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Motivation

Does it ever happen that we need to
make a choice?

Every day
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Motivation

Do you run an optimization model to
make your choice?

Typically not...
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Motivation

But still, is your decision somehow
rational?

Hopefully...
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Motivation

When a choice is rational?

How can we choose between different
alternatives?

All of you would choose the same?

We try to tackle these issues during
this presentation
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Risk vs Uncertainty

Risk: situation where both possible outcomes and their
probabilities are known (models)

Uncertainty: situation either where possible outcomes or
their probabilities are not known (life)
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Preferences (no Risk)

Economic agents are assumes to behave according to their prefer-
ences.
Two main relationships are used to describe preferences:

”to be preferred to” (�): when the payoffs represented by
vector x are preferred to payoffs in vector y

x � y

”to be indifferent to” (∼): when the payoffs represented by
vector x are indifferent to payoffs in vector y

x ∼ y

Actually
x � y ∧ y � x ⇒ x ∼ y (1)

So we can just study the � relation and the other is only a sub-case.
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Preferences (no Risk)

An economic agent is said to be rationale if her preferences are

complete: an agent is always able to define her preferences
when facing a choice (strong condition). This means that

∀x , y either x � y ∨ y � x ∨ x ∼ y is true (2)

transitive: given three vectors x , y , z

x � y ∧ y � z ⇒ x � z (3)

continue: given three vectors x , y , z

∀x � y � z ⇒ ∃λ ∈ [0, 1] : λx + (1− λ)z ∼ y (4)
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Preferences (no Risk)

Theorem

If preferences are rational (complete and transitive), and
continuous, then there exist a (continuous) function U(·)
(so-called ”utility function”) such that

x � y ⇔ U(x) ≥ U(y)

Of course, the utility function is not unique. Any increasing function
does not alter the inequality. For any V (·) increasing:

U(x) ≥ U(y)⇔ V (U(x)) ≥ V (U(y))

Utility functions are good for ordering,
not for measuring!
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Preferences (no Risk)

Further properties for a reasonable utility function U(·). Utility is

increasing: an agent always prefers more to less, i.e.

∂U(x)

∂x
> 0 (5)

Is it really always true? What about satiety?

concave: the marginal utility is decreasing

∂2U(x)

∂x2
< 0 (6)
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Preferences (with Risk)

Previous theorem is useful to study situation without risk. In pres-
ence of risk we need another assumption:

independence: if an agent prefers x to y and must chose
between two bundles (x , z) and (y , z) containing z in the
same proportion, then she will chose (x , z).

x � y ⇔ ∀z , λ ∈ [0, 1] : λx + (1− λ)z � λy + (1− λ)z (7)

Theorem

If preferences are rationale (complete and transitive), continuous
and independent, then there exist a (continuous) function
(so-called ”utility function”) such that

x � y ⇔ E[U(x)] ≥ E[U(y)]
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Expected utility
Gain Probability

x = {5mil. 1

y =


0

5mil.
25mil.

0.01
0.89
0.1

which one do you choose?

Probably x, so x � y

Gain Probability

w =

{
0

5mil.
0.89
0.11

z =

{
0

25mil.
0.9
0.1

which one do you choose?

Probably z, so z � w

Let’s compute the expected utility!
Assuming U(0) = 0 and U(25mil.) = 1

E(U(x)) > E(U(y))

U(5mil.) > 0.1 + 0.89U(5mil.)

0.11U(5mil.) > 0.1

E(U(z)) > E(U(w))

0.1 > 0.11U(5mil.)
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Expected utility

Expected utility can fail!!
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Expected utility

But still, in most cases, we can say something useful with utilities.
For instance we can interpret the risk attitude of an investor.

Assume there are two possible outcomes W1 and W2 having respec-
tively utility U(W1) and U(W2). The expected utility lines on the
straight line between the two points (see figure!), what about the
utility of the combination between W1 and W2?

If U(E[W ]) > E[U(W )] then the agent is risk-averse

If U(E[W ]) = E[U(W )] then the agent is risk-neutral

If U(E[W ]) < E[U(W )] then the agent is risk-lover
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Expected utility

Moreover, it becomes important to measure the risk-aversion of an
agent.

How?

Arrow-Pratt (Absolute) Risk Aversion:

ARA = −U ′′(W )

U ′(W )

The aversion can change with the wealth level, then we introduce
the Arrow-Pratt (Relative) Risk Aversion:

RRA = −U ′′(W )W

U ′(W )

Then, we can distinguish:

CARA Constant

IARA Increasing

DARA Decreasing

HARA Hyperbolic
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Expected utility

The most general form of the utility function is the following:

U(W ) =
(α + γW )1−

β
γ − 1

γ − β
(8)

having derivatives:

U ′(W ) = (α + γW )−
β
γ (9)

U ′′(W ) = −β(α + γW )−
β
γ
−1 (10)

and Absolute Risk Aversion:

ARA =
β

α + γW
(11)

Then, fixing values for α, β and γ, we obtain all the classes.

CARA α = 1, γ = 0

IARA γ = −β
DARA α = 1 γ = 1

HARA any
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Another experiments

Assume you invest 100 and you can get the following equiprobable
realizations.

x =

 98
105
110

 , y =

 98
105
107



which one do you choose?

Probably x , why?
Because you are rational
(non-satiable)

x =

 90
105
110

 , y =

 98
105
107


which one do you choose?

Probably y , why?
Because you are risk-averse
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Another experiments

How can we test these kinds of preferences (dominances)?

x =

 98
105
110

 , y =

 98
105
107



98
105
110

≥
≥
≥

98
105
107

First order dominance!

x =

 90
105
110

 , y =

 98
105
107



cum(x) =

 90
195
305

 , cum(y) =

 98
203
310


90

195
305

≤
≤
≤

98
203
310

Second order dominance!
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First order Stochastic Dominance

Given two distributions X and Y we define that X first-order
stochastically dominates Y if

P(X ≤ η) ≤ P(Y ≤ η) for all η ∈ < (12)

In terms of cumulative functions FX and FY

FX (η) ≤ FY (η),∀η ∈ < (13)

Moreover, X first-order stochastically dominates Y if and only
if every expected utility maximizer with an nondecreasing utility
function prefers X over Y : E[U(X )] ≥ E[U(Y )],∀U ∈ U1, where
U1 is the set of all nondecreasing utility functions.

If the random variables are discrete and taking n values each with
probability 1/n: X ≥ P · Y, where P is a permutation matrix.

19 / 25 Sebastiano Vitali 30.11.2017, Brno



First order Stochastic Dominance

Given two distributions X and Y we define that X first-order
stochastically dominates Y if

P(X ≤ η) ≤ P(Y ≤ η) for all η ∈ < (12)

In terms of cumulative functions FX and FY

FX (η) ≤ FY (η),∀η ∈ < (13)

Moreover, X first-order stochastically dominates Y if and only
if every expected utility maximizer with an nondecreasing utility
function prefers X over Y : E[U(X )] ≥ E[U(Y )],∀U ∈ U1, where
U1 is the set of all nondecreasing utility functions.

If the random variables are discrete and taking n values each with
probability 1/n: X ≥ P · Y, where P is a permutation matrix.

19 / 25 Sebastiano Vitali 30.11.2017, Brno



First order Stochastic Dominance

Given two distributions X and Y we define that X first-order
stochastically dominates Y if

P(X ≤ η) ≤ P(Y ≤ η) for all η ∈ < (12)

In terms of cumulative functions FX and FY

FX (η) ≤ FY (η),∀η ∈ < (13)

Moreover, X first-order stochastically dominates Y if and only
if every expected utility maximizer with an nondecreasing utility
function prefers X over Y : E[U(X )] ≥ E[U(Y )],∀U ∈ U1, where
U1 is the set of all nondecreasing utility functions.

If the random variables are discrete and taking n values each with
probability 1/n: X ≥ P · Y, where P is a permutation matrix.

19 / 25 Sebastiano Vitali 30.11.2017, Brno



First order Stochastic Dominance

Given two distributions X and Y we define that X first-order
stochastically dominates Y if

P(X ≤ η) ≤ P(Y ≤ η) for all η ∈ < (12)

In terms of cumulative functions FX and FY

FX (η) ≤ FY (η),∀η ∈ < (13)

Moreover, X first-order stochastically dominates Y if and only
if every expected utility maximizer with an nondecreasing utility
function prefers X over Y : E[U(X )] ≥ E[U(Y )],∀U ∈ U1, where
U1 is the set of all nondecreasing utility functions.

If the random variables are discrete and taking n values each with
probability 1/n: X ≥ P · Y, where P is a permutation matrix.

19 / 25 Sebastiano Vitali 30.11.2017, Brno



Second order Stochastic Dominance

Defining the twice cumulative distribution function as

F
(2)
X (η) =

∫ η

−∞
FX (α)dα (14)

Given two distributions X and Y we define that X second-order
stochastically dominates Y if

F
(2)
X (η) ≤ F

(2)
Y (η),∀η ∈ < (15)

Moreover, X second-order stochastically dominates Y if and only
if every expected utility maximizer with an nondecreasing and con-
cave utility function prefers X over Y : E[U(X )] ≥ E[U(Y )], ∀U ∈
U2, where U2 is the set of all nondecreasing and concave utility func-
tions.
If the random variables are discrete and taking n values each with
probability 1/n: X ≥W ·Y, where W is a double stochastic matrix.
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Conclusions

Observation

Reason

Consequence

For daily life decisions you face uncertainty, not risk

you do not know the probability

use utility for preferences!!
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For model decisions you face risk
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Consequence

The agent has some attitude

risk-averse, risk-neutral, risk-lover, ...

use appropriate utility function!!
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