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Full assignment in PDF

This assignment is supposed to be solved via JAGS and library(runjags). List through the manual to find
what you need.

Data and model description

We will work with the aids data from library(JM), see help(aids) for more details. It is of both longitudinal
and survival data nature. In this part of the exercise, we will focus on the survival aspect:

set.seed(123456789)

library (JM)

head(aids[,c("patient", "Time", "death", "CD4", "obstime", "drug", "start", "stop", "event")], 15)
## patient Time death CD4 obstime drug start stop event
## 1 1 16.97 0 10.677078 0 ddC 0 6.00 0
## 2 1 16.97 0 8.426150 6 ddC 6 12.00 0
## 3 1 16.97 0 9.433981 12 ddC 12 16.97 0
## 4 2 19.00 0 6.324555 0 ddI 0 6.00 0
## 5 2 19.00 0 8.124038 6 ddI 6 12.00 0
## 6 2 19.00 0 4.582576 12 ddI 12 18.00 0
## 7 2 19.00 0 5.000000 18 ddI 18 19.00 0
## 8 3 18.53 1 3.464102 0 ddI 0 2.00 0
## 9 3 18.53 1 3.605551 2 ddI 2 6.00 0
## 10 3 18.53 1 6.164414 6 ddI 6 18.53 1
## 11 4 12.70 0 3.872983 0 ddC 0 2.00 0
## 12 4 12.70 0 4.582576 2 ddC 2 6.00 0
## 13 4 12.70 0 2.645751 6 ddC 6 12.00 0
## 14 4 12.70 0 1.732051 12 ddC 12 12.70 0
## 15 5 15.13 0 7.280110 0 ddI 0 2.00 0

It consists of 467 HIV infected patients who were treated with two antiretroviral drugs (drug).
Variable Time contains the infromation about the time in months from the entrance to the study when either

o patient died (death = 1) or
o patient left the study (death = 0).

In classical survival model we would denote by

o T; € (0,00) the time of death of patient 4,

e (; € (0,00) the time of censoring of patient i (leaving the study),

o X, =min {T;,C;} is the observed event time (the one which comes first - death or censoring),
o J; = 1(T; <= C;) is the event indicator (1 = death, 0 = censored).

The goal is to model the distribution of the time T; given covariates. From Censored Data Analysis course
we know that neither omitting observations with death = 0 nor treating all X; as the true 7; is appropriate.
Both approaches would severely underestimate the true survival time.


https://www.karlin.mff.cuni.cz/~vavraj/nmst431/assignments/BayesExercise03a.pdf
https://mcmc-jags.sourceforge.io/
https://www.karlin.mff.cuni.cz/~vavraj/nmst431/jags/jags_user_manual.pdf
https://www.karlin.mff.cuni.cz/~vavraj/nmst511/index.html

First, we will eliminate the longitudinal aspect of the data. Filter the data to one line per patient.

— U
Keep the last available row, average the CD4 cell count across all visits. Y; = ni > Y;; denotes
=

the average value of CD4.

#it patient Time death CD4 obstime drug gender prev0I AZT start
## 3 1 16.97 0 9.512403 12 ddC male AIDS intolerance 12
#it 7 2 19.00 0 6.007792 18 ddI male noAIDS intolerance 18
## 10 3 18.53 1 4.411356 6 ddI female AIDS intolerance 6
## 14 4 12.70 0 3.208340 12 ddC male  AIDS failure 12
## 18 5 15.13 0 7.798241 12 ddI male  AIDS failure 12
## 19 6 1.90 1 4.582576 0 ddC female AIDS failure 0
## stop event
## 3 16.97 0
## 7 19.00 0
## 10 18.53 1
## 14 12.70 0
## 18 15.13 0
## 19 1.90 1

As it is standard practice in survival models, we will parametrize the distribution of time T; via its (cumulative)
hazard function the same way as in Cox proportional hazards model:

h(t) = ho(t) exp {ZT')/}, H(t) = /h(s) ds = /ho(s) ds exp {ZT')/} = Hy(t) exp {ZT’y}
0 0

where

o ho(t), Ho(t),t € (0,00), is the baseline (cumulative) hazard function for individual with Z = 0,
e Z is the p-dimensional vector of covariates,
e v € RP? is the vector of unknown parameters.

In traditional Cox proportional hazards model (function coxph from library(survival)) the approach is
semi-parametric - function hg(t) is assumed to be arbitrary and primary target is on parameters v, which is
solved by optimizing the partial likelihood.

Here we will assume fully parametric form of the hazard function. Consider Weibull distribution with shape
parameter « > 0 and scale s > 0, Weib(a, s), see ?Weibull. Then, the corresponding (cumulative) hazard
function is a power function:

when

e a =1, we obtain constant hazard function, which corresponds to exponential distribution,
e «a > 1, we obtain increasing hazard function,
e «a < 1, we obtain decreasing hazard function.

Weibull distribution in JAGS is parametrized through parameter A = s~<, which yields
hw(t) = at® 1A, Hw(t) =t*\

Hence, if we suppose ho(t) = at®~ !, Hy(t) = t* and A = exp {ZT'y} we get the same expression for the
hazard function as in proportional hazards model, now with parametrized baseline hazard function.


https://en.wikipedia.org/wiki/Survival_analysis#Hazard_function_and_cumulative_hazard_function
https://www.karlin.mff.cuni.cz/~vavraj/nmst511/exercise_04.html

Task 1 - Cox Proportional Hazards Model

Fit Cox proportional hazards model (e.g. coxph from library(survival)) with the following formula:
Zi'y =71D; + 7Y
where
« Y, = ni % Y;; denotes the average value of CD4,
e D;is theji:nldicator of drug level ddI,
Print the summary of the model. Estimate the cumulative distribution function and survival function
S(t) = exp{—H(t)} and judge whether the assumption of Weibull distribution may be reasonable.

Task 2 - Bayesian approach - JAGS implementation

Consider the regression formula from Task 1. When the observed event is death event = 1, then we observe
T; directly. When the observation is censored, we only know T; € (X;,00) and the exact value of T; is
unobserved. We will treat these times as unknown auxiliary variables ( data augmentation ). In JAGS, this
is performed by dinterval, see details in the manual. It requires proper data preparations.

As discussed above we will assume Weibull distribution for the time to death:

T;| o, Z: ~ Weib (a, A = exp{Z; "7}

Assume the independent block structure of the prior for model parameters:
2
pla,y) =p(e) []p()
j=1

Choose weakly informative normal prior for v; and o ~ I'(1,0.001).

Write down (and print) the model implementation within JAGS.

Task 3 - Running JAGS

Sample two Markov chains using JAGS to approximate the posterior distribution p(7,a|data). Choose
appropriate burnin and thin by monitoring the trajectories and autocorrelation. Monitor also 3 auxiliary
variables for unobserved time of death (arbitrarily chosen).

Warning: working with NA values for right-censoring can cause some unexpected issues. Avoid monitoring
“pd”, “popt”, “ped”, monitoring only “deviance”, “dic” suffices.

Task 4 - Monte Carlo estimates

Provide summaries including ET and HPD intervals for primary model parameters. Compare them to the
outputs in Taskl. Estimate the posterior distribution of values of cumulative hazard and survival functions
H(t) and S(t) on a dense grid of time values for a patient of reasonable covariate values. Plot the estimated
posterior mean and ET credible intervals together with the Breslow estimator from Task~1. Was the choice
of parametric family appropriate?



	Data and model description
	Task 1 - Cox Proportional Hazards Model
	Task 2 - Bayesian approach - JAGS implementation
	Task 3 - Running JAGS
	Task 4 - Monte Carlo estimates

