8.2. Let u € L'(R). Then the following are equivalent.

(1) There exists a signed Radon measure |1 such that the weak derivative of u is .

(ii) There exists v: R — R such thatv € BV ([a,b]) for every a,b € R, a < b, and v = u a.e.
Theorem 8.3 (Gauss divergence theorem). Let n > 1,2 C R" be a bounded nonempty open set

with H"1(0Q) < oo, H* (00 \ 0,Q) = 0, f € C*(Q, R"). Then we have

/ (), valy)) d H™ () = / div f(z) d\"(z).
o0

Q

Without proof.
The end of the lecture no. 10, 24.4.2023
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8.2 Definitions and remarks

Definition. Let U C R" be open.

(a) A function f € L'(U) has bounded variation in U if

sup{/ fdivedr; ¢ € CHU,R™),||¢lle < 1} < 0.
U

We write BV (U) to denote the space of functions of bounded variation.

(b) A \"-measurable set £ C R™ has finite perimeter in U if xp € BV (U).

(c) A function [ € L*(U) has locally bounded variation in U if for each open set V with
V C U we have

sup{/ fdivedz; ¢ € CHV,R™), ||ols < 1} < 00
U
We write BV},.(U) to denote the space of such functions.

(d) A \*-measurable set £ C R™ has locally finite perimeter in U if xrp € BV},.(U).

Theorem 8.4 (structure theorem). Let U C R™ be open and f € BV,,.(U). Then there exists a
Radon measure 1 on U and a p-measurable function o: U — R" such that

@ |lo(x)|| =1 pae and

(b) [, fdivedr =— [, (¢, 0)dpuforeveryp € CL(UR").

Remark. (1) Let U C R" be open, f € BV, (U), 7 € {1,...,n}. For ¢ € C*(U) we set
¢=10,...,0,%,0,...,0] and we have

/fazw /fchw——/ /wazdu

If fe L,.(U)and 0;f,i = 1,...,n, is a signed Radon measure, then f € BV,,.(U). We
have

/Uf&'w:—/;z)dn, Y € C2(U).

Then for every p € C°(V,R"), where V is open with V' C U, we have

/deim:—/Ugw

Theorem 8.5 (lower semicontinuity of variation measure). Let U C R" be open, f, € BV (U),
k€N, and f, — fin L} (U). Then

loc
IDAIU) < liminf [|D fi|(U).
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8.3 Coarea formula for BV functions

Notation. For f: U — R and ¢t € R, define E; = {z € U; f(z) > t}.

Lemma 8.6. Let U C R" be open and f € BV (U). Then the mapping t — ||0E||(U) is
M -measurable.

The end of the lecture no. 11, 15.5.2023
Proof. The mapping (z,t) — g, () is A" -measurable since the set
(@) €U XR; xp,(8) =1} = {(2.0) €U x R; 5 € B} = {(1,) € U x R; f(x) > 1}

is a subgraph of the measurable function f. Let ¢ € C}(U, R™). Then the function
t— divcp:/XEtdivgo
Ey
is Al-measurable. Find D C C!(U, R™) countable and dense. Then

t— ||OE||(U) = sup / divpe = sup / dive
Et Et

lolloo <1,p€CE(UR™) l[¢lloo<1,0€D

is \l-measurable.

Theorem 8.7. Let U C R" be open and f € BV (U). Then
e E, has finite perimeter for \'-a.e. t € R and
* IDf = [ZL 0B (U) dt.

* Conversely, if f € L*(U) and [_||OE,||(U)dt < oo, then f € BV (U).
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8.4 The reduced boundary

To be added.

8.5 Gauss theorem for BV functions

To be added.
The end of the lecture no. 12, 22.5.2023

The end of Summer Semester
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