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Chapter 1

Differentiation of measures

1.1 Covering theorems

Covering theorems provide a tool which enables us to infer global properties from local ones in the context
of measure theory.

Vitali theorem

Definition. Let A C R™. We say that a system V consisting of closed balls from R"™ forms Vitali cover
of A, if
Vre AVe >03Be€V: 2 € B A diam B < e.

Notation.
* )\, ... Lebesgue measure on R"
e \* ... outer Lebesgue measure on R"

e If B C R"isaball and o > 0, then o x B denotes the ball, which is concentric with B and with
a-times greater radius than B.

Theorem 1.1 (Vitali). Let A C R™ and V be a system of closed balls forming a Vitali cover of A. Then
there exists a countable disjoint subsystem A C V such that A,,(A\ JA) = 0.

Proof. First assume that A is bounded. Take an open bounded set G C R™ with A C G. Set
V*={BeV; BCG}.

The system V* is a Vitali cover of A again. If there exists a finite disjoint subsystem V* covering A, we
are done. So assume

(%) there is no finite disjoint subsystem of V* covering A.

1st step. We set
s1 = sup{diam B; B € V*}

and choose a ball B; € V* such that diam By > s1/2. We know that V* # () and s; < diam G < co.

k-th step. Suppose that we have already chosen balls By, ..., Br_1. We set

k—1
sy =sup{diam B; B€ V* A BN U B; =0}.

i=1
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The supremum is considered for a nonempty set since the set Uf:_f B; is closed, which by (%) does not

cover A, and V* is a Vitali cover of A. We choose a ball B, € V* such that By N Ui.:ll B, = () and
diam By > si/2.

This finishes the construction of the sequence (By)72 . Set A = {By; k € N}. We verify that A is
the desired system.

o A is countable. This follows immediately from the construction.
e A is disjoint. This follows from the construction.

o [t holds \,,(A\ U.A) = 0. We have

oo

ikn(Bi) = An(U Bi) < Mn(@) < 0.

i=1

Thus the series Y .-, A, (B;) is convergent, therefore lim; \,,(B;) = 0. Using the fact that B;, i € N, are
balls we also have lim; diam B; = 0. We know that 2 diam B; > s;, consequently lim; s; = 0.
We show that
Voe A\| JAVieNTjeN,j>i: 2 €5xB;.

Take 2 € A\ J.Aandi € N. Denote § = dist(z,|J,_, Bx). It holds § > 0 and there exists B € V*
such that z € B and diam B < . Then we have B N UZZI By, = (. Thus we have diam B > s,, for
some p € N since lim; s; = 0. Therefore there exists j > ¢ with B; N B # (). Let j be the smallest
number with this property. Then we have s; > diam B since B N Uf:_ll B; = (. Further we have
diam B; > s,/2 > %diam B. Together we have 2 diam B; > diam B. This implies x € B C 5 % Bj.

For any 7« € N we have
AANJA) <A (5% B;j) <D A5+ Bj) =5" > Au(By).
j=i j=i j=i
Using lim; 00 Y7~ An(B;) = 0 we get Ay, (A '\ J.A) = 0, and therefore A, (A \ J.A) = 0.

Now we assume that the set A is a general subset of R™. Let (Gj)}?i1 be a sequence of bounded disjoint
open sets such that A, (R™ \ Uj’;l G;) = 0. Denote

Vi={Be€V; BCG;}
The system V7 forms a Vitali cover of the bounded set G; N A. Using the previous part of the construction

we find a countable disjoint system A; C V5 with A, ((G;NA)\J.A;) = 0. Now we set A = U;A4;. O

The end of the lecture no. 1, 3.10.2022

Definition. We say that a measure 1 on R" satisfies Vitali theorem, if for every M C R"™ and every Vitali
cover V of M there exists countable disjoint cover A C V such that p«(M \ JA) = 0.

Remark. (1) By Theorem[I.1| A, satisfies Vitali theorem.

(2) If p satisfies Vitali theorem and v < p, then v satisfies Vitali theorem.

Remark. If  is the Borel measure on R? such that p1(A) = A; (AN (R x {0})) for any B C R? Borel,
then Vitali theorem does not hold for .

Theorem 1.2. Let E C R"™ be measurable and S be a finite system of closed balls covering E. Then there
exists a disjoint system L C S such that A, (E) < 3" Y A\u(B).
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Proof. Without any loss of generality we may assume that S is nonempty. Choose B; € S with maximal
radius among balls in S. Suppose that we have already constructed By, . .., Bi_1. If possible, choose By, €
S disjoint with | J; _,, B; and with maximal radius among balls in S satisfying this property. We construct
a finite sequence of closed balls By, ..., By and set £ = {By,..., By}. Wehave £ C Jgz., 3 x B. To
this end consider « € E. Then there exists B € S with z € B. We find minimal k such that B N By, # 0.
Then we have radius(B) < radius(Byg). This implies that z € B C 3 x By.

Then we have

An(B) < /\n( U 3*13) <Y MBB)=3"3 Au(B).

BeL BeL BeL

Besicovitch theorem

Theorem 1.3 (Besicovitch). For each n € N there exists N € N with the following property. If A C R"™
and A: A — (0,00) is a bounded function, then there exist sets Ay, ..., Ay such that

« {B(z,A(z)); x € A;} is disjoint for every i € {1,..., N},
s ACU{B(z,A(x)); z € UX, A}

Proof. The case of a bounded set A. Let R = sup 4 A. Choose By := B(aj,r;) such that a; € A and
r1 = Aa1) > %R. Assume that we have already chosen balls By, ..., B;_; where j > 2. If

j—1

Fj = A\ U B(a;,r;) =0,

i=1
then the process stops and we set J = j. If F; # (), we continue by choosing B; := B(a;,r;) such that
a; € Fj and
rj = A(a;) > 2sup A. (1.1)
Fj
If F; # 0 for all j, then we set J = oo. In this case lim;_, ., r; = 0 because A is bounded and the
inequalities

1 2 1 1 1
H(li—CLjH >r;= §Ti+§ri > §Ti+§rj > gri—i—grj

for 7 < 7 < J imply that
{3 *Bj; j < J} is adisjoint family. (1.2)

In case J < oo, we have A C |J;_; B;. This is also true in the case J = oo. Otherwise there exist

a € (2, Fj and jo € N with 7, < 3 A(a), contradicting the choice of r;,.

Fix k < J. We set I = {i < k; B; N By, # 0}. We now prove that there exists M € N depending only on
n which estimates |I|. To this end we split I into I; and I5 and we estimate their cardinality separately.

I :{i< k; B; N By, #@,T‘i < IOTk},
I, = {Z < k; B;N By #@,TZ‘ > 107’k}.

The estimate of |I,|. We have § x B; C 15 x By, for every i € I1. Indeed, if 2 € 1  B;, then

10 43
||x—ak\| < ||x—ai||+||ai—ak|| < grk"‘r‘ﬁﬁ-?”k < ?Tk < 157.
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Hence, there are at most 60” elements of 1, because for any ¢ € I; we have

An(% % Bi) = M (B(0,1)) - (37:)" > X\ (B(0,1)) - (3rp)" = minAn(m*Bk).

The end of the lecture no. 2, 10. 10. 2022

See[l7]
The end of the lecture no. 3, 24.10.2022

The estimate of |Iz|. Denote b; = a; — ai. An elementary mesh-like construction gives a family {Q,,; 1 <
m < (22n)"} of closed cubes with edge length 1/(11n) (so that diam @,,, < 1/11), which cover [—1, 1]
and thus in particular the unit sphere. We claim that for each 1 < m < (22n)™ there is at most one i € I
such that b; /||b;|| € @m,, which estimates the cardinality of I5.

If the claim were not valid, then there would exist ¢, 7 € 5,7 < 7, such that

I -l =7
- ll< =,
loall flosll Il — 11

Notice that
i < ||bi|| <mi 47 oand vy < ||bjl| <74 TR, (1.3)

as the balls B;, B; intersect By, but does not contain ay. Hence

1
1Bl = [1B5 1] < [rs = 751 + 7 < s = 75 + 573

and
1 11
o5l <rj+re <rj+ 07 = 107" (1.4)
We have
11; 1[;
i = agll = l1bs = b < [[bs = 20| + || = b
! ! Al 11:]] ’
[[b][b: ;1] 1105 115
- e« - ok
’ (123t [1b:] 16511

1
< Wbl — gl + 7]
1 1 .
<|ri —rj|+ 107 + 107 (using (T.3) and (T.4))

< ri—%rj<n- if’l”i>7’j,
| —ri+ g?"j < —r; + %7‘1’ <r; ifr; < rj.

In the last inequality we have used that ¢ < j and thus r; < %ri by (I.I). We arrived at a contradiction as
i < j and thus a; ¢ B;. Hence |I3| < (22n)".

Thus it is sufficient to choose M > 60™ + (22n)".

Choice of A, ..., Ap. Foreach k € N we define A, € {1,2,..., M} such that A\, = k whenever k < M
and for k > M we define )\ inductively as follows. There is Ay, € {1, ..., M} such that

By ﬂU{Bi; 1< k, A\ = )\k} = 0.

Now we set A; = {a;; s =4}, j=1,..., M.
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The case of a general set A. For each | € N apply the previously obtained result with A replaced by
A= An{z; 3(1 - )R < ||z| < 3IR},
and denote resulting sets as Aé, i =1,..., M. Then we set

A= AL A= 4L i=1...M

1 is odd L is even

Then we constructed NV := 2M subsets which have the required properties. O

Definition. Let P be a locally compact space and S be a o-algebra of subsets of P. We say that y is a
Radon measure on (P, S) if

(a) S contains all Borel subsets of P,
(b) p(K) < oo for every compact set K C P,
(©) w(G) =sup{u(K); K C G is compact} for every open set G C P,
(d) p(A) =inf{u(G); A C G,Gisopen} forevery A € S,
(e) p is complete.
Definition. Let 1 be a measure on X. Quter measure corresponding to y is defined by
w*(A) = inf{u(B); A C B, B is u-measurable}.

Remark. Let i be a Radon measure on (R",S) and A € S. Then there exist a Borel set B C R" such
that A C B and u(B\ A) = 0. If v is a Radon measure on (R",S") with v < p, then S C §'.

Lemma 1.4. Let (1 be a measure on X and {A; };‘;1 be an increasing sequence of subset of X. Then
lim g (4;) = p* (U2, 4j)-

Theorem 1.5. Let i1 be a Radon measure on R™ and F be a system of closed balls in R". Let A denote
the set of centers of the balls in F. Assume inf{r; B(a,r) € F} = 0 for each a € A. Then there exists a
countable disjoint system G C F such that u(A\ |JG) = 0.

Proof. The case j1*(A) < oco. Let N be the natural number from Theorem Fix 0 such that 1 — ﬁ <
0 <1

Claim. Let U C R"™ be an open set. There exists a disjoint finite system H C F such that | JH C U and

P ((AnU)\|JH) <op*(AND). (1.5)

The end of the lecture no. 4, 31. 10.2022

Proof of Claim. We may assume that p*(ANU) > 0. Let /; = {B € F; diam B < 1,B C U}. By
Theorem [I.3]there exist disjoint families G, ..., Gy C F such that

N
ANU C Ung
=1

Thus
N
pANU) <> p(AnUNn|JG).
=1
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Consequently, there exists an integer 1 < 5 < N for which
w(anunlJg,) > %u*um U) > (1— 0 (ANT).
Using Lemma|[I.4] we find a finite system H C G; such that
p(AnUnJH) > 1 -0 (AND).
The set | JH is p-measurable and therefore
pANU) =p (AnUn|JH) +p* (AnU\ [ JH)
> (1 =0 (ANU)+p* (AnU\ [ JH).

This gives (T.3). O

Set U; = R™. Using Claim we find a disjoint finite system 71 C JF such that | J#H; C Uy and
P ((AnT)\ [ JH1) < Op(ANT).

Continuing by induction we obtain a sequence of open set (U;) and finite disjoint finite systems (7{;) such
that Uj+1 = Uj \ UH]‘, Hj C F, UHj C Uj, and

WANU0) = (ANU)\UH,) < 6" (AnT))
for every 7 € IN. Together we have
W (AN U ) < 0% (4)

for every j € N. Since 11" (A) < oo we get pu* (A \ UjZ, UH;) = 0. Thus we set G = (J;2, H; and we
are done.

The general case. We find a sequence of bounded disjoint open sets (G';)52; such that ;1 (R™\ U;’il G,)) =
0. Then p(G;) < oo for every j € N and we proceed as in the proof of T heoremE] O

1.2 Differentiation of measures

Notation. The symbol B stands for the family of all closed balls in R".
Definition. Let v and p are measures on R™ and x € R™. Then we define

 upper derivative of  with respect to  at = by

D(v,p,x) = lir(r)1+ (sup{v(B)/u(B); x € B, B € B, diam B < r}),
r—

if the term at the right side is defined,
* lower derivative of  with respect to y at = by

D(v, p, x) (inf{v(B)/u(B); x € B, B € B, diam B < r}),

= lim
r—04
if the term at the right side is defined,

« derivative of v with respect to  at = (denoting D(v, u, z)) as the common value of D(v, i, ) and
D(v, u, x), if it is defined.
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Remark. The value D(v, i, z) (D(v, u, z)) is well defined if and only if
VB e B, z € B: u(B)>0.

Theorem 1.6. Let v and 1 be Radon measures on R™ and p satisfy Vitali theorem. Then D (v, ju, x) and
D(v, u, ) exist y-a.e.

Proof. Denote

= {x € R™; D(v, i, ) is not defined},
V={B€B, n(B) = 0}.

The family V is a Vitali cover of M. We find a countable disjoint system A C ) such that u(M\|J.A) = 0.

The we have
n(JA) =D uB) =0,
BeA
therefore p(M) = 0.
The proof for D(v, i, ) is analogous. O

Theorem 1.7. Let v and p be Radon measures on R, p satisfy Vitali theorem, ¢ € (0,00), and M C R™.
() If for every x € M we have D(v, u, ) > ¢, then v*(M) > cu*(M).

(i) Iffor every x € M we have D(v, u, z) < c, then there exists H C M such that (M \ H) = 0 and
v*(H) < cep*(M).

Proof. (i) Choose € > 0. There exists an open set G C R™ with M C G and v(G) < v*(M) + €. Set
={B e B; BCG,v(B)>cu(B)}.

The family V is a Vitali cover of M. There exists a disjoint countable subfamily A C V with u(M\|J A) =
0. Then we have

v (M) +e>v(G) =v(JA) =D vB)

BeA

> > cu(B) = cp(| JA) = e (M).

Taking ¢ — 0+ we get the desired inequality.
The end of the lecture no. 5, 7.11.2022

(ii) Choose k € N. There exists an open set G, C R™ such that M C Gy, and p(Gy) < p*(M) + 1/k.
Set
Vi, ={B € B; BCGy,v(B) <cu(B)}.

The system Vy, is a Vitali cover of M. Thus there exists a countable disjoint subfamily .4; C Vj such that
w(M\ JAg) =0. Set H, = M N|J Ag. Then pu(M \ Hy) =0, H, C M and we have

v (H) <v((JAr) = Y vB) < e Y uB) = JA)

BeA BeA
< ou(Gh) < (" (M) + 1).

Now we set H = (;—, Hg. Then we have v*(H) < cp* (M) and

p(M\ H) = p*(M\ H) <> p*(M\ Hy) = 0.
k=1
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Theorem 1.8. Ler v and p be Radon measures on R™ and y satisfies Vitali theorem. Then D(v, p, x) is
finite p-a.e.

Proof. Denote

D ={z e R"; D(v,p,x) € (0,)},

N1 = {xz € R"; D(v, y1, z) is not defined},
Ny = {z € R"; D(v, y1, x) is not defined},
N3 ={z € R"; D(v, i, r) = oo},

Ni = {z € R D(v, ,2) < D(v, 1, 2)}.

Then we have
e D=R"\ (N1 UNyUN;3UNy),
o u(N1) = p(N2) = 0 (Theorem 1.6).
Further we define
Ap ={z € R"; D(v, i, x) > k},
A(r,s) ={x € R"; D(v,pu,x) <s<r < D(v,u,z)}, sreQr,s<r

The we have

= n Aka
k=1

Ny = U{A(r, s); r,s€Qt,s<r}

We show 11(N3) = 0. Choose @ C N3 bounded. By Theorem [1.7(i) we have

kpt(Q) < v (Q) < o0

forevery k € N. Therefore *(Q)) = 0 and thus also p(N3) = 0, since N3 is a countable union of bounded
sets.

We show 11(Ny) = 0. It is sufficient to show u(A(r,s)) = 0 for every s,7 € Q*,s < r. Choose Q C
A(r, s) bounded. By Theorem|[L.7[ii) there exists H C @Q such that 4(Q \ H) = 0 and v*(H) < sp*(Q).
By Theorem [1.7(i) we have rp* (H) < v*(H). We may conclude

Pt (Q) = ryr* (H) < v (H) < 5p1*(Q) < oo.
Since r > s > 0, we have p*(Q) = 0. This implies p(A(r, s)) = 0. O

Lemma 1.9. Let v and p be Radon measures on R™ and p satisfies Vitali theorem. Then the mappings
x = D(v,u,x), z — D(v, u, x) are u-measurable.

Proof. We start with the following observation.

The set

M(r,o) = {z € R"; 3B € B: d1amB<r/\x€B/\V§ <a}
is open foreveryr>0anda€R.
If z € M(r, ), then there exist y € R™ and s > 0 with z € B(y, s), 2s < 1,

I/(E(y, 5))

1(B(y,s)) s
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We find s’ > s such that 25’ < r, v(B(y,s'))/u(B(y,s')) < a. Now we have z € B(y,s') C M(r, ).
This finishes the proof of the observation.

Denote D = {z € R™; D(v, u,x) exists finite}. The set D is p-measurable by Theorem 1.8| For every
x € D we have

D(v,p,z) < o
. v(B)
SIreQ,7>0VreQ,r>03dB € B: d1amB<r,x€B,@<a—T

SIreQ,r>0vVreQ,r>0: z€ M(r,a—r1).

The set {x € R™; D(v, u,x) < a} is intersection of D with a Borel set. This implies that the mapping
x +— D(v, u,x) is p-measurable. o
Measurability of the mapping x — D (v, i, ) can be proved analogously. O

Theorem 1.10. Let v and i be Radon measures on R, u satisfies Vitali theorem, v < u, and B C R" is
p-measurable. Then we have

/B D(v, u,z)du(z) = v(B).
Proof. Let B C R" be a y-measurable set. Choose 8 € R, 5 > 1. Define

By ={zeB; ¥ <D(v,p,z) <"}, ke,
N ={z € B; D(v,u,z) = 0}.

These sets are yi-measurable by Lemma[I.9} Using Theorem[I.8] we have

u@\(6<muN»&

Then we have

oo

| Pesin@) = 3 [ Do) due) < 30 8 (B

By,

k=—00 k=—o00

oo

< 3 BB Fu(By) < Bu(B).

k=—o0
Going 5 — 1+ we get
[ D) duta) < v(B),
B

Now let 5 > 1 again. Define

By = {z € B; B¥ < D(v,p, z) < g**1},
N ={z € B; D(v,u,z) = 0}.

Besides the equality

w(BA (U Bum) =0

k=—oc0

we have also v(B \ (Uz—_., Bx UN)) =0, since v < . By Theorem ii) and absolute continuity of
v with respect to p we obtain v*(Q) < cu*(Q) < oo forany ¢ > 0 and Q C N bounded. Similarly as in
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the proof of Theorem|[I.8we get v(NN') = 0. Then we have

/BD(%u,x)du(x)Z > D) dpu() > > B u(By)
k=—o0 " Pk

k=—o00

> i 6’“6—<’“+1>V<Bk>=%u<3>.

k=—o00

Now it follows [ D(v, ju, ) dp(x) > v(B). O

The end of the lecture no. 6, 14.11.2022

1.3 Lebesgue points

Definition. Let p be a Radon measure on R™. The symbol L] .(x) denotes the set of all functions

f+ R™ — C, which are y-measurable and for every x € R" there exists r > 0 such that fB(w " |f()] du(t) <
0.

Definition. Let f € £} .(u). We say that 2 € R™ is Lebesgue point of f (with respect to 1), if it holds

loc
Jplf(t) = f(@)[dp(t)

VYe>03d>0VB € B,z € B,diam B < 4:
n(B)

<e.

1
loc

Theorem 1.11. Let i be a Radon measure on R satisfying Vitali theorem and f € L
points of f are Lebesgue points.

(). Then p-a.e.

Proof. Without any loss of generality we may assume that u(R"™) < oo and f € £!(u). Let (Cy) be a
sequence of closed discs in C, which forms a basis of C. We denote

gr(x) := dist(f(z), Ck), x €R".

The function gy is nonnegative p-measurable function satisfying gr € £'(u). Let vy = [ gpdu. By
Theorem we have D(vg, u, ) = gi(z) p-a.e. Denote

P, = {.1‘ € f_l(Ck); ﬁ(D(Vkvuam) = O)}

We have g, = 0 on f~(C}), therefore p(P;) = 0. We show that every point from R" \ |y, Py is a
Lebesgue point of f.

Letz € R" \ Jp—, Pi. Choose e > 0. We find C}, such that f(z) € Cj and Cy, C B(f(x),&/2). For
any t € R" it holds

[f(t) = f(2)] < gr(t) + e

There exists & > 0 such that

I 9x(t) dp(t)
w(B)

since D(v, i, x) = 0. Take B € B with z € B, diam B < ¢ we get

Jplf ) = f@)[dp(t) _ [pgu(t) dut) +ep(B)
n(B) - w(B)

This finishes the proof. O

VBeB, xr€ B, diamB <4 : <e,

< 2e.
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1.4 Density theorem

Definition. Let 1 be a measure on R™, A C R" be u-measurable, and = € R™. We say that ¢ € [0, 1] is
p~density of the set A at z, if

1(ANB)

Ve >036 >0VB € B, x € B, diam B < §: |
n(B)

—c‘<5.

We denote d, (A, z) = c.

Theorem 1.12. Let i be a Radon measure on R"™ satisfying Vitali theorem and M C R™ be pi-measurable.
Then

o d,(M,z) =1for p-a.e. v € M,
e d,(M,z) =0 for p-ae. x € R™\ M.
Proof. Define v on R™ by
v(A) =pu(AN M) forevery A C R" y-measurable.
Then we have

e d,(M,z) = D(v, i, z), if at least one term is well defined,

v,

e v=[xmdu.

By Theorem we have v = [ D(v, i, z) du(x) therefore d,(M,z) = D(v,p,z) = xm(z) p-
a.e. O

1.5 AC and BYV functions

Remark. Fora,c,b € R,a < ¢ < b, it holds
s Vol =Vif+Vef,
1) = fa)| <V f.
Example. Let f be a function with continuous derivative on an interval [a, b]. Then V? f = f; |f/(x)| dx.
Remark. Let I be a closed nonempty interval. Then we have
@ f,ge AC(I)= f+ge AC(I),
(b) fe AC(I),a e R= af € AC(I).

Theorem 1.13. Let f: [a,b] — R, a < b. Then f is absolutely continuous on [a,b] if and only if f is
difference of of two nondecreasing absolutely continuous functions on [a, b).

Proof. = We denote v(x) = V3, f, x € [a,b]. Forevery z,y € I :=[a,b], z < y, we have v(y) — v(z) =
VY f. The function v is well defined since f € BV ([a, z]),z € [a, b].

The function v is nondecreasing. This is obvious.

The function v — f is nondecreasing. For every z,y € I, x < y we have

(v(y) = f(W) — (v(x) = f(z) = (v(y) —v(x)) = (fly) = f(x) =VIf = (fly) — f(z)) > 0.
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The function v is absolutely continuous. Choose € > 0. We find § > 0 such that
> 1) — flaj)l <,
j=1

whenever a1 < by < ag < by < -+ < a,, < by, are points from I = [a, b] with Z;-n:l(bj —aj) < 6. Now
assume that we have points Ay < By < Ay < By < --- < Aj < By, from [ satisfying 3 37_ (B; — 4;) <
d. Foreach j € {1,...,p} we find points

Aj:a{<b{:aj2<b;:<b]mJ:BJ
such that

o(By) —v(A;) = VI F < Y| F(b]) — flad)| + ];
=1

The we have

j=11i=1 j=1
and
p p m; ) c
Solu(By) - o4 < S (310D - flal) + ) <e+e=2
j=1 j=1 i=1 p
Now we can write f =v — (v — f). O

The end of the lecture no. 7, 21.11.2022

Remark. Let F': R — R be nondecreasing function which is continuous at each point from the right.
Then there exists a Radon measure vg such that F' is the distribution function of vg, i.e.,

vr((a,b]) = F(b) — F(a), a,beR,a <b.
Lemma 1.14. Ler f: (a,b) — R, 2o € (a,b), and f'(x¢) € R. Then we have
lim f(z2) — f(z1)

[z1,22]—=[z0,70] T2 — I
2120 <®2, 1 FT2

= f,(xo)~

Lemma 1.15. Let f: (a,b) — R be nondecreasing on (a,b), C(f) be the set of all points of continuity of
f, and A € R. Then for every xo € C(f) it holds

. X — T
f’(CEo) — A lim f( 2) f( 1) — A.
[x1,72]—[z0,70] T2 — T1
21<20<T2,T1 £T2
z1,22€C(f)

Lemma 1.16. Let f be a distribution function of a measure pon R, xg € C(f), A € R. Then
I'(z0) = As D(p, A\, 20) = A.
Theorem 1.17 (Lebesgue). Let f be a monotone function on an interval 1. Then we have
o f(x) exists a.e. in I,

* [’ is measurable and ’f; 1< 1f(0) = f(a)

, whenever a,b € I,a < b,

. frerll (I).

loc
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Theorem 1.18. Let I be a nonempty interval and f € BV (I). Then f'(x) exists finite a.e. in I.

The end of the lecture no. 8, 23.11.2022

Theorem 1.19. Let f: [a,b] — R, a < b. Then the following assertions are equivalent.
(i) f e AC([a,b]).
(i) We have ¢ € L'(|a,b]) such that

(i) f'(z) exists a.e. in [a,b], f' € L ([a,b]) and
f@=f@+ [ r@yd  wela,

Theorem 1.20 (per partes for Lebesgue integral). Ler f, g € AC([a,b]). Then we have

/ab f'a=1fgll - /: fe.

Theorem 1.21. Let g be a nonnegative function on [a,b] with g € L([a,b]). Let f be a continuous
Sfunction on [a, b]. The there exists £ € [a, b] such that

/abfg=f(§)/abg-

Theorem 1.22. Let f € L'([a,b]) and g be a monotone function on [a, b]. Then there exists & € |a, b] such

that . ¢ .
/afg:g(a)/a f+g(b)/§ ;

1.6 Rademacher theorem

Definition. Let A/ C R™. We say that f: M — R is Lipschitz (on M), if there exists K > 0 such that
Va,y e M: [f(x) = f(y)| < K|z —yl].
Remark. If f is Lipschitz on M, then f is continuous on M.

Theorem 1.23. Let G C R" be open nonempty and f: G — R be Lipschitz on G. Then f is differentiable
a.e. on G.

Lemma 1.24. Ler f: R™ — R be continuous and i € {1, ... ,n}. Then the set
D;={zeR"Y %(fv) exists }
is Borel.

Proof. We have

of
833‘1'

& Ve > 036> 0V, ty € (—6,8) \ {0} [[lethed=t@)  Jlatbae) /o) o

to

& Ve e Q3 e QF Vi, ty € ((=0,6)N Q) \ {0} [Lethedtl) _ Jltbe)J@)| o

to

(z) exists
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The end of the lecture no. 9, 28.11.2022

For € > 0 and nonzero tq, t5 denote

D(e,tr,t2) = {x € R [Llethefe)  Jette) /@) o 5}.

t] t2

The set D(e, t1,t2) is open since f is continuous. We have

p=NU N N penm

e€eQt 5eQt t1€(—6,0)NQ t2€(—6,6)NQ
t17#0 ta#0

therefore D, is Borel. O

Lemma 1.25. Let 8 > 0, A # (), fo, € A, be 8-Lipschitz function on R™ and x € R"™ be such that
SUpye 4 fal2) is finite. Then the function z — supc 4 fa(2) is B-Lipschitz on R™.

Proof. Letu,v € R™. Then |f,(u) — f,(z)| < B||u — z|| for any v € A, therefore

fy(w) < fy(@) + Bllu — | < Slelgfa(x) + Bllu —=].

This implies

sup fy(u) < sup fo(z) + Bllu — ||,
YEA a€cA

thus sup. ¢ 4 f,(u) € R. Further we have
Fy(u) < fy() + Bllu = vl < sup fa(v) + Bllu —vl| foreveryy € A.
ae

We get

sup fy(u) < sup fo(v) + Bllu —vl|.
~yEA a€A

Thus we have

sup fo(u) — sup fo(v) < Bllu— vl
a€A acA

Interchanging the roles of u and v we obtain

sup fa(v) — sup fo(u) < Bllu— vl
acA a€cA

which proves -Lipschitzness. O

Lemma 1.26. Let E C R" be nonempty and f: E — R be [3-Lipschitz. Then there exists (3-Lipschitz
function f: R™ — Rwith f|g = f.

Proof. The function f,: y — f(z) — 8- ||y — z|| is 8-Lipschitz for every x € F since
|fo(u) = fo(0)| = |8 |lu—a|| = B [Jv— ||| < Bllu— ]

for every u,v € R". For every y € E we have sup,cp f2(y) < f(y). Using Lemma we get the
mapping defined by

f(y) = sup(f(z) — Blly — zl|)

el

is 3-Lipschitz on R". For z € E we have f(2) > f2(2) = f(2). Moreover f,(z) = f(z) — B[z — || <
f(2), which gives f(z) < f(z). Thus we prove f(z) = f(z). O
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Proof of Theorem[[.23] By Lemma we may suppose that f is Lipschitz with the constant 8 on R™,
ie.,
Ve,y € R": [f(2) = f(y)| < Bllz = yl].
We show that f is differentiable a.e. This gives also the statement of the theorem. Let £ C R™ be a set
of those points where at least one partial derivative does not exist. The set R" \ D; is by Lemma
measurable. We use Fubini theorem and Rademacher theorem for n = 1 (see Remark) to get A,,(R™ \
D;) = 0. Then we have A, (E) = 0, since E = [J;_, (R" \ D;).
For p,q € Q™, m € N, denote

S(p,q,m) = {z eR™ Vie{l,...,.n}Vt € (=1/m,1/m)\ {0}: p; < w < qv}

It is easy to verify that the set S(p, ¢, m) is Borel. Let S(p, ¢, m) be the set of all points of S(p, g, m),
where S(p, ¢, m) has density 1. Then Theorem gives

A (S(p,g,m) \ S(p, g,m)) = 0.

The set }
N = J{S(p,q,m)\ S(p,q,m); p,q € Q",m € N}
is of measure zero.

We show that f is differentiable at each point x € R™ \ (E U N). Take z € R" \ (E U N) and
e € (0,1). Choose p, g € Q™ such that

G —e<p < () <q;, t=1,...,n.

8@-

Then there is m € N such that x € S(p,q,m). Since x ¢ N, the point z is a point of density of the set
S(p,q,m). Denote S = S(p,q,m).
We find 6 € (0,1/m) such that

forevery r € (0,2). Notice that the set B(x, (1+¢)7)\.S does not contain a ball with radius 7, whenever
7 € (0,0). Otherwise it would hold

en(em)” < (g/2)"c, (1 + &)™,

a contradiction. (The symbol ¢,, denotes n-dimensional measure of the unit ball.)
Choose y € B(x,0), y # x. Denote

yi = [y17y27"'7yi7zi+17"'axn}-

For every i € {0,...,n} define a ball B; = B(y',¢|ly — ||). Using the preceding observation we have
B;NS # (). Find points 2 € SN B;,i=0,...,n—1, and denote w® = 2~ + (y; —x;)e;, i = 1,...,n.

The end of the lecture no. 10, 5. 12.2022

Then we have

po< T ZDE Do ita £y,

therefore

Fw') = 1) = 5 @) = 20)| < (0 = polly — il < elly =]l
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Then we have

< 3w = £ = S @) -] + YA - £+ 17 - )

i=1 =1

< nelly — z|| + 2npelly — =[| = e(n + 2np)|ly — =||,
thus the proof is finished. O
Remark. Let us mention the following two deep results of D. Preiss.

1. Let H be a Hilbert space and f: H — R be Lipschitz. Then there exists € H, where f is Fréchet
differentiable, i.e., there exists a continuous linear mapping L: H — R such that

. |f(x+h) = f(x) = L(h)|
Jim, I[R]] =0

2. There exists a closed measure zero set ' C R? such that any Lipschitz function on R? is differen-
tiable at some point of F'.

1.7 Maximal operator

Definition. Let f: R™ — R be measurable. For z € R™ we define

M) = BeB zeB n(B) / 71

Theorem 1.27 (Hardy-Littlewood-Wiener).
Lecture no. 3
(@) If f € LP(R™), 1 < p < o0, then M f is finite a.e.

(b) There exists c > 0 such that for every f € L'(R™) and o > 0 we have

M({z € R Mf(x) > a}) < =|f]l.

(¢) Let p € (1,00]. Then there exists A such that for every f € LP(R™) we have || M f||, < Al f|lp.

1.8 Lipschitz functions and 1>
Remark. We have
whee(Q) = LP(Q) N {u; Oiu € L*(Q) (in the sense of distributions), i € {1,... ,n}}

Theorem 1.28. Let U C R™ be open. Then f: U — R is local Lipschitz on U if and only if f €
Wl OO(U)

loc

Without proof.
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Hausdorff measures

2.1 Basic notions

Convention. We will assume that (P, p) is a metric space.
Definition. Letp > 0, A C P. Denote
MHy(A,0) = inf{) (diam A;); AcC | J 4;, diamA; <45}, 6> 0;
j=1 j=1
Hp(A) =supHpy(A4,06).
6>0
The function A — H,(A) is called p-dimensional outer Hausdorff measure.
Remark. Definice H se nezméni, pokud budeme uvazovat A,, uzaviené (resp. oteviené).

Definition. Outer measure y on P is called metric, if for every A, B C P with inf{p(x,y); v € A,y €
B} > 0 we have y(AU B) = v(A) + v(B).

Theorem 2.1. Let v be a metric outer measure on P. Then every Borel subset of P is y-measurable.

The end of the lecture no. 11, 12.12.2022

Theorem 2.2. H,, is a metric outer measure.

Corollary 2.3. Every Borel subset of P is H,-measurable.

Theorem 2.4. Letk,n € N, k<n, K =[0,1)* x {0}"% C R". Then 0 < Hy(K) < oco.

Remark. It can be shown that i), := H;, ([0, 1]% x {0}"~F) = (4/m)*/2T(1 + &).

Definition. Let & € N. The k-dimensional normalized Hausdorff measure is defined by H* = é?—lk.

Theorem 2.5 (regularity of Hausdorff measure). Let k,n € N,k < n, and A C R". Then there exists a
Borel set B C R" such that A C B and H*(A) = H*(B).

Theorem 2.6. Letn € N and A C R™. Then H™(A) = \"*(A).

2.2 Area formula

Notation. Let k,n € N,k < n, and L: R* — R™ be a linear mapping. We denote vol L = Vdet LT L.

Definition. Letk,n € N, k <n,and G C R* be open. A mapping f: G — R" is said to be regular, if
f € CY(G) and for every z € G the rank of f/(a) is k.

23
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Theorem 2.7 (area formula). Let k,n € N,k < n, G C RF be an open set, o: G — R™ be an injective
regular mapping and f: o(G) — R be H"*-measurable. Then we have

/ ) dH* (z / Flo(#)) vol ' (H)ANE (1),
»(G)

if the integral at the right side converges.

The end of the lecture no. 12, 19.12.2022

2.3 Hausdorff dimension

Lemma 2.8. Ler0 <p < ¢, AC P, and H,(A) < co. Then H,(A) = 0.

Proof. Letd € (0,1) and {A;}3, be a sequence of subsets of P such that A C (J;Z, A;, diam 4; < ¢
for every j € N, and )77, (diam A;)? < H,,(A) + 1. Then we have

Hq(A,0) < )y (diam A;)? Z (diam A;)P - (diam A;)7™

'M8

<
Il
—

<
Il
-

Mg

(diam A;)P - 5977 < 5P (H,(A) + 1).

<.
Il
—

Sending 6 — 0+ we get H,(A) = 0. O
Definition. Let A C P. Hausdorff dimension of A is defined by

dim A = inf{t > 0; H;(A4) < oo}
Remark. By Lemma[2.8 we have

ZORE iy

Corollary 2.9. (i) Forevery A C B C P we have dim A < dim B.
(ii) Forevery A; C P, i € N, we have dim(|J;-, A;) = sup, dim 4;.
(iii) We have dim([0, 1]* x {0}"~%) = k, in particular, dim[0,1]" =

Example (Cantor set). For s € {0} UJp—, {0, 1}* we define inductively closed intervals I, as follows
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* Iy =1[01],

101 ifi —
. lfIS = [a7b], then IsAi = [G,U,‘l“ 3(b CL)L 1 Z 07
b—3(0b—a)b], ifi=1.

Cantor set is defined by

C:ﬁ U I,.

k=0 s€{0,1}*

The set C has the following properties:
e (C'is compact,

¢ C is nowhere dense,

« ('is uncountable.

Theorem 2.10. We have dim C = iggg

__ log2
Proof. Denote d = Tog 3"

We prove Hq(C) < 1. We have C' C Uy g 1y Is and diam I < 37k, s € {0,1}*. We infer
> (diamI,)* =2% - (37F)4 =1.
s€{0,1}*

Then we have H,4(C) < 1.

We prove Hq4(C') > 1/4. Tt is sufficient to prove that

o0

Z(diamfj)d >1/4,

=1

where I;,j € N, are open intervals and C' C U;}il I;. Convex envelope of an open set G C R is an
open interval with the same diameter as GG. The set C' is compact, therefore there exist intervals I, ..., I,
covering C'. Since C' is nowhere dense, we may assume that, that the endpoints of Iy, ..., I,, are not in C.
Then there exists 6 > 0 such that

dist(C, endpoints of I,...,1I,) > 4.
Let k € N and 37% < 6. Then we have
Vs € {0,135 {1,...,n}: I, C I,. 2.1
Claim. Let I C R be an interval and [ € N we have
> (diam I,)* < 4(diam I)*.
I,CI
se{0,1}

Proof of Claim. Suppose that the sum at the left side is nonzero. Let m be the smallest natural number
such that I contains some I, ¢ € {0,1}". Then we have obviously m < [. Let Ji,...,J, are those
intervals among I, s € {0,1}™, which intersect I. The we have p < 4 by the choice of m. Then we have

(diamJi)d:Z Z (diam I,)?

M=

4(diam I)? >

i=1 i=1 I,CJ;
s€{0,1}!
> Z (diam I,)%.
I.cI

s€{0,1}!
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Indeed, we have
(diam J;)% = (37™)% = 27™,
> (diam )4 =27 (37 =27

I:CJ;
s€{0,1}!
O
Then we have
> 4 Claim . @D J
4y (diamI)* > > Y (diamI)* = Y (diam L) =1.
j=1 j=1 I.CI, s€{0,1}*
s€{0,1}"
This finishes the proof. O

The end of the lecture no. 13, 2.1.2023

The end of Winter semester

Example. Let o > 0. We define

E, = {m € R, there exists infinitely many pairs (p, ¢) € Z x N such that ’x - g‘ < q_(2+“)}.

Jarnik’s theorem says that dim F, = QJ%Q
Definition. The mapping f: R™ — R" is called similitude with ratio r if || f(z) — f(v)| = r|lz — y||

for every z,y € R"™.

Theorem 2.11. Let m € N and 41, ..., ¥, be similitudes of R™ with ratios r1,...,7, € (0,1) such
that there exists an open set V. C R™ such that v(V) C V and for every i,j € {1,...,m},i # j, we
have 1;(V) N ;(V) = 0. Let E be a nonempty compact set satisfying E = \J;" | 1;(E) and s satisfies
Yo v =1 Then we have 0 < H*(E) < occ.

Without proof.

Example (Koch curve). One can use Theorem to prove Theorem 2.10] or to infer that Hausdorff

dimension of Koch curve is izg g. Here we have several approximations of Koch curve.
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