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This assignment is supposed to be solved via JAGS and library(runjags). List through the manual to find
what you need.

Data and model description

We will work with the aids data from library(JM), see help(aids) for more details. It is of both longitudinal
and survival data nature. This time we will try to model them simultaneously.
set.seed(123456789)
library(JM)
head(aids[,c("patient", "Time", "death", "CD4", "obstime", "drug", "start", "stop", "event")], 10)

## patient Time death CD4 obstime drug start stop event
## 1 1 16.97 0 10.677078 0 ddC 0 6.00 0
## 2 1 16.97 0 8.426150 6 ddC 6 12.00 0
## 3 1 16.97 0 9.433981 12 ddC 12 16.97 0
## 4 2 19.00 0 6.324555 0 ddI 0 6.00 0
## 5 2 19.00 0 8.124038 6 ddI 6 12.00 0
## 6 2 19.00 0 4.582576 12 ddI 12 18.00 0
## 7 2 19.00 0 5.000000 18 ddI 18 19.00 0
## 8 3 18.53 1 3.464102 0 ddI 0 2.00 0
## 9 3 18.53 1 3.605551 2 ddI 2 6.00 0
## 10 3 18.53 1 6.164414 6 ddI 6 18.53 1

It consists of 467 HIV infected patients who were treated with two antiretroviral drugs (drug).

We will model the evolution of CD4 cell count for each individual patient, as in Exercise 3a. We assume
LME model with random intercept and slope:

• Yij = mi(tij) + εij = B1i + B2itij + εij , is the CD4 cell count of patient i at visit j,
• εij ∼ N(0, τ−1) is the iid model error,
• tij is the time of the observation of patient i at visit j,
• Di is the indicator of drug level ddI,
• B1i and B2i are the random intercept and slope for patient i,

• Bi = (B1i, B2i)⊤ ∼ N2

((
β1

β2 + β3Di

)
, Ω−1

)
, where Ω is general positive-definite precision matrix.

According to this model, the expected CD4 cell count mi(t) evolves linearly with time for each patient
differently mi(t) = B1i + B2it.

Cox proportional hazards model can be estimated only under the assumption of piece-wise constant CD4
cell count:
library(survival)
fitcoxph <- coxph(Surv(start, stop, event) ~ drug + CD4, data = aids)
summary(fitcoxph)
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This assumption is unrealistic. We can expect some gradual change in time between visits. This motivates us
to use mi(t) as a covariate to be used within (Cox) proportional hazards model. Then, the hazard function
for patient i becomes complicated by t appearing within the exponential factor:

hi(t) = h0(t) exp {γ1Di + γ2mi(t)}
= h0(t) exp {γ1Di + γ2B1i + t · γ2B2i}

When we choose h0(t) = αtα−1, we no longer obtain Weibull distribution! The distributional family is
given by viewing hi(t) as a function of t, which would conceptually yield

hi(t) ∝ tψi exp{ζi t}, Hi(t) = const.
t∫

0

sψi exp{ζi s} ds,

which could be viewed as a generalization of Weibull. Unfortunately, the implementation of JAGS does not
cover this distribution.

For simplification, let us assume α = 1, which yields constant h0(t). This option usually results in expo-
nential distribution. However, the exponential term with t changes the distribution to something different.
Conceptually, we have the (cumulative) hazard function of the form

hi(t) = ξ exp{ai + t bi}, Hi(t) = ξ
exp{ai}

bi
(exp{bit} − 1) ,

which is how Gompertz distribution is defined. Sadly, this distribution is not implemented in JAGS as
well. However, since log hi(t) and Hi(t) can be expressed in closed formula, we can fit the model using
zero-Poisson trick. We only need to supply our own implementation of the corresponding log-likelihood.

From NMST511 Course Notes by Theorem 2.2 under the assumption of censoring time Ci independent of
time to death Ti the log-likelihood under presence of right-censoring indicated by δi = 1(Ti ≤ Ci) takes the
following form:

ℓ(θ) = const. +
n∑
i=1

[δi log hi(Xi, θ) − Hi(Xi, θ)] ,

where Xi = min{Ti, Ci} is the event time (Time) and θ is the vector of unknown parameters.

How to tell JAGS to work with a custom likelihood? Using zero-Poisson trick Consider a
random variable O ∼ Pois(ϕ) with ϕ > 0. Then, P(O = 0) = exp{−ϕ} and the contribution to log-likelihood
when O = 0 is −ϕ. We just need to set −ϕ to be the contribution to log-likelihood we desire. There is minor
issue with the requirement that ϕ has to be positive. If we set up

ϕ = −loglik + C,

where C is sufficiently large constant to make (all) ϕ positive. Shifting each contribution to log-likelihood by
the same constant does not have any effect to it.

Alltogether, the pseudocode to be used in JAGS with right-censoring is below:
"model{

C <- 10ˆ5

...

for(i in 1:n){
...
logh[i] <- ...
H[i] <- ...
loglik[i] <- delta[i] * logh[i] - H[i]
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phi[i] <- C - loglik[i]
zeros[i] ~ dpois(phi[i])

}

...

}
"

Variable zeros is a vector of n zeros to be given as data. Constant C can be given as data in advance as well.

Task 1 - JAGS implementation of Joint model

Extend the JAGS code from Exercise 3a by the survival model with Gompertz hazard function hi(t) =
ξ exp{ai + t bi} outlined above using the zero-Poisson trick.

Assume the independent block structure of the prior for model parameters:

p(β, γ, ξ, τ, Ω) =
3∏
j=1

p(βj)
2∏
j=1

p(γj) p(ξ) p(τ) p(Ω)

Choose weakly informative normal prior for βj and γj , gamma prior for τ and ξ, Wishart distribution (dwish)
for Ω.

Write down (and print) the model implementation within JAGS.

Task 2 - Running JAGS

Sample (at least) two Markov chains using JAGS to approximate the posterior distribution p(β, γ, ξ, τ, Ω | data).
Be very careful about initial values, some may lead to unstable chains. Choose appropriate burnin and thin
by monitoring the trajectories and autocorrelation.

Task 3 - Monte Carlo estimates

Provide summaries including ET and HPD intervals for primary model parameters.

Explore and plot characteristics of the posterior distribution (posterior mean or median and credible intervals)
of the following parametric functions: mnew(t), hnew(t), Hnew(t), Snew(t) for two newly observed patients with
average evolution of CD4 each treated with different drug.

BONUS Task - piecewise constant hazard function

Instead of assuming constant baseline hazard function h0(t) = ξ use

h0(t) =
K∏
k=1

ξ
1(tk≤t<tk+1)
k ,

where 0 = t1 < t2 < · · · < tK+1 = ∞ form K predefined intervals, on which we have different baseline hazards
ξk. Use intervals defined by empirical quantiles:
(breaks <- c(0, quantile(data$Time, probs = seq(0,1,length.out = 8))[2:7], Inf))

## 14.28571% 28.57143% 42.85714% 57.14286% 71.42857% 85.71429%
## 0.000000 6.227143 11.078571 12.530000 13.930000 15.970000 17.800000 Inf

where data is a data.frame containing only one row per patient.
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