How to choose? Preferences, Utility and Stochastic Dominance

Sebastiano Vitali

Charles University, MFF Praha Does it ever happen that we need to make a choice?

Does it ever happen that we need to make a choice?

Every day

Do you run an optimization model to make your choice?

Do you run an optimization model to make your choice?

Typically not...

But still, is your decision somehow rational?

But still, is your decision somehow rational?

Hopefully...

When a choice is rational?

When a choice is rational?

How can we choose between different alternatives?

When a choice is rational?
How can we choose between different alternatives?
All of you would choose the same?

When a choice is rational?
How can we choose between different alternatives?
All of you would choose the same?

We try to tackle these issues during this presentation

Risk vs Uncertainty

 Risk: situation where both possible outcomes and their probabilities are known (models)

Risk vs Uncertainty

 Risk: situation where both possible outcomes and their probabilities are known (models)

 Uncertainty: situation either where possible outcomes or their probabilities are not known (life)

Economic agents are assumes to behave according to their preferences.

Two main relationships are used to describe preferences:

 "to be preferred to" (≥): when the payoffs represented by vector x are preferred to payoffs in vector y

$$x \succeq y$$

• "to be indifferent to" (\sim): when the payoffs represented by vector x are indifferent to payoffs in vector y

$$x \sim y$$

Economic agents are assumes to behave according to their preferences.

Two main relationships are used to describe preferences:

 "to be preferred to" (∑): when the payoffs represented by vector x are preferred to payoffs in vector y

$$x \succeq y$$

• "to be indifferent to" (\sim): when the payoffs represented by vector x are indifferent to payoffs in vector y

$$x \sim y$$

Actually

$$x \succeq y \land y \succeq x \Rightarrow x \sim y \tag{1}$$

So we can just study the \succeq relation and the other is only a sub-case.

An economic agent is said to be rationale if her preferences are

• **complete**: an agent is always able to define her preferences when facing a choice (strong condition). This means that

$$\forall x, y \quad \text{either } x \succeq y \lor y \succeq x \lor x \sim y \text{ is true}$$
 (2)

• **transitive**: given three vectors x, y, z

$$x \succeq y \land y \succeq z \Rightarrow x \succeq z \tag{3}$$

• **continue**: given three vectors x, y, z

$$\forall x \succeq y \succeq z \Rightarrow \exists \lambda \in [0,1] : \lambda x + (1-\lambda)z \sim y \tag{4}$$

Theorem

If preferences are rational (complete and transitive), and continuous, then there exist a (continuous) function $U(\cdot)$ (so-called "utility function") such that

$$x \succeq y \Leftrightarrow U(x) \geq U(y)$$

Of course, the utility function is not unique. Any increasing function does not alter the inequality. For any $V(\cdot)$ increasing:

$$U(x) \ge U(y) \Leftrightarrow V(U(x)) \ge V(U(y))$$

Theorem

If preferences are rational (complete and transitive), and continuous, then there exist a (continuous) function $U(\cdot)$ (so-called "utility function") such that

$$x \succeq y \Leftrightarrow U(x) \geq U(y)$$

Of course, the utility function is not unique. Any increasing function does not alter the inequality. For any $V(\cdot)$ increasing:

$$U(x) \ge U(y) \Leftrightarrow V(U(x)) \ge V(U(y))$$

Utility functions are good for ordering, not for measuring!

Further properties for a reasonable utility function $U(\cdot)$. Utility is

• increasing: an agent always prefers more to less, i.e.

$$\frac{\partial U(x)}{\partial x} > 0 \tag{5}$$

Further properties for a reasonable utility function $U(\cdot)$. Utility is

• increasing: an agent always prefers more to less, i.e.

$$\frac{\partial U(x)}{\partial x} > 0 \tag{5}$$

Is it really always true? What about satiety?

Further properties for a reasonable utility function $U(\cdot)$. Utility is

• increasing: an agent always prefers more to less, i.e.

$$\frac{\partial U(x)}{\partial x} > 0 \tag{5}$$

Is it really always true? What about satiety?

• concave: the marginal utility is decreasing

$$\frac{\partial^2 U(x)}{\partial x^2} < 0 \tag{6}$$

Preferences (with Risk)

Previous theorem is useful to study situation without risk. In presence of risk we need another assumption:

• **independence**: if an agent prefers x to y and must chose between two bundles (x, z) and (y, z) containing z in the same proportion, then she will chose (x, z).

$$x \succeq y \Leftrightarrow \forall z, \lambda \in [0,1] : \lambda x + (1-\lambda)z \succeq \lambda y + (1-\lambda)z$$
 (7)

Preferences (with Risk)

Previous theorem is useful to study situation without risk. In presence of risk we need another assumption:

• **independence**: if an agent prefers x to y and must chose between two bundles (x, z) and (y, z) containing z in the same proportion, then she will chose (x, z).

$$x \succeq y \Leftrightarrow \forall z, \lambda \in [0,1] : \lambda x + (1-\lambda)z \succeq \lambda y + (1-\lambda)z$$
 (7)

Theorem

If preferences are rationale (complete and transitive), continuous and independent, then there exist a (continuous) function (so-called "utility function") such that

$$x \succeq y \Leftrightarrow \mathbb{E}[U(x)] \geq \mathbb{E}[U(y)]$$

х	=	Gain {5mil.	Probability 1
		$\begin{cases} 0\\ 5mil.\\ 25mil. \end{cases}$	0.01
У	=	√ 5mil.	0.89
		25mil.	0.1

$$x = \begin{cases} \textbf{Gain} & \textbf{Probability} \\ \textbf{Fomil.} & 1 \end{cases}$$

$$y = \begin{cases} 0 & 0.01 \\ \textbf{5mil.} & 0.89 \\ \textbf{25mil.} & 0.1 \end{cases}$$

which one do you choose?

$$x = \begin{cases} \textbf{Gain} & \textbf{Probability} \\ \textbf{Fomil.} & 1 \end{cases}$$

$$y = \begin{cases} 0 & 0.01 \\ \textbf{5mil.} & 0.89 \\ \textbf{25mil.} & 0.1 \end{cases}$$

which one do you choose?

Probably x, so
$$x \succeq y$$

		Gain	Probability			Gain	Probability
X	=	$\{5mil.$	1	147	_	∫ 0	0.89
				W	=	∫5mil.	0.89 0.11
		0 5mil. 25mil.	0.01			•	
У	=	√ 5mil.	0.89	_		∫ 0	0.9
		(25mil.	0.1	Z		₹25mil.	0.9 0.1

which one do you choose?

which one do you choose?

Probably x, so $x \succeq y$

		Gain	Probability			Gain	Probability
X	=	$\{5mil.$	1	147		∫ 0	0.89
				W	=	∫5mil.	0.89 0.11
		0 5mil. 25mil.	0.01			•	
У	=	√ 5mil.	0.89	_		∫ 0	0.9
		(25mil.	0.1	2	=	25mil.	0.9 0.1

which one do you choose?

which one do you choose?

Probably x, so
$$x \succeq y$$

Probably z, so $z \succeq w$

		Gain	Probability			Gain	Probability
X	=	$\{5 mil.$	1	147	_	∫ 0	0.89
			1	VV	_	∫5mil.	0.11
		0	0.01 0.89 0.1			,	
y	=	√ 5mil.	0.89	_	_	S 0	0.9
		25mil.	0.1	Z	_	25mil.	0.9 0.1

which one do you choose?

which one do you choose?

Probably x, so
$$x \succeq y$$

Probably z, so $z \succeq w$

		Gain	Probability			Gain	Probability
X	=	$\{5 mil.$	1			∫ 0	0.89
			1	W	=	∫5mil.	0.11
		(0	0.01			`	
у	=	∫ 5mil.	0.01 0.89 0.1	_		S 0	0.9
		25mil.	0.1	2	=	25mil.	0.9 0.1

which one do you choose?

which one do you choose?

Probably x, so $x \succeq y$

Probably z, so $z \succeq w$

$$\mathbb{E}(U(x)) > \mathbb{E}(U(y))$$

		Gain	Probability			Gain	Probability
X	=	$\{5mil.$	1	147		∫ 0	0.89
			1	VV	_	∫5mil.	0.11
		0	0.01			•	
у	=	∫ 5mil.	0.01 0.89 0.1	-	_	∫ 0	0.9
		25mil.	0.1	Z		25mil.	0.9 0.1

which one do you choose?

which one do you choose?

Probably x, so
$$x \succeq y$$

Probably z, so $z \succeq w$

$$\mathbb{E}(\mathit{U}(x)) > \mathbb{E}(\mathit{U}(y))$$
 $\mathit{U}(\mathsf{5mil.}) > 0.1 + 0.89\mathit{U}(\mathsf{5mil.})$

		Gain	Probability			Gain	Probability
X	=	$\{5mil.$	1			∫ 0	0.89
			1	VV	=	∫5mil.	0.11
		(0	0.01			`	
У	=	∫ 5mil.	0.89	_		0	0.9
		25mil.	0.01 0.89 0.1	Z	_	25mil.	0.9 0.1

which one do you choose?

which one do you choose?

Probably x, so $x \succeq y$

Probably z, so $z \succeq w$

$$\mathbb{E}(U(x)) > \mathbb{E}(U(y))$$
 $U(5 \text{mil.}) > 0.1 + 0.89 U(5 \text{mil.})$
 $0.11 U(5 \text{mil.}) > 0.1$

		Gain	Probability			Gain	Probability
X	=	$\{5mil.$	1			∫ 0	0.89
			1	VV	=	∫5mil.	0.11
		0	0.01			•	
y	=	√ 5mil.	0.01 0.89 0.1	-		∫ 0	0.9
		25mil.	0.1	Z	=	25mil.	0.9 0.1

which one do you choose?

which one do you choose?

Probably x, so $x \succeq y$

Probably z, so $z \succeq w$

$$\mathbb{E}(U(x)) > \mathbb{E}(U(y))$$
 $\mathbb{E}(U(z)) > \mathbb{E}(U(w))$ $U(5 \text{mil.}) > 0.1 + 0.89 U(5 \text{mil.})$ $0.11 U(5 \text{mil.}) > 0.1$

		Gain	Probability			Gain	Probability
X	=	$\{5mil.$	1			∫ 0	0.89
			1	VV	=	∫5mil.	0.11
		(0	0.01			`	
У	=	∫ 5mil.	0.89	_		0	0.9
		25mil.	0.01 0.89 0.1	Z	_	25mil.	0.9 0.1

which one do you choose?

which one do you choose?

Probably x, so
$$x \succeq y$$

Probably z, so $z \succeq w$

$$\mathbb{E}(\mathit{U}(\mathsf{x})) > \mathbb{E}(\mathit{U}(\mathsf{y}))$$
 $\mathit{U}(\mathsf{5mil.}) > 0.1 + 0.89\mathit{U}(\mathsf{5mil.})$
 $0.11\mathit{U}(\mathsf{5mil.}) > 0.1$

$$\mathbb{E}(U(z)) > \mathbb{E}(U(w))$$

$$0.1 > 0.11U(5\text{mil.})$$

		Gain	Probability			Gain	Probability
X	=	$\{5mil.$	1			∫ 0	0.89
			1	VV	=	∫5mil.	0.11
		(0	0.01			`	
У	=	∫ 5mil.	0.89	_		0	0.9
		25mil.	0.01 0.89 0.1	Z	_	25mil.	0.9 0.1

which one do you choose?

which one do you choose?

Probably x, so
$$x \succeq y$$

Probably z, so $z \succeq w$

$$\mathbb{E}(\mathit{U}(\mathsf{x})) > \mathbb{E}(\mathit{U}(\mathsf{y}))$$
 $\mathit{U}(\mathsf{5mil.}) > 0.1 + 0.89\mathit{U}(\mathsf{5mil.})$
 $0.11\mathit{U}(\mathsf{5mil.}) > 0.1$

$$\mathbb{E}(U(z)) > \mathbb{E}(U(w))$$

$$0.1 > 0.11U(5\text{mil.})$$

Expected utility can fail!!

But still, in most cases, we can say something useful with utilities. For instance we can interpret the **risk attitude** of an investor.

Assume there are two possible outcomes W_1 and W_2 having respectively utility $U(W_1)$ and $U(W_2)$. The expected utility lines on the straight line between the two points (see figure!), what about the utility of the combination between W_1 and W_2 ?

But still, in most cases, we can say something useful with utilities. For instance we can interpret the **risk attitude** of an investor.

Assume there are two possible outcomes W_1 and W_2 having respectively utility $U(W_1)$ and $U(W_2)$. The expected utility lines on the straight line between the two points (see figure!), what about the utility of the combination between W_1 and W_2 ?

If $U(\mathbb{E}[W]) > \mathbb{E}[U(W)]$ then the agent is risk-averse

But still, in most cases, we can say something useful with utilities. For instance we can interpret the **risk attitude** of an investor.

Assume there are two possible outcomes W_1 and W_2 having respectively utility $U(W_1)$ and $U(W_2)$. The expected utility lines on the straight line between the two points (see figure!), what about the utility of the combination between W_1 and W_2 ?

If $U(\mathbb{E}[W]) > \mathbb{E}[U(W)]$ then the agent is risk-averse

If $U(\mathbb{E}[W]) = \mathbb{E}[U(W)]$ then the agent is risk-neutral

But still, in most cases, we can say something useful with utilities. For instance we can interpret the **risk attitude** of an investor.

Assume there are two possible outcomes W_1 and W_2 having respectively utility $U(W_1)$ and $U(W_2)$. The expected utility lines on the straight line between the two points (see figure!), what about the utility of the combination between W_1 and W_2 ?

If $U(\mathbb{E}[W]) > \mathbb{E}[U(W)]$ then the agent is risk-averse

If $U(\mathbb{E}[W]) = \mathbb{E}[U(W)]$ then the agent is risk-neutral

If $U(\mathbb{E}[W]) < \mathbb{E}[U(W)]$ then the agent is risk-lover

Moreover, it becomes important to measure the risk-aversion of an agent.

Moreover, it becomes important to measure the risk-aversion of an agent. How?

Moreover, it becomes important to measure the risk-aversion of an agent. How?

Arrow-Pratt (Absolute) Risk Aversion:

$$ARA = -\frac{U''(W)}{U'(W)}$$

Moreover, it becomes important to measure the risk-aversion of an agent. How?

Arrow-Pratt (Absolute) Risk Aversion:

$$ARA = -\frac{U''(W)}{U'(W)}$$

The aversion can change with the wealth level, then we introduce the Arrow-Pratt (Relative) Risk Aversion:

$$RRA = -\frac{U''(W)W}{U'(W)}$$

Then, we can distinguish:

CARA Constant IARA Increasing

DARA Decreasing HARA Hyperbolic

The most general form of the utility function is the following:

$$U(W) = \frac{(\alpha + \gamma W)^{1 - \frac{\beta}{\gamma}} - 1}{\gamma - \beta}$$
 (8)

The most general form of the utility function is the following:

$$U(W) = \frac{(\alpha + \gamma W)^{1 - \frac{\beta}{\gamma}} - 1}{\gamma - \beta}$$
 (8)

having derivatives:

$$U'(W) = (\alpha + \gamma W)^{-\frac{\beta}{\gamma}} \tag{9}$$

$$U''(W) = -\beta(\alpha + \gamma W)^{-\frac{\beta}{\gamma} - 1}$$
 (10)

The most general form of the utility function is the following:

$$U(W) = \frac{(\alpha + \gamma W)^{1 - \frac{\beta}{\gamma}} - 1}{\gamma - \beta} \tag{8}$$

having derivatives:

$$U'(W) = (\alpha + \gamma W)^{-\frac{\beta}{\gamma}} \tag{9}$$

$$U''(W) = -\beta(\alpha + \gamma W)^{-\frac{\beta}{\gamma} - 1}$$
 (10)

and Absolute Risk Aversion:

$$ARA = \frac{\beta}{\alpha + \gamma W} \tag{11}$$

The most general form of the utility function is the following:

$$U(W) = \frac{(\alpha + \gamma W)^{1 - \frac{\beta}{\gamma}} - 1}{\gamma - \beta}$$
 (8)

having derivatives:

$$U'(W) = (\alpha + \gamma W)^{-\frac{\beta}{\gamma}} \tag{9}$$

$$U''(W) = -\beta(\alpha + \gamma W)^{-\frac{\beta}{\gamma} - 1}$$
 (10)

and Absolute Risk Aversion:

$$ARA = \frac{\beta}{\alpha + \gamma W} \tag{11}$$

Then, fixing values for α , β and γ , we obtain all the classes.

CARA
$$\alpha=1$$
, $\gamma=0$

DARA
$$\alpha = 1 \ \gamma = 1$$

IARA
$$\gamma = -\beta$$

HARA any \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

Assume you invest 100 and you can get the following equiprobable realizations.

$$x = \begin{bmatrix} 98\\105\\110 \end{bmatrix}, \quad y = \begin{bmatrix} 98\\105\\107 \end{bmatrix}$$

Assume you invest 100 and you can get the following equiprobable realizations.

$$x = \begin{bmatrix} 98\\105\\110 \end{bmatrix}, \quad y = \begin{bmatrix} 98\\105\\107 \end{bmatrix}$$

which one do you choose?

Assume you invest 100 and you can get the following equiprobable realizations.

$$x = \begin{bmatrix} 98\\105\\110 \end{bmatrix}, \quad y = \begin{bmatrix} 98\\105\\107 \end{bmatrix}$$

which one do you choose?

Probably x, why?

Assume you invest 100 and you can get the following equiprobable realizations.

$$x = \begin{bmatrix} 98\\105\\110 \end{bmatrix}, \quad y = \begin{bmatrix} 98\\105\\107 \end{bmatrix}$$

which one do you choose?

Probably x, why?
Because you are rational (non-satiable)

Assume you invest 100 and you can get the following equiprobable realizations.

$$x = \begin{bmatrix} 98 \\ 105 \\ 110 \end{bmatrix}, \quad y = \begin{bmatrix} 98 \\ 105 \\ 107 \end{bmatrix}$$

$$x = \begin{bmatrix} 98 \\ 105 \\ 110 \end{bmatrix}, \quad y = \begin{bmatrix} 98 \\ 105 \\ 107 \end{bmatrix} \qquad \qquad x = \begin{bmatrix} 90 \\ 105 \\ 110 \end{bmatrix}, \quad y = \begin{bmatrix} 98 \\ 105 \\ 107 \end{bmatrix}$$

which one do you choose?

Probably x, why? Because you are rational (non-satiable)

Assume you invest 100 and you can get the following equiprobable realizations.

$$x = \begin{bmatrix} 98 \\ 105 \\ 110 \end{bmatrix}, \quad y = \begin{bmatrix} 98 \\ 105 \\ 107 \end{bmatrix}$$

$$x = \begin{bmatrix} 98 \\ 105 \\ 110 \end{bmatrix}, \quad y = \begin{bmatrix} 98 \\ 105 \\ 107 \end{bmatrix} \qquad \qquad x = \begin{bmatrix} 90 \\ 105 \\ 110 \end{bmatrix}, \quad y = \begin{bmatrix} 98 \\ 105 \\ 107 \end{bmatrix}$$

which one do you choose?

which one do you choose?

Probably x, why? Because you are rational (non-satiable)

Assume you invest 100 and you can get the following equiprobable realizations.

$$x = \begin{bmatrix} 98 \\ 105 \\ 110 \end{bmatrix}, \quad y = \begin{bmatrix} 98 \\ 105 \\ 107 \end{bmatrix}$$

$$x = \begin{bmatrix} 98 \\ 105 \\ 110 \end{bmatrix}, \quad y = \begin{bmatrix} 98 \\ 105 \\ 107 \end{bmatrix} \qquad \qquad x = \begin{bmatrix} 90 \\ 105 \\ 110 \end{bmatrix}, \quad y = \begin{bmatrix} 98 \\ 105 \\ 107 \end{bmatrix}$$

which one do you choose?

Probably x, why? Because you are rational (non-satiable)

which one do you choose?

Probably v, why?

Assume you invest 100 and you can get the following equiprobable realizations.

$$x = \begin{bmatrix} 98 \\ 105 \\ 110 \end{bmatrix}, \quad y = \begin{bmatrix} 98 \\ 105 \\ 107 \end{bmatrix} \qquad \qquad x = \begin{bmatrix} 90 \\ 105 \\ 110 \end{bmatrix}, \quad y = \begin{bmatrix} 98 \\ 105 \\ 107 \end{bmatrix}$$

$$x = \begin{bmatrix} 90 \\ 105 \\ 110 \end{bmatrix}, \quad y = \begin{bmatrix} 98 \\ 105 \\ 107 \end{bmatrix}$$

which one do you choose?

Probably x, why? Because you are rational (non-satiable)

which one do you choose?

Probably v, why? Because you are risk-averse

Assume you invest 100 and you can get the following equiprobable realizations.

$$x = \begin{bmatrix} 98 \\ 105 \\ 110 \end{bmatrix}, \quad y = \begin{bmatrix} 98 \\ 105 \\ 107 \end{bmatrix} \qquad \qquad x = \begin{bmatrix} 90 \\ 105 \\ 110 \end{bmatrix}, \quad y = \begin{bmatrix} 98 \\ 105 \\ 107 \end{bmatrix}$$

$$x = \begin{bmatrix} 90 \\ 105 \\ 110 \end{bmatrix}, \quad y = \begin{bmatrix} 98 \\ 105 \\ 107 \end{bmatrix}$$

which one do you choose?

Probably x, why? Because you are rational (non-satiable)

which one do you choose?

Probably v, why? Because you are risk-averse

How can we test these kinds of preferences (dominances)?

$$x = \begin{bmatrix} 98\\105\\110 \end{bmatrix}, \quad y = \begin{bmatrix} 98\\105\\107 \end{bmatrix}$$

How can we test these kinds of preferences (dominances)?

$$x = \begin{bmatrix} 98 \\ 105 \\ 110 \end{bmatrix}, \quad y = \begin{bmatrix} 98 \\ 105 \\ 107 \end{bmatrix}$$

$$\begin{array}{ccc} 98 & \geq & 98 \\ 105 & \geq & 105 \\ 110 & \geq & 107 \end{array}$$

How can we test these kinds of preferences (dominances)?

$$x = \begin{bmatrix} 98 \\ 105 \\ 110 \end{bmatrix}, \quad y = \begin{bmatrix} 98 \\ 105 \\ 107 \end{bmatrix}$$

$$\begin{array}{ccc} 98 & \geq & 98 \\ 105 & \geq & 105 \\ 110 & \geq & 107 \end{array}$$

How can we test these kinds of preferences (dominances)?

$$x = \begin{bmatrix} 105 \\ 110 \end{bmatrix}, \quad y = \begin{bmatrix} 105 \\ 107 \end{bmatrix}$$

$$\begin{array}{ccc} 98 & \geq & 98 \\ 105 & \geq & 105 \\ 110 & \geq & 107 \end{array}$$

$$x = \begin{bmatrix} 98 \\ 105 \\ 110 \end{bmatrix}, \quad y = \begin{bmatrix} 98 \\ 105 \\ 107 \end{bmatrix} \qquad \qquad x = \begin{bmatrix} 90 \\ 105 \\ 110 \end{bmatrix}, \qquad \quad y = \begin{bmatrix} 98 \\ 105 \\ 107 \end{bmatrix}$$

How can we test these kinds of preferences (dominances)?

$$x = \begin{bmatrix} 98\\105\\110 \end{bmatrix}, \quad y = \begin{bmatrix} 98\\105\\107 \end{bmatrix} \qquad x = \begin{bmatrix} 90\\105\\110 \end{bmatrix}, \qquad y = \begin{bmatrix} 98\\105\\107 \end{bmatrix}$$

$$\begin{array}{cccc} 98 & \geq & 98\\105 & \geq & 105\\110 & \geq & 107 \end{array} \qquad \operatorname{cum}(x) = \begin{bmatrix} 90\\195\\305 \end{bmatrix}, \quad \operatorname{cum}(y) = \begin{bmatrix} 98\\203\\310 \end{bmatrix}$$

How can we test these kinds of preferences (dominances)?

$$x = \begin{bmatrix} 98\\105\\110 \end{bmatrix}, \quad y = \begin{bmatrix} 98\\105\\107 \end{bmatrix} \qquad x = \begin{bmatrix} 90\\105\\110 \end{bmatrix}, \qquad y = \begin{bmatrix} 98\\105\\107 \end{bmatrix}$$

$$\begin{array}{c} 98\\ 203\\110 \end{array} \geq \begin{array}{c} 98\\ 203\\310 \end{array}$$

$$\begin{array}{c} 90\\ 203\\310 \end{array}, \quad \text{cum}(y) = \begin{bmatrix} 98\\203\\310 \end{bmatrix}$$

$$\begin{array}{c} 90\\ 203\\310 \end{array}$$

$$\begin{array}{c} 90\\ 203\\310 \end{array}$$

$$\begin{array}{c} 90\\ 203\\310 \end{array}$$

How can we test these kinds of preferences (dominances)?

$$x = \begin{bmatrix} 98\\105\\110 \end{bmatrix}, \quad y = \begin{bmatrix} 98\\105\\107 \end{bmatrix} \qquad x = \begin{bmatrix} 90\\105\\110 \end{bmatrix}, \qquad y = \begin{bmatrix} 98\\105\\107 \end{bmatrix}$$

$$\begin{array}{c} 98\\105\\203\\110 \end{array} \geq \begin{array}{c} 98\\105\\203\\310 \end{array}$$

$$\begin{array}{c} 10\\105\\203\\310 \end{array}, \quad cum(y) = \begin{bmatrix} 98\\203\\310 \end{bmatrix}$$

$$\begin{array}{c} 90\\195\\203\\310 \end{array}$$

$$\begin{array}{c} 90\\195\\203\\310 \end{array}$$

First order dominance!

Second order dominance!

Given two distributions X and Y we define that X first-order stochastically dominates Y if

$$\mathbb{P}(X \le \eta) \le \mathbb{P}(Y \le \eta) \quad \text{for all } \eta \in \Re$$
 (12)

Given two distributions X and Y we define that X first-order stochastically dominates Y if

$$\mathbb{P}(X \le \eta) \le \mathbb{P}(Y \le \eta) \quad \text{for all } \eta \in \Re$$
 (12)

In terms of cumulative functions F_X and F_Y

$$F_X(\eta) \le F_Y(\eta), \forall \eta \in \Re$$
 (13)

Given two distributions X and Y we define that X first-order stochastically dominates Y if

$$\mathbb{P}(X \le \eta) \le \mathbb{P}(Y \le \eta) \quad \text{for all } \eta \in \Re$$
 (12)

In terms of cumulative functions F_X and F_Y

$$F_X(\eta) \le F_Y(\eta), \forall \eta \in \Re$$
 (13)

Moreover, X first-order stochastically dominates Y if and only if every expected utility maximizer with an **nondecreasing utility** function prefers X over Y: $\mathbb{E}[U(X)] \geq \mathbb{E}[U(Y)], \forall U \in \mathcal{U}_1$, where \mathcal{U}_1 is the set of all nondecreasing utility functions.

Given two distributions X and Y we define that X first-order stochastically dominates Y if

$$\mathbb{P}(X \le \eta) \le \mathbb{P}(Y \le \eta) \quad \text{for all } \eta \in \Re$$
 (12)

In terms of cumulative functions F_X and F_Y

$$F_X(\eta) \le F_Y(\eta), \forall \eta \in \Re$$
 (13)

Moreover, X first-order stochastically dominates Y if and only if every expected utility maximizer with an **nondecreasing utility** function prefers X over Y: $\mathbb{E}[U(X)] \geq \mathbb{E}[U(Y)], \forall U \in \mathcal{U}_1$, where \mathcal{U}_1 is the set of all nondecreasing utility functions.

If the random variables are discrete and taking n values each with probability 1/n: $\mathbf{X} \ge \mathbf{P} \cdot \mathbf{Y}$, where \mathbf{P} is a permutation matrix.

Second order Stochastic Dominance

Defining the twice cumulative distribution function as

$$F_X^{(2)}(\eta) = \int_{-\infty}^{\eta} F_X(\alpha) d\alpha \tag{14}$$

Given two distributions X and Y we define that X second-order stochastically dominates Y if

$$F_X^{(2)}(\eta) \le F_Y^{(2)}(\eta), \forall \eta \in \Re$$
 (15)

Second order Stochastic Dominance

Defining the twice cumulative distribution function as

$$F_X^{(2)}(\eta) = \int_{-\infty}^{\eta} F_X(\alpha) d\alpha \tag{14}$$

Given two distributions X and Y we define that X second-order stochastically dominates Y if

$$F_X^{(2)}(\eta) \le F_Y^{(2)}(\eta), \forall \eta \in \Re$$
 (15)

Moreover, X second-order stochastically dominates Y if and only if every expected utility maximizer with an nondecreasing and concave utility function prefers X over Y: $\mathbb{E}[U(X)] \geq \mathbb{E}[U(Y)], \forall U \in \mathcal{U}_2$, where \mathcal{U}_2 is the set of all nondecreasing and concave utility functions.

Second order Stochastic Dominance

Defining the twice cumulative distribution function as

$$F_X^{(2)}(\eta) = \int_{-\infty}^{\eta} F_X(\alpha) d\alpha \tag{14}$$

Given two distributions X and Y we define that X second-order stochastically dominates Y if

$$F_X^{(2)}(\eta) \le F_Y^{(2)}(\eta), \forall \eta \in \Re$$
 (15)

Moreover, X second-order stochastically dominates Y if and only if every expected utility maximizer with an nondecreasing and concave utility function prefers X over Y: $\mathbb{E}[U(X)] \geq \mathbb{E}[U(Y)], \forall U \in \mathcal{U}_2$, where \mathcal{U}_2 is the set of all nondecreasing and concave utility functions.

If the random variables are discrete and taking n values each with probability 1/n: $\mathbf{X} \ge \mathbf{W} \cdot \mathbf{Y}$, where \mathbf{W} is a double stochastic matrix.

Conclusions

Observation

Observation

Reason

Observation

Reason

Observation

For daily life decisions you face uncertainty, not risk

Reason

Observation

For daily life decisions you face uncertainty, not risk

Reason

you **do not** know the probability

Observation For daily life decisions you face uncertainty, not risk

Reason you **do not** know the probability

Consequence use utility for preferences!!

Observation

For model decisions you face risk

Reason

Observation For model decisions you face risk

Reason you do know the probability

Observation For model decisions you face risk

Reason you **do** know the probability

Consequence use **expected** utility for preferences!!

Observation

The agent has some attitude

Reason

Observation The agent has some attitude

Reason risk-averse, risk-neutral, risk-lover, ...

Observation The agent has some attitude

Reason risk-averse, risk-neutral, risk-lover, ...

Consequence use **appropriate** utility function!!

Observation

To choose the utility function could be challenging

Reason

Observation

To choose the utility function could be challenging

Reason

each risk-attitude may have multiple utility functions

Observation To choose the utility function could be challenging

Reason each risk-attitude may have multiple utility functions

Consequence use stochastic dominance!!

Bibliography

- Levy H. (2006), Stochastic Dominance, Investment Decision Making under Uncertainty. Springer US.
- Arrow K. J. (1965), Aspects of the Theory of Risk Bearing. The Theory of Risk Aversion. Helsinki: Yrjo Jahnssonin Saatio.
- Pratt J. W. (1964). Risk Aversion in the Small and in the Large. Econometrica. 32 (1?2): 122?136.
- Post T., Kopa M. (2013) General Linear Formulations of Stochastic Dominance Criteria, European Journal of Operational Research, 230, 2, 321-332.
- Kuosmanen T. (2004), Efficient diversification according to stochastic dominance criteria. Management Science, 50(10):1390-1406.

Bibliography

- Levy H. (2006), Stochastic Dominance, Investment Decision Making under Uncertainty. Springer US.
- Arrow K. J. (1965), Aspects of the Theory of Risk Bearing. The Theory of Risk Aversion. Helsinki: Yrjo Jahnssonin Saatio.
- Pratt J. W. (1964). Risk Aversion in the Small and in the Large. Econometrica. 32 (1?2): 122?136.
- Post T., Kopa M. (2013) General Linear Formulations of Stochastic Dominance Criteria, European Journal of Operational Research, 230, 2, 321-332.
- Kuosmanen T. (2004), Efficient diversification according to stochastic dominance criteria. Management Science, 50(10):1390-1406.

Děkuji moc

