Real functions

M. Zelený

December 17, 2024

Contents

Ι	Wi	nter semester	5	
1	Diff	Differentiation of measures		
	1.1	Covering theorems	7	
	1.2	Differentiation of measures		
	1.3	Lebesgue points	18	
		Density theorem		
	1.5	AC and BV functions	20	
	1.6	Rademacher theorem	24	
	1.7	Lipschitz functions and $W^{1,\infty}$	27	
	1.8	Maximal operator	28	
2	Hausdorff measures			
	2.1	Basic notions	29	
	2.2	Area formula	31	

CONTENTS

Part I

Winter semester

Chapter 1

Differentiation of measures

1.1 Covering theorems

Covering theorems provide a tool which enables us to infer global properties from local ones in the context of measure theory.

Vitali theorem

Definition. Let $A \subset \mathbb{R}^n$. We say that a system \mathcal{V} consisting of closed balls from \mathbb{R}^n forms **Vitali** cover of A, if

$$\forall x \in A \ \forall \varepsilon > 0 \ \exists B \in \mathcal{V} \colon x \in B \land \operatorname{diam} B < \varepsilon.$$

Notation.

- $\lambda_n \dots$ Lebesgue measure on \mathbb{R}^n
- $\lambda_n^* \dots$ outer Lebesgue measure on \mathbf{R}^n
- If B ⊂ Rⁿ is a ball and α > 0, then α ★ B denotes the ball, which is concentric with B and with α-times greater radius than B.

Theorem 1.1 (Vitali). Let $A \subset \mathbb{R}^n$ and \mathcal{V} be a system of closed balls forming a Vitali cover of A. Then there exists a countable disjoint subsystem $\mathcal{A} \subset \mathcal{V}$ such that $\lambda_n(A \setminus \bigcup \mathcal{A}) = 0$.

Proof. First assume that A is bounded. Take an open bounded set $G \subset \mathbb{R}^n$ with $A \subset G$. Set

$$\mathcal{V}^* = \{ B \in \mathcal{V}; \ B \subset G \}.$$

The system \mathcal{V}^* is a Vitali cover of A again. If there exists a finite disjoint subsystem \mathcal{V}^* covering A, we are done. So assume

(*) there is no finite disjoint subsystem of \mathcal{V}^* covering A.

1st step. We set

 $s_1 = \sup\{\operatorname{diam} B; B \in \mathcal{V}^*\}$

and choose a ball $B_1 \in \mathcal{V}^*$ such that diam $B_1 > s_1/2$. We know that $\mathcal{V}^* \neq \emptyset$ and $s_1 \leq \text{diam } G < \infty$.

k-th step. Suppose that we have already chosen balls B_1, \ldots, B_{k-1} . We set

$$s_k = \sup \{ \operatorname{diam} B; \ B \in \mathcal{V}^* \land B \cap \bigcup_{i=1}^{k-1} B_i = \emptyset \}.$$

The supremum is considered for a nonempty set since the set $\bigcup_{i=1}^{k-1} B_i$ is closed, which by (\star) does not cover A, and \mathcal{V}^* is a Vitali cover of A. We choose a ball $B_k \in \mathcal{V}^*$ such that $B_k \cap \bigcup_{i=1}^{k-1} B_i = \emptyset$ and diam $B_k > s_k/2$.

This finishes the construction of the sequence $(B_k)_{k=1}^{\infty}$. Set $\mathcal{A} = \{B_k; k \in \mathbb{N}\}$. We verify that \mathcal{A} is the desired system.

- A is countable. This follows immediately from the construction.
- *A is disjoint*. This follows from the construction.
- It holds $\lambda_n(A \setminus \bigcup A) = 0$. We have

$$\sum_{i=1}^{\infty} \lambda_n(B_i) = \lambda_n \Bigl(\bigcup_{i=1}^{\infty} B_i\Bigr) \le \lambda_n(G) < \infty.$$

Thus the series $\sum_{i=1}^{\infty} \lambda_n(B_i)$ is convergent, therefore $\lim_i \lambda_n(B_i) = 0$. Using the fact that B_i , $i \in \mathbb{N}$, are balls we also have $\lim_i \operatorname{diam} B_i = 0$. We know that $2 \operatorname{diam} B_i > s_i$, consequently $\lim_i s_i = 0$.

We show that

$$\forall x \in A \setminus [\]\mathcal{A} \ \forall i \in \mathbf{N} \ \exists j \in \mathbf{N}, j > i : \ x \in 5 \star B_j.$$

Take $x \in A \setminus \bigcup A$ and $i \in \mathbb{N}$. Denote $\delta = \operatorname{dist}(x, \bigcup_{k=1}^{i} B_{k})$. It holds $\delta > 0$ and there exists $B \in \mathcal{V}^{*}$ such that $x \in B$ and diam $B < \delta$. Then we have $B \cap \bigcup_{k=1}^{i} B_{k} = \emptyset$. Thus we have diam $B > s_{p}$ for some $p \in \mathbb{N}$ since $\lim_{i} s_{i} = 0$. Therefore there exists j > i with $B_{j} \cap B \neq \emptyset$. Let j be the smallest number with this property. Then we have $s_{j} \ge \operatorname{diam} B$ since $B \cap \bigcup_{l=1}^{j-1} B_{l} = \emptyset$. Further we have diam $B_{j} > s_{j}/2 \ge \frac{1}{2} \operatorname{diam} B$. Together we have $2 \operatorname{diam} B_{j} \ge \operatorname{diam} B$. This implies $x \in B \subset 5 \star B_{j}$.

For any $i \in \mathbf{N}$ we have

$$\lambda_n^*(A \setminus \bigcup \mathcal{A}) \le \lambda_n \bigl(\bigcup_{j=i}^\infty 5 \star B_j\bigr) \le \sum_{j=i}^\infty \lambda_n(5 \star B_j) = 5^n \sum_{j=i}^\infty \lambda_n(B_j).$$

1.1. COVERING THEOREMS

Using $\lim_{i\to\infty}\sum_{j=i}^{\infty}\lambda_n(B_j)=0$ we get $\lambda_n^*(A\setminus\bigcup\mathcal{A})=0$, and therefore $\lambda_n(A\setminus\bigcup\mathcal{A})=0$.

Now we assume that the set A is a general subset of \mathbb{R}^n . Let $(G_j)_{j=1}^{\infty}$ be a sequence of bounded disjoint open sets such that $\lambda_n(\mathbb{R}^n \setminus \bigcup_{i=1}^{\infty} G_i) = 0$. Denote

$$\mathcal{V}_j^* = \{ B \in \mathcal{V}; \ B \subset G_j \}.$$

The system \mathcal{V}_{j}^{*} forms a Vitali cover of the bounded set $G_{j} \cap A$. Using the previous part of the construction we find a countable disjoint system $\mathcal{A}_{j} \subset \mathcal{V}_{j}^{*}$ with $\lambda_{n}((G_{j} \cap A) \setminus \bigcup \mathcal{A}_{j}) = 0$. Now we set $\mathcal{A} = \bigcup_{j} \mathcal{A}_{j}$.

Definition. We say that a measure μ on \mathbb{R}^n satisfies **Vitali theorem**, if for every $M \subset \mathbb{R}^n$ and every Vitali cover \mathcal{V} of M there exists countable disjoint cover $\mathcal{A} \subset \mathcal{V}$ such that $\mu(M \setminus \bigcup \mathcal{A}) = 0$.

Remark. (1) By Theorem 1.1 λ_n satisfies Vitali theorem.

(2) If μ satisfies Vitali theorem and $\nu \ll \mu$, then ν satisfies Vitali theorem.

Remark. If μ is the Borel measure on \mathbb{R}^2 such that $\mu(A) = \lambda_1 (A \cap (\mathbb{R} \times \{0\}))$ for any $A \subset \mathbb{R}^2$ Borel, then Vitali theorem does not hold for μ .

The end of the lecture no. 1, 1. 10. 2024

Theorem 1.2. Let $E \subset \mathbb{R}^n$ be measurable and S be a finite system of closed balls covering E. Then there exists a disjoint system $\mathcal{L} \subset S$ such that $\lambda_n(E) \leq 3^n \sum_{B \in \mathcal{L}} \lambda_n(B)$.

Proof. Without any loss of generality we may assume that S is nonempty. Choose $B_1 \in S$ with maximal radius among balls in S. Suppose that we have already constructed B_1, \ldots, B_{k-1} . If possible, choose $B_k \in S$ disjoint with $\bigcup_{i < k} B_i$ and with maximal radius among balls in S satisfying this property. We construct a finite sequence of closed balls B_1, \ldots, B_N and set $\mathcal{L} = \{B_1, \ldots, B_N\}$. We have $E \subset \bigcup_{B \in \mathcal{L}} 3 \star B$. To this end consider $x \in E$. Then there exists $B \in S$ with $x \in B$. We find minimal k such that $B \cap B_k \neq \emptyset$. Then we have radius $(B) \leq \operatorname{radius}(B_k)$. This implies that $x \in B \subset 3 \star B_k$.

Then we have

$$\lambda_n(E) \le \lambda_n \Big(\bigcup_{B \in \mathcal{L}} 3 \star B\Big) \le \sum_{B \in \mathcal{L}} \lambda_n(3 \star B) = 3^n \sum_{B \in \mathcal{L}} \lambda_n(B).$$

Besicovitch theorem

Theorem 1.3 (Besicovitch [?]). For each $n \in \mathbb{N}$ there exists $N \in \mathbb{N}$ with the following property. If $A \subset \mathbb{R}^n$ and $\Delta \colon A \to (0, \infty)$ is a bounded function, then there exist sets A_1, \ldots, A_N such that

• $\{\overline{B}(x,\Delta(x)); x \in A_i\}$ is disjoint for every $i \in \{1,\ldots,N\}$,

•
$$A \subset \bigcup \{\overline{B}(x, \Delta(x)); x \in \bigcup_{i=1}^{N} A_i\}.$$

Proof. The case of a bounded set A. Let $R = \sup_A \Delta$. Choose $B_1 := \overline{B}(a_1, r_1)$ such that $a_1 \in A$ and $r_1 := \Delta(a_1) > \frac{3}{4}R$. Assume that we have already chosen balls B_1, \ldots, B_{j-1} where $j \ge 2$. If

$$F_j := A \setminus \bigcup_{i=1}^{j-1} \overline{B}(a_i, r_i) = \emptyset,$$

then the process stops and we set J = j. If $F_j \neq \emptyset$, we continue by choosing $B_j := \overline{B}(a_j, r_j)$ such that $a_j \in F_j$ and

$$r_j := \Delta(a_j) > \frac{3}{4} \sup_{F_j} \Delta.$$
(1.1)

If $F_j \neq \emptyset$ for all j, then we set $J = \infty$. In this case $\lim_{j\to\infty} r_j = 0$ because A is bounded and the inequalities

$$||a_i - a_j|| \ge r_i = \frac{1}{3}r_i + \frac{2}{3}r_i > \frac{1}{3}r_i + \frac{1}{2}r_j > \frac{1}{3}r_i + \frac{1}{3}r_j$$

for i < j < J imply that

$$\left\{\frac{1}{3} \star B_j; \ j < J\right\}$$
 is a disjoint family. (1.2)

In case $J < \infty$, we have $A \subset \bigcup_{j < J} B_j$. This is also true in the case $J = \infty$. Otherwise there exist $a \in \bigcap_{j=1}^{\infty} F_j$ and $j_0 \in \mathbb{N}$ with $r_{j_0} \leq \frac{3}{4}\Delta(a)$, contradicting the choice of r_{j_0} .

Fix k < J. We set $I = \{i < k; B_i \cap B_k \neq \emptyset\}$. We now prove that there exists $M \in \mathbb{N}$ depending only on n which estimates |I|. To this end we split I into I_1 and I_2 and we estimate their cardinality separately.

$$I_1 = \{i < k; B_i \cap B_k \neq \emptyset, r_i < 10r_k\},$$

$$I_2 = \{i < k; B_i \cap B_k \neq \emptyset, r_i \ge 10r_k\}.$$

The estimate of $|I_1|$. We have $\frac{1}{3} \star B_i \subset 15 \star B_k$ for every $i \in I_1$. Indeed, if $x \in \frac{1}{3} \star B_i$, then

$$||x - a_k|| \le ||x - a_i|| + ||a_i - a_k|| \le \frac{10}{3}r_k + r_i + r_k \le \frac{43}{3}r_k < 15r_k.$$

Hence, there are at most 60^n elements of I_1 , because for any $i \in I_1$ we have

$$\lambda_n(\frac{1}{3} \star B_i) = \lambda_n(\overline{B}(0,1)) \cdot \left(\frac{1}{3}r_i\right)^n > \lambda_n(\overline{B}(0,1)) \cdot \left(\frac{1}{4}r_k\right)^n = \frac{1}{60^n}\lambda_n(15 \star B_k).$$

_ The end of the lecture no. 2, 8. 10. 2024 _____

1.1. COVERING THEOREMS

The estimate of $|I_2|$. Denote $b_i = a_i - a_k$. An elementary mesh-like construction gives a family $\{Q_m; 1 \le m \le (22n)^n\}$ of closed cubes with edge length 1/(11n) (so that diam $Q_m \le 1/11$), which cover $[-1,1]^n$ and thus in particular the unit sphere. We claim that for each $1 \le m \le (22n)^n$ there is at most one $i \in I_2$ such that $b_i/||b_i|| \in Q_m$, which estimates the cardinality of I_2 .

If the claim were not valid, then there would exist $i, j \in I_2, i < j$, such that

$$\left\|\frac{b_i}{\|b_i\|} - \frac{b_j}{\|b_j\|}\right\| \le \frac{1}{11}.$$

Notice that

$$r_i < ||b_i|| < r_i + r_k$$
 and $r_j < ||b_j|| < r_j + r_k$, (1.3)

as the balls B_i , B_j intersect B_k but does not contain a_k . Hence

$$||b_i|| - ||b_j|| \le |r_i - r_j| + r_k \le |r_i - r_j| + \frac{1}{10}r_j$$

and

$$|b_j|| \le r_j + r_k \le r_j + \frac{1}{10}r_j = \frac{11}{10}r_j.$$
(1.4)

We have

$$\begin{split} \|a_{i} - a_{j}\| &= \|b_{i} - b_{j}\| \leq \left\|b_{i} - \frac{\|b_{j}\|}{\|b_{i}\|}b_{i}\right\| + \left\|\frac{\|b_{j}\|}{\|b_{i}\|}b_{i} - b_{j}\right\| \\ &= \left\|\frac{\|b_{i}\|b_{i}}{\|b_{i}\|} - \frac{\|b_{j}\|}{\|b_{i}\|}b_{i}\right\| + \left\|\frac{\|b_{j}\|}{\|b_{i}\|}b_{i} - \frac{\|b_{j}\|}{\|b_{j}\|}b_{j}\right\| \\ &\leq \left|\|b_{i}\| - \|b_{j}\|\right| + \frac{1}{11}\|b_{j}\| \\ &\leq |r_{i} - r_{j}| + \frac{1}{10}r_{j} + \frac{1}{10}r_{j} \quad \text{(using (1.3) and (1.4))} \\ &\leq \begin{cases} r_{i} - \frac{4}{5}r_{j} < r_{i} & \text{if } r_{i} > r_{j}, \\ -r_{i} + \frac{6}{5}r_{j} \leq -r_{i} + \frac{8}{5}r_{i} < r_{i} & \text{if } r_{i} \leq r_{j}. \end{cases}$$

In the last inequality we have used that i < j and thus $r_j < \frac{4}{3}r_i$ by (1.1). We arrived at a contradiction as i < j and thus $a_j \notin B_i$. Hence $|I_2| \leq (22n)^n$.

Thus it is sufficient to choose $M > 60^n + (22n)^n$.

Choice of A_1, \ldots, A_M . For each $k \in \mathbb{N}$ we define $\lambda_k \in \{1, 2, \ldots, M\}$ such that $\lambda_k = k$ whenever $k \leq M$ and for k > M we define λ_k inductively as follows. There is $\lambda_k \in \{1, \ldots, M\}$ such that

$$B_k \cap \bigcup \{B_i; i < k, \lambda_i = \lambda_k\} = \emptyset.$$

Now we set $A_j = \{a_i; \lambda_i = j\}, j = 1, ..., M$.

The case of a general set A. For each $l \in \mathbb{N}$ apply the previously obtained result with A replaced by

$$A^{l} = A \cap \{x; \ 3(l-1)R \le ||x|| < 3lR\},\$$

and denote resulting sets as A_i^l , i = 1, ..., M. Then we set

$$A_i = \bigcup_{l \text{ is odd}} A_i^l, \qquad A_{M+i} = \bigcup_{l \text{ is even}} A_i^l, \qquad i = 1, \dots, M.$$

Then we constructed N := 2M subsets which have the required properties.

Definition. Let P be a locally compact space and S be a σ -algebra of subsets of P. We say that μ is a **Radon measure** on (P, S) if

- (a) S contains all Borel subsets of P,
- (b) $\mu(K) < \infty$ for every compact set $K \subset P$,
- (c) $\mu(G) = \sup\{\mu(K); K \subset G \text{ is compact}\}$ for every open set $G \subset P$,
- (d) $\mu(A) = \inf{\{\mu(G); A \subset G, G \text{ is open}\}}$ for every $A \in S$,
- (e) μ is complete.

Definition. Let μ be a measure on X. **Outer measure corresponding** to μ is defined by

$$\mu^*(A) = \inf\{\mu(B); A \subset B, B \text{ is } \mu\text{-measurable}\}.$$

Remark. Let μ be a Radon measure on (\mathbb{R}^n, S) and $A \in S$. Then there exist a Borel set $B \subset \mathbb{R}^n$ such that $A \subset B$ and $\mu(B \setminus A) = 0$. If ν is a Radon measure on (\mathbb{R}^n, S') with $\nu \ll \mu$, then $S \subset S'$.

The end of the lecture no. 3, 15. 10. 2024

Lemma 1.4. Let μ be a measure on X and $\{A_j\}_{j=1}^{\infty}$ be an increasing sequence of subset of X. Then $\lim \mu^*(A_j) = \mu^*(\bigcup_{j=1}^{\infty} A_j)$.

Proof. For every $j \in \mathbb{N}$ find a μ -measurable set B_j with $A_j \subset B_j$ and $\mu^*(A_j) = \mu(B_j)$. We set $M_k = \bigcap_{j=1}^k A_j$. Then M_k is μ -measurable $A_k \subset M_k$, and $\mu(M_k) = \mu^*(A_k)$ for every $k \in \mathbb{N}$. Moreover, $\{M_k\}$ is nondecreasing sequence of sets. Then we have

$$\lim_{k \to \infty} \mu^*(A_k) = \lim_{k \to \infty} \mu(M_k) = \mu\left(\bigcup_{k=1}^{\infty} M_k\right) \ge \mu^*\left(\bigcup_{k=1}^{\infty} A_k\right) \ge \lim_{k \to \infty} \mu^*(A_k)$$

and we are done.

Theorem 1.5. Let μ be a Radon measure on \mathbb{R}^n and \mathcal{F} be a system of closed balls in \mathbb{R}^n . Let A denote the set of centers of the balls in \mathcal{F} . Assume $\inf\{r; B(a,r) \in \mathcal{F}\} = 0$ for each $a \in A$. Then there exists a countable disjoint system $\mathcal{G} \subset \mathcal{F}$ such that $\mu(A \setminus \bigcup \mathcal{G}) = 0$.

1.1. COVERING THEOREMS

Proof. The case $\mu^*(A) < \infty$. Let N be the natural number from Theorem 1.3. Fix θ such that $1 - \frac{1}{N} < \theta < 1$.

Claim. Let $U \subset \mathbf{R}^n$ be an open set. There exists a disjoint finite system $\mathcal{H} \subset \mathcal{F}$ such that $\bigcup \mathcal{H} \subset U$ and

$$\mu^* \big((A \cap U) \setminus \bigcup \mathcal{H} \big) \le \theta \mu^* (A \cap U).$$
(1.5)

Proof of Claim. We may assume that $\mu^*(A \cap U) > 0$. Let $\mathcal{F}_1 = \{B \in \mathcal{F}; \text{ diam } B < 1, B \subset U\}$. By Theorem 1.3 there exist disjoint families $\mathcal{G}_1, \ldots, \mathcal{G}_N \subset \mathcal{F}_1$ such that

$$A \cap U \subset \bigcup_{i=1}^{N} \bigcup \mathcal{G}_{i}.$$

Thus

$$\mu^*(A \cap U) \le \sum_{i=1}^N \mu^*(A \cap U \cap \bigcup \mathcal{G}_i).$$

Consequently, there exists an integer $1 \le j \le N$ for which

$$\mu^* \left(A \cap U \cap \bigcup \mathcal{G}_j \right) \ge \frac{1}{N} \mu^* (A \cap U) > (1 - \theta) \mu^* (A \cap U).$$

Using Lemma 1.4 we find a finite system $\mathcal{H} \subset \mathcal{G}_j$ such that

$$\mu^* (A \cap U \cap \bigcup \mathcal{H}) > (1 - \theta) \mu^* (A \cap U).$$

The set $\bigcup \mathcal{H}$ is μ -measurable and therefore

$$\mu^*(A \cap U) = \mu^*(A \cap U \cap \bigcup \mathcal{H}) + \mu^*(A \cap U \setminus \bigcup \mathcal{H})$$

$$\geq (1 - \theta)\mu^*(A \cap U) + \mu^*(A \cap U \setminus \bigcup \mathcal{H}).$$

This gives (1.5).

Set $U_1 = \mathbb{R}^n$. Using Claim we find a disjoint finite system $\mathcal{H}_1 \subset \mathcal{F}$ such that $\bigcup \mathcal{H}_1 \subset U_1$ and

$$\mu^*((A \cap U_1) \setminus \bigcup \mathcal{H}_1) \le \theta \mu^*(A \cap U_1).$$

Continuing by induction we obtain a sequence of open set (U_j) and finite disjoint finite systems (\mathcal{H}_j) such that $U_{j+1} = U_j \setminus \bigcup \mathcal{H}_j$, $\mathcal{H}_j \subset \mathcal{F}$, $\bigcup \mathcal{H}_j \subset U_j$, and

$$\mu(A \cap U_{j+1}) = \mu^* \big((A \cap U_j) \setminus \bigcup \mathcal{H}_j \big) \le \theta \mu^* (A \cap U_j)$$

for every $j \in \mathbf{N}$. Together we have

 $\mu^* (A \cap U_{j+1}) \le \theta^j \mu^*(A)$

for every $j \in \mathbb{N}$. Since $\mu^*(A) < \infty$ we get $\mu^*(A \setminus \bigcup_{j=1}^{\infty} \bigcup \mathcal{H}_j) = 0$. Thus we set $\mathcal{G} = \bigcup_{j=1}^{\infty} \mathcal{H}_j$ and we are done.

The general case. We find a sequence of bounded disjoint open sets $(G_j)_{j=1}^{\infty}$ such that $\mu(\mathbf{R}^n \setminus \bigcup_{j=1}^{\infty} G_j) = 0$. Then $\mu(G_j) < \infty$ for every $j \in \mathbf{N}$ and we proceed as in the proof of Theorem 1.1

1.2 Differentiation of measures

Notation. The symbol \mathcal{B} stands for the family of all closed balls in \mathbb{R}^n .

Definition. Let ν and μ are measures on \mathbb{R}^n and $x \in \mathbb{R}^n$. Then we define

• upper derivative of ν with respect to μ at x by

$$\overline{D}(\nu,\mu,x) = \lim_{r \to 0+} \left(\sup\{\nu(B)/\mu(B); x \in B, B \in \mathcal{B}, \operatorname{diam} B < r \} \right),$$

if the term at the right side is defined,

• lower derivative of ν with respect to μ at x by

$$\underline{D}(\nu,\mu,x) = \lim_{r \to 0+} \left(\inf\{\nu(B)/\mu(B); x \in B, B \in \mathcal{B}, \operatorname{diam} B < r\} \right),$$

if the term at the right side is defined,

• derivative of ν with respect to μ at x (denoting $D(\nu, \mu, x)$) as the common value of $\overline{D}(\nu, \mu, x)$ and $\underline{D}(\nu, \mu, x)$, if it is defined.

The end of the lecture no. 4, 22. 10. 2024

Remark. The value $\overline{D}(\nu, \mu, x)$ ($\underline{D}(\nu, \mu, x)$) is well defined if and only if

$$\forall B \in \mathcal{B}, \ x \in B \colon \mu(B) > 0.$$

Theorem 1.6. Let ν and μ be Radon measures on \mathbb{R}^n and μ satisfy Vitali theorem. Then $\overline{D}(\nu, \mu, x)$ and $\underline{D}(\nu, \mu, x)$ exist μ -a.e.

Proof. Denote

$$M = \{ x \in \mathbf{R}^n; \ \overline{D}(\nu, \mu, x) \text{ is not defined} \},\$$
$$\mathcal{V} = \{ B \in \mathcal{B}; \ \mu(B) = 0 \}.$$

The family \mathcal{V} is a Vitali cover of M. We find a countable disjoint system $\mathcal{A} \subset \mathcal{V}$ such that $\mu(M \setminus \bigcup \mathcal{A}) = 0$. The we have

$$\mu(\bigcup \mathcal{A}) = \sum_{B \in \mathcal{A}} \mu(B) = 0,$$

therefore $\mu(M) = 0$.

The proof for $\underline{D}(\nu, \mu, x)$ is analogous.

Theorem 1.7. Let ν and μ be Radon measures on \mathbb{R}^n , μ satisfy Vitali theorem, $c \in (0, \infty)$, and $M \subset \mathbb{R}^n$.

1.2. DIFFERENTIATION OF MEASURES

- (i) If for every $x \in M$ we have $\overline{D}(\nu, \mu, x) > c$, then $\nu^*(M) \ge c\mu^*(M)$.
- (ii) If for every $x \in M$ we have $\underline{D}(\nu, \mu, x) < c$, then there exists $H \subset M$ such that $\mu(M \setminus H) = 0$ and $\nu^*(H) \leq c\mu^*(M)$.

Proof. (i) Choose $\varepsilon > 0$. There exists an open set $G \subset \mathbb{R}^n$ with $M \subset G$ and $\nu(G) \le \nu^*(M) + \varepsilon$. Set

$$\mathcal{V} = \{ B \in \mathcal{B}; \ B \subset G, \nu(B) > c\mu(B) \}.$$

The family \mathcal{V} is a Vitali cover of M. There exists a disjoint countable subfamily $\mathcal{A} \subset \mathcal{V}$ with $\mu(M \setminus \bigcup \mathcal{A}) = 0$. Then we have

$$\nu^*(M) + \varepsilon \ge \nu(G) \ge \nu(\bigcup \mathcal{A}) = \sum_{B \in \mathcal{A}} \nu(B)$$
$$\ge \sum_{B \in \mathcal{A}} c\mu(B) = c\mu(\bigcup \mathcal{A}) \ge c\mu^*(M).$$

Taking $\varepsilon \to 0+$ we get the desired inequality.

(ii) Choose $k \in \mathbb{N}$. There exists an open set $G_k \subset \mathbb{R}^n$ such that $M \subset G_k$ and $\mu(G_k) \leq \mu^*(M) + 1/k$. Set

$$\mathcal{V}_k = \{ B \in \mathcal{B}; \ B \subset G_k, \nu(B) < c\mu(B) \}.$$

The system \mathcal{V}_k is a Vitali cover of M. Thus there exists a countable disjoint subfamily $\mathcal{A}_k \subset \mathcal{V}_k$ such that $\mu(M \setminus \bigcup \mathcal{A}_k) = 0$. Set $H_k = M \cap \bigcup \mathcal{A}_k$. Then $\mu(M \setminus H_k) = 0$, $H_k \subset M$ and we have

$$\nu^*(H_k) \le \nu(\bigcup \mathcal{A}_k) = \sum_{B \in \mathcal{A}} \nu(B) \le c \sum_{B \in \mathcal{A}} \mu(B) = c\mu(\bigcup \mathcal{A})$$
$$\le c\mu(G_k) \le c(\mu^*(M) + \frac{1}{k}).$$

Now we set $H=\bigcap_{k=1}^\infty H_k.$ Then we have $\nu^*(H)\leq c\mu^*(M)$ and

$$\mu(M \setminus H) = \mu^*(M \setminus H) \le \sum_{k=1}^{\infty} \mu^*(M \setminus H_k) = 0.$$

Theorem 1.8. Let ν and μ be Radon measures on \mathbb{R}^n and μ satisfies Vitali theorem. Then $D(\nu, \mu, x)$ is finite μ -a.e.

Proof. Denote

$$D = \{x \in \mathbf{R}^n; \ D(\nu, \mu, x) \in \langle 0, \infty \rangle\},\$$

$$N_1 = \{x \in \mathbf{R}^n; \ \overline{D}(\nu, \mu, x) \text{ is not defined}\},\$$

$$N_2 = \{x \in \mathbf{R}^n; \ \underline{D}(\nu, \mu, x) \text{ is not defined}\},\$$

$$N_3 = \{x \in \mathbf{R}^n; \ \overline{D}(\nu, \mu, x) = \infty\},\$$

$$N_4 = \{x \in \mathbf{R}^n; \ \underline{D}(\nu, \mu, x) < \overline{D}(\nu, \mu, x)\}.$$

Then we have

•
$$D = \mathbf{R}^n \setminus (N_1 \cup N_2 \cup N_3 \cup N_4),$$

•
$$\mu(N_1) = \mu(N_2) = 0$$
 (Theorem 1.6).

Further we define

$$A_k = \{ x \in \mathbf{R}^n; \ \overline{D}(\nu, \mu, x) > k \},$$

$$A(r, s) = \{ x \in \mathbf{R}^n; \ \underline{D}(\nu, \mu, x) < s < r < \overline{D}(\nu, \mu, x) \}, \quad s, r \in \mathbf{Q}^+, s < r.$$

The we have

$$N_3 = \bigcap_{k=1}^{\infty} A_k,$$

$$N_4 = \bigcup \{A(r,s); r, s \in \mathbf{Q}^+, s < r\}.$$

We show $\mu(N_3) = 0$. Choose $Q \subset N_3$ bounded. By Theorem 1.7(i) we have

$$k\mu^*(Q) \le \nu^*(Q) < \infty$$

for every $k \in \mathbb{N}$. Therefore $\mu^*(Q) = 0$ and thus also $\mu(N_3) = 0$, since N_3 is a countable union of bounded sets.

We show $\mu(N_4) = 0$. It is sufficient to show $\mu(A(r, s)) = 0$ for every $s, r \in \mathbf{Q}^+, s < r$. Choose $Q \subset A(r, s)$ bounded. By Theorem 1.7(ii) there exists $H \subset Q$ such that $\mu(Q \setminus H) = 0$ and $\nu^*(H) \leq s\mu^*(Q)$. By Theorem 1.7(i) we have $r\mu^*(H) \leq \nu^*(H)$. We may conclude

$$r\mu^*(Q) = r\mu^*(H) \le \nu^*(H) \le s\mu^*(Q) < \infty.$$

Since r > s > 0, we have $\mu^*(Q) = 0$. This implies $\mu(A(r, s)) = 0$.

Lemma 1.9. Let ν and μ be Radon measures on \mathbb{R}^n and μ satisfies Vitali theorem. Then the mappings $x \mapsto \overline{D}(\nu, \mu, x)$, $x \mapsto \underline{D}(\nu, \mu, x)$ are μ -measurable.

Proof. We start with the following observation.

The set

$$M(r,\alpha) = \left\{ x \in \mathbf{R}^n; \; \exists B \in \mathcal{B} \colon \operatorname{diam} B < r \land x \in B \land \frac{\nu(B)}{\mu(B)} < \alpha \right\}$$

is open for every r > 0 and $\alpha \in \mathbf{R}$.

If $x \in M(r, \alpha)$, then there exist $y \in \mathbf{R}^n$ and s > 0 with $x \in \overline{B}(y, s), 2s < r$,

$$\frac{\nu(B(y,s))}{\mu(\overline{B}(y,s))} < \alpha.$$

16

1.2. DIFFERENTIATION OF MEASURES

We find s' > s such that 2s' < r, $\nu(\overline{B}(y, s'))/\mu(\overline{B}(y, s')) < \alpha$. Now we have $x \in B(y, s') \subset M(r, \alpha)$. This finishes the proof of the observation.

The end of the lecture no. 5, 29. 10. 2024

Denote $D = \{x \in \mathbf{R}^n; \underline{D}(\nu, \mu, x) \text{ exists finite}\}$. The set D is μ -measurable by Theorem 1.8. For every $x \in D$ we have

$$\begin{split} \underline{D}(\nu,\mu,x) < \alpha \\ \Leftrightarrow \exists \tau \in \mathbf{Q}, \tau > 0 \; \forall r \in \mathbf{Q}, r > 0 \; \exists B \in \mathcal{B} \colon \operatorname{diam} B < r, \; x \in B, \frac{\nu(B)}{\mu(B)} < \alpha - \tau \\ \Leftrightarrow \exists \tau \in \mathbf{Q}, \tau > 0 \; \forall r \in \mathbf{Q}, r > 0 \colon x \in M(r,\alpha - \tau). \end{split}$$

The set $\{x \in \mathbf{R}^n; \underline{D}(\nu, \mu, x) < \alpha\}$ is intersection of D with a Borel set. This implies that the mapping $x \mapsto \underline{D}(\nu, \mu, x)$ is μ -measurable.

Measurability of the mapping $x \mapsto \overline{D}(\nu, \mu, x)$ can be proved analogously.

Theorem 1.10. Let ν and μ be Radon measures on \mathbb{R}^n , μ satisfy Vitali theorem, $\nu \ll \mu$, and $B \subset \mathbb{R}^n$ be μ -measurable. Then we have

$$\int_B D(\nu, \mu, x) \, d\mu(x) = \nu(B)$$

Proof. Choose $\beta \in \mathbf{R}$, $\beta > 1$. Define

$$B_k = \{ x \in B; \ \beta^k < D(\nu, \mu, x) \le \beta^{k+1} \}, \qquad k \in \mathbf{Z}, \\ N = \{ x \in B; \ D(\nu, \mu, x) = 0 \}.$$

These sets are μ -measurable by Lemma 1.9. Using Theorem 1.8 we have

$$\mu\Big(B\setminus\big(\bigcup_{k=-\infty}^{\infty}B_k\cup N\big)\Big)=0.$$

Then we have

$$\begin{split} \int_{B} D(\nu,\mu,x) \, d\mu(x) &= \sum_{k=-\infty}^{\infty} \int_{B_{k}} D(\nu,\mu,x) \, d\mu(x) \leq \sum_{k=-\infty}^{\infty} \beta^{k+1} \mu(B_{k}) \\ & \stackrel{\text{Theorem 1.7(i)}}{\leq} \sum_{k=-\infty}^{\infty} \beta^{k+1} \beta^{-k} \nu(B_{k}) \leq \beta \nu(B). \end{split}$$

Going $\beta \to 1+$ we get

$$\int_{B} D(\nu, \mu, x) \, d\mu(x) \le \nu(B).$$

Now let $\beta > 1$ again. Define

$$C_k = \{ x \in B; \ \beta^k \le D(\nu, \mu, x) < \beta^{k+1} \}, \qquad k \in \mathbf{Z}.$$

Besides the equality

$$\mu\Big(B\setminus \big(\bigcup_{k=-\infty}^{\infty}C_k\cup N\big)\Big)=0,$$

we have also $\nu(B \setminus (\bigcup_{k=-\infty}^{\infty} C_k \cup N)) = 0$, since $\nu \ll \mu$. By Theorem 1.7(ii) and absolute continuity of ν with respect to μ we obtain $\nu^*(Q) \le c\mu^*(Q) < \infty$ for any c > 0 and $Q \subset N$ bounded. Similarly as in the proof of Theorem 1.8 we get $\nu(N) = 0$. Then we have

$$\begin{split} \int_{B} D(\nu,\mu,x) \, d\mu(x) &\geq \sum_{k=-\infty}^{\infty} \int_{C_{k}} D(\nu,\mu,x) \, d\mu(x) \geq \sum_{k=-\infty}^{\infty} \beta^{k} \mu(C_{k}) \\ & \xrightarrow{\text{Theorem 1.7(ii)}} \sum_{k=-\infty}^{\infty} \beta^{k} \beta^{-(k+1)} \nu(C_{k}) = \frac{1}{\beta} \nu(B). \end{split}$$

Now it follows $\int_B D(\nu, \mu, x) d\mu(x) \ge \nu(B)$.

1.3 Lebesgue points

Definition. Let μ be a Radon measure on \mathbb{R}^n . The symbol $\mathcal{L}^1_{loc}(\mu)$ denotes the set of all functions $f \colon \mathbb{R}^n \to \mathbb{C}$, which are μ -measurable and for every $x \in \mathbb{R}^n$ there exists r > 0 such that $\int_{B(x,r)} |f(t)| d\mu(t) < \infty$.

Definition. Let $f \in \mathcal{L}^1_{loc}(\mu)$. We say that $x \in \mathbb{R}^n$ is Lebesgue point of f (with respect to μ), if it holds

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall B \in \mathcal{B}, x \in B, \text{diam } B < \delta \colon \frac{\int_B |f(t) - f(x)| \, d\mu(t)}{\mu(B)} < \varepsilon$$

Theorem 1.11. Let μ be a Radon measure on \mathbb{R}^n satisfying Vitali theorem and $f \in \mathcal{L}^1_{loc}(\mu)$. Then μ -a.e. points of f are Lebesgue points.

Proof. Without any loss of generality we may assume that $\mu(\mathbf{R}^n) < \infty$ and $f \in \mathcal{L}^1(\mu)$. Let (C_k) be a sequence of closed discs in \mathbf{C} , which forms a basis of \mathbf{C} . We denote

$$g_k(x) := \operatorname{dist}(f(x), C_k), \qquad x \in \mathbf{R}^n.$$

The function g_k is nonnegative μ -measurable function satisfying $g_k \in \mathcal{L}^1(\mu)$. Let $\nu_k = \int g_k d\mu$. By Theorem 1.10 we have $D(\nu_k, \mu, x) = g_k(x) \mu$ -a.e. Denote

$$P_k = \{ x \in f^{-1}(C_k); \ \neg (D(\nu_k, \mu, x) = 0) \}.$$

1.4. DENSITY THEOREM

We have $g_k = 0$ on $f^{-1}(C_k)$, therefore $\mu(P_k) = 0$. We show that every point from $\mathbb{R}^n \setminus \bigcup_{k=1}^{\infty} P_k$ is a Lebesgue point of f.

Let $x \in \mathbf{R}^n \setminus \bigcup_{k=1}^{\infty} P_k$. Choose $\varepsilon > 0$. We find C_k such that $f(x) \in C_k$ and $C_k \subset B(f(x), \varepsilon/2)$. For any $t \in \mathbf{R}^n$ it holds

$$|f(t) - f(x)| \le g_k(t) + \varepsilon.$$

There exists $\delta > 0$ such that

$$\forall B \in \mathcal{B}, x \in B, \text{ diam } B < \delta : \frac{\int_B g_k(t) d\mu(t)}{\mu(B)} < \varepsilon,$$

since $D(\nu_k, \mu, x) = 0$. Take $B \in \mathcal{B}$ with $x \in B$, diam $B < \delta$ we get

$$\frac{\int_{B} |f(t) - f(x)| \, d\mu(t)}{\mu(B)} \le \frac{\int_{B} g_{k}(t) \, d\mu(t) + \varepsilon \mu(B)}{\mu(B)} < 2\varepsilon$$

This finishes the proof.

1.4 Density theorem

Definition. Let μ be a measure on \mathbb{R}^n , $A \subset \mathbb{R}^n$ be μ -measurable, and $x \in \mathbb{R}^n$. We say that $c \in [0, 1]$ is μ -density of the set A at x, if

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall B \in \mathcal{B}, \; x \in B, \; \text{diam} \; B < \delta \colon \left| \frac{\mu(A \cap B)}{\mu(B)} - c \right| < \varepsilon.$$

We denote $d_{\mu}(A, x) = c$.

The end of the lecture no. 6, 12. 11. 2024

Theorem 1.12. Let μ be a Radon measure on \mathbb{R}^n satisfying Vitali theorem and $M \subset \mathbb{R}^n$ be μ -measurable. Then

- $d_{\mu}(M, x) = 1$ for μ -a.e. $x \in M$,
- $d_{\mu}(M, x) = 0$ for μ -a.e. $x \in \mathbf{R}^n \setminus M$.

Proof. Define ν on \mathbb{R}^n by

 $\nu(A) = \mu(A \cap M)$ for every $A \subset \mathbf{R}^n \mu$ -measurable.

Then we have

- $d_{\mu}(M, x) = D(\nu, \mu, x)$, if at least one term is well defined,
- ν ≪ μ,
- $\nu = \int \chi_M d\mu$.

By Theorem 1.10 we have $\nu = \int D(\nu, \mu, x) d\mu(x)$ therefore $d_{\mu}(M, x) = D(\nu, \mu, x) = \chi_M(x) \mu$ -a.e.

1.5 AC and BV functions

Remark. For $a, c, b \in \mathbf{R}$, a < c < b, it holds

•
$$\operatorname{V}_{a}^{b} f = \operatorname{V}_{a}^{c} f + \operatorname{V}_{c}^{b} f$$
,

• $|f(b) - f(a)| \le \operatorname{V}_a^b f.$

Example. Let f be a function with continuous derivative on an interval [a, b]. Then $V_a^b f = \int_a^b |f'(x)| dx$.

Remark. Let *I* be a closed nonempty interval. Then we have

(a)
$$f, g \in AC(I) \Rightarrow f + g \in AC(I)$$
,

(b) $f \in AC(I), \alpha \in \mathbf{R} \Rightarrow \alpha f \in AC(I).$

Theorem 1.13. Let $f : [a, b] \to \mathbf{R}$, a < b. Then f is absolutely continuous on [a, b] if and only if f is difference of of two nondecreasing absolutely continuous functions on [a, b].

Proof. \Rightarrow We denote $v(x) = V_a^x f$, $x \in [a, b]$. The function v is well defined since $f \in BV([a, x])$, $x \in [a, b]$. For every $x, y \in I := [a, b]$, x < y, we have $v(y) - v(x) = V_x^y f$.

The function v *is nondecreasing.* This is obvious.

The function v - f is nondecreasing. For every $x, y \in I, x < y$ we have

$$(v(y) - f(y)) - (v(x) - f(x)) = (v(y) - v(x)) - (f(y) - f(x)) = V_x^y f - (f(y) - f(x)) \ge 0.$$

The function v is absolutely continuous. Choose $\varepsilon > 0$. We find $\delta > 0$ such that

$$\sum_{j=1}^{m} |f(b_j) - f(a_j)| < \varepsilon,$$

whenever $a_1 < b_1 \le a_2 < b_2 \le \cdots \le a_m < b_m$ are points from I = [a, b] with $\sum_{j=1}^m (b_j - a_j) < \delta$. Now assume that we have points $A_1 < B_1 \le A_2 < B_2 \le \cdots \le A_p < B_p$ from I satisfying $\sum_{j=1}^p (B_j - A_j) < \delta$. For each $j \in \{1, \dots, p\}$ we find points

$$A_j = a_1^j < b_1^j = a_2^j < b_2^j = \dots < b_{m_j}^j = B_j$$

such that

$$v(B_j) - v(A_j) = V_{A_j}^{B_j} f < \sum_{i=1}^{m_j} |f(b_i^j) - f(a_i^j)| + \frac{\varepsilon}{p}.$$

The we have

$$\sum_{j=1}^{p} \sum_{i=1}^{m_j} (b_i^j - a_i^j) = \sum_{j=1}^{p} (B_j - A_j) < \delta$$

and

$$\sum_{j=1}^{p} |v(B_j) - v(A_j)| < \sum_{j=1}^{p} \left(\sum_{i=1}^{m_j} |f(b_i^j) - f(a_i^j)| + \frac{\varepsilon}{p} \right) < \varepsilon + \varepsilon = 2\varepsilon$$

Now we can write f = v - (v - f).

Remark. Let $F : \mathbf{R} \to \mathbf{R}$ be nondecreasing function which is continuous at each point from the right. Then there exists a Radon measure ν_F such that F is the distribution function of ν_F , i.e.,

$$\nu_F((a,b]) = F(b) - F(a), \qquad a, b \in \mathbf{R}, a < b.$$

Lemma 1.14. Let $f: (a, b) \to \mathbf{R}$, $x_0 \in (a, b)$, and $f'(x_0) \in \mathbf{R}$. Then we have

$$\lim_{\substack{[x_1,x_2] \to [x_0,x_0]\\x_1 \le x_0 \le x_2, x_1 \ne x_2}} \frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(x_0).$$

Lemma 1.15. Let $f: (a,b) \to \mathbf{R}$ be nondecreasing on (a,b), C(f) be the set of all points of continuity of f, and $A \in \mathbf{R}$. Then for every $x_0 \in C(f)$ it holds

$$f'(x_0) = A \Leftrightarrow \lim_{\substack{[x_1, x_2] \to [x_0, x_0]\\x_1 \le x_0 \le x_2, x_1 \neq x_2\\x_1, x_2 \in C(f)}} \frac{f(x_2) - f(x_1)}{x_2 - x_1} = A.$$

The end of the lecture no. 7, 19. 11. 2024

Lemma 1.16. Let f be a distribution function of a Radon measure μ on \mathbf{R} , $x_0 \in C(f)$, $A \in \mathbf{R}$. Then

$$f'(x_0) = A \Leftrightarrow D(\mu, \lambda_1, x_0) = A$$

Theorem 1.17 (Lebesgue). Let f be a monotone function on an interval I. Then we have

- (a) f'(x) exists a.e. in I,
- (b) f' is measurable and $\left|\int_{a}^{b} f'\right| \leq |f(b) f(a)|$, whenever $a, b \in I, a < b$,
- (c) $f' \in \mathcal{L}^1_{loc}(I)$.

Proof. Without any loss of generality we may assume that f is nondecreasing. Let $a, b \in I$, a < b. We define

$$g(x) = \begin{cases} \lim_{t \to a+} f(t), & x \in (-\infty, a] \\ \lim_{t \to x+} f(t), & x \in (a, b), \\ f(b), & x \in [b, \infty). \end{cases}$$

The function g is nondecreasing, continuous from the right at each point of **R**, and $\{x \in (a,b) \ f(x) \neq g(x)\}$ is countable. By Remark there exists a Radon measure ν on **R** such that

$$\forall c, d \in \mathbf{R}, c < d \colon \nu((c, d]) = g(d) - g(c).$$

We find Radon measures μ, σ such that $\nu = \sigma + \mu, \sigma \ll \lambda$, and $\mu \perp \lambda$.

Claim. We have $D(\mu, \lambda, x) = 0 \lambda$ -a.e.

Proof of Claim. There exists a Borel set N such that $\lambda(N) = 0$ and $\mu(\mathbf{R} \setminus N) = 0$. Denote $D = \{x \in \mathbf{R} \setminus N; D(\mu, \lambda, x) > c\}$. Then we have $0 = \mu(D) \ge c\lambda(D)$. This implies $\lambda(D) = 0$, and, consequently, $\lambda(\{x \in \mathbf{R} \setminus N; D(\mu, \lambda, x) > 0\}) = 0$. This gives the claim. \Box

Lemma 1.16 gives $g'(x) = D(\nu, \lambda, x) \lambda$ -a.e. in [a, b], since g is continuous at each point [a, b] except a countable set. For every $x_0 \in (a, b) \cap C(f)$ we have $f'(x_0) = A \in \mathbb{R}$ if and only if $g'(x_0) = A \in \mathbb{R}$ (Lemma 1.15), since f(t) = g(t) whenever $t \in C(f) \cap (a, b)$. This implies (a).

(b) We have

$$\begin{split} f(b) - f(a) &\geq g(b) - g(a) = \nu((a, b]) \geq \sigma((a, b]) \\ &= \int_{a}^{b} D(\sigma, \lambda, x) \, d\lambda(x) \stackrel{\text{Claim}}{=} \int_{a}^{b} D(\nu, \lambda, x) \, d\lambda(x) \end{split}$$

(c) This follows from (b).

Theorem 1.18. Let I be a nonempty interval and $f \in BV(I)$. Then f'(x) exists finite a.e. in I.

Theorem 1.19. Let $f: [a, b] \to \mathbf{R}$, a < b. Then the following assertions are equivalent.

- (i) $f \in AC([a, b])$.
- (ii) We have $\varphi \in \mathcal{L}^1([a, b])$ such that

$$f(x) = f(a) + \int_{a}^{x} \varphi(t) dt, \qquad x \in [a, b].$$

(iii) f'(x) exists a.e. in [a, b], $f' \in \mathcal{L}^1([a, b])$ and

$$f(x) = f(a) + \int_{a}^{x} f'(t) dt, \qquad x \in [a, b].$$

____ The end of the lecture no. 8, 26. 11. 2024 _____

1.5. AC AND BV FUNCTIONS

Theorem 1.20 (per partes for Lebesgue integral). Let $f, g \in AC([a, b])$. Then we have

$$\int_a^b f'g = [fg]_a^b - \int_a^b fg'.$$

Theorem 1.21. Let g be a nonnegative function on [a, b] with $g \in \mathcal{L}^1([a, b])$. Let f be a continuous function on [a, b]. Then there exists $\xi \in [a, b]$ such that

$$\int_{a}^{b} fg = f(\xi) \int_{a}^{b} g.$$

Theorem 1.22. Let $f \in \mathcal{L}^1([a,b])$ and g be a monotone function on [a,b]. Then there exists $\xi \in [a,b]$ such that

$$\int_a^b fg = g(a) \int_a^{\xi} f(b) \int_{\xi}^b f(b)$$

1.6 Rademacher theorem

Definition. Let $M \subset \mathbb{R}^n$. We say that $f: M \to \mathbb{R}$ is Lipschitz (on M), if there exists K > 0 such that

$$\forall x, y \in M \colon |f(x) - f(y)| \le K ||x - y||.$$

Remark. If f is Lipschitz on M, then f is continuous on M.

Theorem 1.23. Let $G \subset \mathbb{R}^n$ be open nonempty and $f: G \to \mathbb{R}$ be Lipschitz on G. Then f is differentiable a.e. on G.

Lemma 1.24. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuous and $i \in \{1, ..., n\}$. Then the set

$$D_i = \left\{ x \in \mathbf{R}^n; \ \frac{\partial f}{\partial x_i}(x) \ exists \right\}$$

is Borel.

Proof. We have

$$\begin{split} &\frac{\partial f}{\partial x_i}(x) \text{ exists} \\ &\Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall t_1, t_2 \in (-\delta, \delta) \setminus \{0\} \colon \left| \frac{f(x+t_1e_i) - f(x)}{t_1} - \frac{f(x+t_2e_i) - f(x)}{t_2} \right| < \varepsilon \\ &\Leftrightarrow \forall \varepsilon \in \mathbf{Q}^+ \ \exists \delta \in \mathbf{Q}^+ \ \forall t_1, t_2 \in \left((-\delta, \delta) \cap \mathbf{Q} \right) \setminus \{0\} \colon \left| \frac{f(x+t_1e_i) - f(x)}{t_1} - \frac{f(x+t_2e_i) - f(x)}{t_2} \right| < \varepsilon. \end{split}$$

For $\varepsilon > 0$ and nonzero t_1, t_2 denote

$$D(\varepsilon, t_1, t_2) = \left\{ x \in \mathbf{R}^n; \ \left| \frac{f(x + t_1 e_i) - f(x)}{t_1} - \frac{f(x + t_2 e_i) - f(x)}{t_2} \right| < \varepsilon \right\}.$$

The set $D(\varepsilon, t_1, t_2)$ is open since f is continuous. We have

$$D_i = \bigcap_{\varepsilon \in \mathbf{Q}^+} \bigcup_{\substack{\delta \in \mathbf{Q}^+ \\ t_1 \neq 0}} \bigcap_{\substack{t_1 \in (-\delta, \delta) \cap \mathbf{Q} \\ t_2 \neq 0}} \bigcap_{\substack{t_2 \in (-\delta, \delta) \cap \mathbf{Q} \\ t_2 \neq 0}} D(\varepsilon, t_1, t_2),$$

therefore D_i is Borel.

The end of the lecture no. 9, 3. 12. 2024

1.6. RADEMACHER THEOREM

Lemma 1.25. Let $\beta > 0$, $A \neq \emptyset$, $f_{\alpha}, \alpha \in A$, be β -Lipschitz function on \mathbb{R}^n and $x \in \mathbb{R}^n$ be such that $\sup_{\alpha \in A} f_{\alpha}(x)$ is finite. Then the function $z \mapsto \sup_{\alpha \in A} f_{\alpha}(z)$ is β -Lipschitz on \mathbb{R}^n .

Proof. Let $u, v \in \mathbf{R}^n$. Then $|f_{\gamma}(u) - f_{\gamma}(x)| \leq \beta ||u - x||$ for any $\gamma \in A$, therefore

$$f_{\gamma}(u) \le f_{\gamma}(x) + \beta ||u - x|| \le \sup_{\alpha \in A} f_{\alpha}(x) + \beta ||u - x||.$$

This implies

$$\sup_{\gamma \in A} f_{\gamma}(u) \le \sup_{\alpha \in A} f_{\alpha}(x) + \beta ||u - x||,$$

thus $\sup_{\gamma \in A} f_{\gamma}(u) \in \mathbf{R}$. Further we have

$$f_{\gamma}(u) \le f_{\gamma}(v) + \beta ||u - v|| \le \sup_{\alpha \in A} f_{\alpha}(v) + \beta ||u - v||$$
 for every $\gamma \in A$.

We get

$$\sup_{\gamma \in A} f_{\gamma}(u) \le \sup_{\alpha \in A} f_{\alpha}(v) + \beta ||u - v||$$

Thus we have

$$\sup_{\alpha \in A} f_{\alpha}(u) - \sup_{\alpha \in A} f_{\alpha}(v) \le \beta ||u - v||$$

Interchanging the roles of u and v we obtain

$$\sup_{\alpha \in A} f_{\alpha}(v) - \sup_{\alpha \in A} f_{\alpha}(u) \le \beta ||u - v||,$$

which proves β -Lipschitzness.

Lemma 1.26. Let $\beta > 0$, $E \subset \mathbb{R}^n$ be nonempty and $f: E \to \mathbb{R}$ be β -Lipschitz. Then there exists β -Lipschitz function $\tilde{f}: \mathbb{R}^n \to \mathbb{R}$ with $\tilde{f}|_E = f$.

Proof. The function $f_x: y \mapsto f(x) - \beta \cdot ||y - x||$ is β -Lipschitz for every $x \in E$ since

$$|f_x(u) - f_x(v)| = |\beta \cdot ||u - x|| - \beta \cdot ||v - x||| \le \beta ||u - v|$$

for every $u, v \in \mathbb{R}^n$. For every $y \in E$ we have $\sup_{x \in E} f_x(y) \leq f(y)$. Using Lemma 1.25 we get the mapping defined by

$$\tilde{f}(y) = \sup_{x \in E} (f(x) - \beta ||y - x||)$$

is β -Lipschitz on \mathbb{R}^n . For $z \in E$ we have $\tilde{f}(z) \geq f_z(z) = f(z)$. Moreover $f_x(z) = f(x) - \beta ||z - x|| \leq f(z)$, which gives $\tilde{f}(z) \leq f(z)$. Thus we prove $\tilde{f}(z) = f(z)$. \Box

Proof of Theorem 1.23. By Lemma 1.26 we may suppose that f is Lipschitz with the constant β on \mathbb{R}^n , i.e.,

$$\forall x, y \in \mathbf{R}^n \colon |f(x) - f(y)| \le \beta ||x - y||.$$

We show that f is differentiable a.e. This gives also the statement of the theorem. Let $E \subset \mathbb{R}^n$ be a set of those points where at least one partial derivative does not exist. The set $\mathbb{R}^n \setminus D_i$ is

by Lemma 1.24 measurable. We use Fubini theorem and Rademacher theorem for n = 1 (see Remark) to get $\lambda_n(\mathbf{R}^n \setminus D_i) = 0$. Then we have $\lambda_n(E) = 0$, since $E = \bigcup_{i=1}^n (\mathbf{R}^n \setminus D_i)$.

For $p, q \in \mathbf{Q}^n$, $m \in \mathbf{N}$, denote

$$S(p,q,m) = \left\{ x \in \mathbf{R}^n; \, \forall i \in \{1,\dots,n\} \, \forall t \in (-1/m, 1/m) \setminus \{0\} \colon p_i \le \frac{f(x+te_i) - f(x)}{t} \le q_i \right\}.$$

It is easy to verify that the set S(p,q,m) is Borel. Let $\tilde{S}(p,q,m)$ be the set of all points of S(p,q,m), where S(p,q,m) has density 1. Then Theorem 1.12 gives

$$\lambda_n \big(S(p,q,m) \setminus \tilde{S}(p,q,m) \big) = 0.$$

The set

$$N = \bigcup \{ S(p,q,m) \setminus \tilde{S}(p,q,m); \ p,q \in \mathbf{Q}^n, m \in \mathbf{N} \}$$

is of measure zero.

We show that f is differentiable at each point $x \in \mathbf{R}^n \setminus (E \cup N)$. Take $x \in \mathbf{R}^n \setminus (E \cup N)$ and $\varepsilon \in (0, 1)$. Choose $p, q \in \mathbf{Q}^n$ such that

$$q_i - \varepsilon < p_i < \frac{\partial f}{\partial x_i}(x) < q_i, \quad i = 1, \dots, n.$$

Then there is $m \in \mathbb{N}$ such that $x \in S(p,q,m)$. Since $x \notin N$, the point x is a point of density of the set S(p,q,m). Denote S = S(p,q,m).

We find $\delta \in (0, 1/m)$ such that

$$\lambda_n(B(x,r)\setminus S) \le \left(\frac{\varepsilon}{2}\right)^n \lambda_n(B(x,r))$$

for every $r \in (0, 2\delta)$. Notice that the set $B(x, (1 + \varepsilon)\tau) \setminus S$ does not contain a ball with radius $\varepsilon \tau$, whenever $\tau \in (0, \delta)$. Otherwise it would hold

$$c_n(\varepsilon\tau)^n \le (\varepsilon/2)^n c_n(1+\varepsilon)^n \tau^n,$$

a contradiction. (The symbol c_n denotes *n*-dimensional measure of the unit ball.)

Choose $y \in B(x, \delta), y \neq x$. Denote

$$y^{i} = [y_1, y_2, \dots, y_i, x_{i+1}, \dots, x_n]$$

For every $i \in \{0, ..., n\}$ define a ball $B_i = B(y^i, \varepsilon ||y - x||)$. Using the preceding observation we have $B_i \cap S \neq \emptyset$. Find points $z^i \in S \cap B_i$, i = 0, ..., n-1, and denote $w^i = z^{i-1} + (y_i - x_i)e_i$, i = 1, ..., n.

Then we have

$$p_i \le \frac{f(w^i) - f(z^{i-1})}{y_i - x_i} \le q_i \quad \text{if } x_i \ne y_i,$$
$$p_i < \frac{\partial f}{\partial x_i}(x) < q_i,$$

1.7. LIPSCHITZ FUNCTIONS AND $W^{1,\infty}$

therefore

$$\left|f(w^{i}) - f(z^{i-1}) - \frac{\partial f}{\partial x_{i}}(x)(y_{i} - x_{i})\right| \le (q_{i} - p_{i})|y_{i} - x_{i}| \le \varepsilon ||y - x||$$

Then we have

$$\begin{split} \left| f(y) - f(x) - \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x)(y_{i} - x_{i}) \right| \\ &\leq \sum_{i=1}^{n} \left| f(w^{i}) - f(z^{i-1}) - \frac{\partial f}{\partial x_{i}}(x)(y_{i} - x_{i}) \right| + \sum_{i=1}^{n} (|f(y^{i}) - f(w^{i})| + |f(z^{i-1}) - f(y^{i-1})|) \\ &\leq n\varepsilon ||y - x|| + 2n\beta\varepsilon ||y - x|| = \varepsilon (n + 2n\beta) ||y - x||, \end{split}$$

thus the proof is finished.

Remark. Let us mention the following two deep results of D. Preiss ([?]).

1. Let *H* be a Hilbert space and $f: H \to \mathbf{R}$ be Lipschitz. Then there exists $x \in H$, where *f* is *Fréchet differentiable*, i.e., there exists a continuous linear mapping $L: H \to \mathbf{R}$ such that

$$\lim_{h \to 0} \frac{|f(x+h) - f(x) - L(h)|}{||h||} = 0.$$

2. There exists a closed measure zero set $F \subset \mathbf{R}^2$ such that any Lipschitz function on \mathbf{R}^2 is differentiable at some point of F.

The end of the lecture no. 10, 10. 12. 2024

1.7 Lipschitz functions and $W^{1,\infty}$

Remark. We have

 $W^{1,\infty}(\Omega) = \left\{ u \in L^{\infty}(\Omega); \ \partial_i u \in L^{\infty}(\Omega) \text{ (in the sense of distributions)}, i \in \{1, \dots, n\} \right\}.$

Theorem 1.27. Let $U \subset \mathbb{R}^n$ be open. Then $f: U \to \mathbb{R}$ is local Lipschitz on U if and only if $f \in W^{1,\infty}_{\text{loc}}(U)$.

Without proof.

1.8 Maximal operator

Definition. Let $f : \mathbf{R}^n \to \mathbf{R}$ be measurable. For $x \in \mathbf{R}^n$ we define

$$Mf(x) = \sup_{B \in \mathcal{B}, x \in B} \frac{1}{\lambda_n(B)} \int_B |f|.$$

Theorem 1.28 (Hardy-Littlewood-Wiener).

- (a) If $f \in L^p(\mathbf{R}^n)$, $1 \le p \le \infty$, then Mf is finite a.e.
- (b) There exists c > 0 such that for every $f \in L^1(\mathbf{R}^n)$ and $\alpha > 0$ we have

$$\lambda_n(\{x \in \mathbf{R}^n; Mf(x) > \alpha\}) \le \frac{c}{\alpha} \|f\|_1.$$

(c) Let $p \in (1,\infty]$. Then there exists A such that for every $f \in L^p(\mathbf{R}^n)$ we have $||Mf||_p \le A||f||_p$.