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Nézev prace: Identifikace tekutin rychlostniho typu vhodnych k modelovani geomater-
iala

Autor: Karel Tuma
Ustav: Matematicky tstav Univerzity Karlovy

Vedouci diserta¢ni prace: prof. RNDr. Josef Malek, CSc., DSc., Matematicky tstav
Univerzity Karlovy

Abstrakt: V této praci studujeme a porovnavame ruzné viskoelastické modely rychlost-
niho typu, které jsou vhodné pro popis odezvy geomaterialii jako asfalt. Pomoci ter-
modynamického pfistupu navrzeného Rajagopalem a Srinivasou (2000) odvodime nové
viskoelastické modely, které jsou zobecnénim standardnich modela Oldroyd-B a Burg-
ers. Rovnéz ukazeme, Ze nové modely dosahuji lepsich vysledkt pfi fitovani experimen-
talnich dat s asfaltem neZ dfive uvazované modely (Oldroyd-B, Burgers, Rajagopal a
Srinivasa (2000)) a identifikujeme ty modely, které jsou schopné zachytit pozoruhodné
chovéani asfaltu pozorované v nedavnych experimentech (pfekmit momentu sily a dva
relaxa¢ni mechanismy s rozdilnou ¢asovou skalou). Déle provadime pocitacové simu-
lace tloh zachycujici proudéni viskoelastickych tekutin popsanych obéma standardnimi
modely a nové odvozenymi modely metodou kone¢nych prvka jak na pevné, tak ¢asové
se ménici vypodcetni oblasti. Procesy probihajici v deformujici oblasti pfevedeme na pev-
nou vypocetni oblast pouzitim smiSeného Lagrangeova-Eulerova popisu (ALE metoda).
Vyuzitim odvozeného postupu simulujeme proces valcovani asfaltu nebo vytvareni vy-
jetych koleji na silnici se skuteénymi materidlovymi parametry ziskanymi piredchozim
nafitovanim experimenta.

Klicova slova: viskoelastické tekutiny, tekutiny rychlostniho typu, asfalt, fitovani exper-
imentt, metoda kone¢nych prvka, numerické simulace.
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Abstract: In the present thesis we study and compare different viscoelastic rate-type
fluid models capable of describing response of geomaterials such as asphalt. Using new
thermodynamic approach proposed by Rajagopal and Srinivasa (2000) we derive several
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Introduction

In the present thesis we study viscoelastic rate type fluid models capable of describing
response of geomaterials like asphalt. Asphalt binder is a complex mixture of hydrocar-
bons and as such it is difficult to predict its non-linear viscoelastic response. However,
mainly for its special properties it is used in many applications. One of the most known
application is its use as a glue in asphalt concrete for constructions of roadways and
runways.

Being viscous and elastic at the same time makes this material perfect for absorption
of the impact of the wheels of the landing plane on the runway. The viscous behavior
is exhibited in one of the longest experiment ever done, where dropping of pitch is
observed on the time scale of tens of years, see [I3]. Asphalt was also used in the
early 19th century for making the the oldest surviving photograph of nature, which
stemmed from the fact, that the exposure of light hardened the material. Mastic asphalt,
which has higher content of asphalt binder than usual asphalt concrete, is also used for
waterproofing of roofs, etc. For more information on asphalt see a thorough review
paper by Krishnan and Rajagopal [28].

Since asphalt binder is almost incompressible material we are mainly interested
in incompressible fluids with constant density p that are described by two balance
equations (for more details see Chapter 1)

divv =0, (1)

p<g;’+v-vv>:divT, T=T7, (2)

where v is fluid velocity and T is Cauchy stress tensor in the form
T=—-pl+8S. (3)

In case of incompressible Navier-Stokes equations S = 2uD = p (Vv + (VV)T), where
p is the fluid viscosity. Such model can not capture non-linear response of the stress
relaxation test or creep test and other non-Newtonian phenomena (described in Chap-
ter 1). Some rate type fluid models, i.e. the model where S satisfies some evolutionary
equation, are capable of capturing these features. Maxwell model ([40]), the simplest
example of rate type fluid model, is given through

v
S+ 7S=2u1D, (4)

where T is a relaxation time saying how fast the stress decreases in the stress relaxation
test, w1 is the viscosity and V is an objective material time derivative called upper
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convected Oldroyd derivative. If we add a viscous Newtonian term 2usD to the Maxwell
model, we obtain Oldroyd-B model ([46]) in the form

S =2uD+A, (5)
v
A +7 A= 2u1D. (6)
This model behaves more viscously than the Maxwell model and it is a popular standard

viscoelastic fluid model. Using a new tensor B = I+ A /G, where G = 11 /7 is the elastic
modulus (5)-(6) can be rewritten into the form

S — 25D + G(B —T), (7)
B=-SmB_1) 8)
M1

In this thesis we present three ways how to obtain this standard model. In Chapter 1
we show how to get one-dimensional version of this model using mechanical analogs,
in Chapter 2 we generalize this one-dimensional model to three-dimensional setting.
The problem with such derivation is that it is not unique and we can not fully control
how the elastic and viscous part of the deformation looks like. In Chapter 2 there
is also given the other possibility of the derivation from microscopical principles (as
originally given in [30] by Kuhn). Both derivations do not guarantee that the second
law of thermodynamics is satisfied. The other standard viscoelastic model, the Burgers
model, is also presented in Chapter 2. Both these models are linear models in the sense
that the evolutionary equation for the extra stress tensor S, A, or B is linear with
respect to these tensors.

The properties of asphalt binder, which is the glue that holds the stones in the
asphalt concrete together and chemically it is a mixture of many hydrocarbons, were
measured in several experiments. One of the experiments shows an interesting non-
linear non-monotone response of asphalt binder, the other shows that asphalt binder
exhibits at least two different relaxation mechanisms. In Chapter 4 we show that these
experiments can not be explained with standard viscoelastic models mentioned above.

On that account we derive new non-linear models that would be able to describe
those experiments using a new approach proposed by Rajagopal and Srinivasa ([57]).
This approach provides a way how to derive a thermodynamically compatible model
where we can control the elastic and dissipative response of the body using the natural
configuration. In order to do this, two scalar functions have to be constituted. The
first one, which corresponds to the elastic response, is the thermodynamical potential.
The other one, which includes the energy dissipation of the body, is the rate of entropy
production &. If it is non-negative, the second law of thermodynamics is satisfied.
Finally, the assumption of maximum rate of entropy production is used. This approach
is described in Chapter 3.

In [57] Rajagopal and Srinivasa derived a non-linear version of incompressible Maxwell
model under the assumption that the Helmholtz free energy 1 is in the form correspond-
ing to incompressible neo-Hookean solid

Wb = 262 (trB%) - 3) , (9)
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where G is the elastic modulus and By, is the left Cauchy-Green tensor corresponding

to the natural configuration. For the rate of entropy production € they chose a non-
negative scalar .
0< § = ,UID/-; B

p(t) " Kp(t)

D (10)

Rp(t)?
where D, is the rate of deformation of the natural configuration. They obtained the
following model

_ d
S=GB (11)
v G 3
Bfﬁjp(t) - — I 9 (12)

B, —
p(t) -1
Ml tr (Bﬁpu))

which is very similar to Maxwell model. The upper convected Oldroyd derivative comes
naturally from the derivation and it does not have to be artificially included as in case
of generalization of the one-dimensional model.

Later, in 2007 Malek and Rajagopal derived a different model using the same neo-
Hookean free energy with a different rate of entropy production

0<é=puD-D+ D, ,C

p(t) T Kp(t)

D (13)

Kp(t)
and obtained a model that is a non-linear version of Oldroyd-B model. They also split
the tensor B”p(t) into its deviatoric and spherical part and obtained a model that is —
at least at first sight — far different from the model by Rajagopal and Srinivasa with
additional Newtonian dissipation. In this work we show that both models are equivalent
and that they reduce to standard Oldroyd-B model if the elastic response is linearized.
We use this model to fit the first set of experiments and we obtain better results than
that obtained with the linear models. However, the agreement with the experiment
is still not satisfactory. We therefore derive several new models in order to fit the
experiment as accurate as is possible. First model that we derive is a modification of
the derivation by Rajagopal and Srinivasa with the same free energy, but power-law like
type of rate of entropy production. We obtain a model with six material parameters
(twice more than the Oldroyd-like models have) that is described by the set of algebraic-
differential equations. This model captures the first set of experiments quite well.
Furthermore, we use again the same assumption for the elastic part, i.e. the neo-
Hookean one, but for the rate of entropy production we use a simple quadratic form

0<€&=pD -D+ ;D D (14)

Kp(t) 7 Kp(t)?

and we obtain an incompressible model with three material parameters denoted as

Quad1

S =2D +GBj |, (15)
G d

\
B/{ 7Bn

W T T »iy By (16)

Again we show that this model reduces to standard Oldroyd-B model when the elastic
response is linearized. This model captures the first set of experiments very well, better
than the power-law like model.
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The other set of experiments shows that asphalt binder exhibits at least two different
relaxation mechanisms which can not be captured with any so far presented non-linear
models. That is why we derive another model using two natural configurations where
every natural configuration corresponds to one individual relaxation mechanism. Using
the incompressible neo-Hookean elastic response and the rate of entropy production in
the form

0<{=pusD D+ D

+ 12D (17)

Foyy " Dy Fnp " Dy
we derive an incompressible model with two rate-type equations and five material pa-

rameters denoted as Quad2

_ d d
8= 2psD + GlB“m(t) + G2B”p2(t)’ (18)
v G4 d
Bry ) = _IBﬁpl(t)Bﬁpl(t)’ (19)
v Gy .
B”Pz(t) = _EB”pz(t)Bﬂpg(z)‘ (20)

We show that this model reduces to Burgers model again when both elastic responses
are linearized. This model captures both sets of experiments very well and it is a
generalization of model Quadl.

All non-linear models presented above are fully incompressible which means that
not only the whole deformation is incompressible (i.e. the motion is isochoric) but both
elastic and dissipative parts of the deformation are incompressible. In order to obtain
an incompressible model with the compressible neo-Hookean elastic response we use the
following thermodynamical potential

Y= 2Gp (trBe,, — 3~ Indet By, ) (21)
and derive few incompressible-compressible models. Furthermore, we also derive one
fully compressible viscoelastic model. Doing so, we find out that if the compressible
elastic response given by and the rate of entropy production given by are used,
the Oldroyd-B model is obtained. Thus, we show that this model is not an approxima-
tive model, as the standard ways of derivation suggest, but it is an exact model with
compressible neo-Hookean response, which satisfies the second law of thermodynamics.
Furthermore, we derive also Burgers model in similar way using two natural configura-
tions. The derivation of all models from the thermodynamical point of view is described
in Chapter 3.

In Chapter 5 we derive formal apriori estimates for Burgers and model Quad2 and
we define a weak formulation which underlies finite element method. Since we are
interested in the simulation of asphalt that flows very slowly, it is sufficient for us
to compute problems with a low Weissenberg number (for problems concerning high
Weissenberg number problem see for example [67]). First we test our FEM code by
computing two benchmark tests with Oldroyd-B model and model Quadl. Further, we
do the full simulation of the experiment using our real fitted experiment parameters with
the model Quad2 and verify that our full simulation agrees with simplified computation
used for the fitting.

We also compute the problems in time-varying deforming domains and simulate real
life problems. For this purpose we transform the equations from the physical deforming
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domain to the fixed domain using Arbitrary Lagrangian-Eulerian (ALE) method. We
study the properties of the numerical solution on two problems.

First, we compare abilities of two different time schemes on the problem of rotating
viscoelastic square. It turns out that the higher order time scheme is needed. Next,
we study the dependence of the solution on mesh size and time step on the problem
of loaded rectangle that corresponds to the real problem of an impact of the plane on
the runway. Moreover, we find that the model behaves more elastically with a longer
relaxation time.

Finally, full simulations of two real problems with the fitted material parameters are
computed. One of the problems corresponds to the important technological problem of
“rutting” of roadways, wherein a depression is observed in a portion of the roadways
due to the repeated motion of vehicles. The other problem describes the rolling of the
asphalt which is caused by the constant load moving forward and back.

Some of the results presented in this thesis are published or submitted for publication
in the peer-reviewed journals:

Hron J., Kratochvil J., Malek J., Rajagopal K. R., Tama, K.: A Thermody-
namically Compatible Rate Type Fluid to Describe the Response of Asphalt.
Elsevier, Mathematics and Computers in Simulation, Volume 82, Issue 10, 1853-1873,
2012.

In this paper we derived a viscoelastic power-law like model and we showed that it
captures the torque overshoot experimental data by Krishnan and Narayan (2007) better
than the model by Rajagopal and Srinivasa with additional Newtonian dissipation and
standard Oldroyd-B model.

Malek J., Rajagopal K. R., Tima, K.: A thermodynamically compatible
model for describing the response of asphalt binders. Second revised version
submitted for publication to Elsevier, Mechanics of Materials, 2013.

In this paper we derived models Quadl and Quad2, we showed that if the elastic
response is linearized they reduce to standard Oldroyd-B and Burgers model and we
showed that they capture the experimental data by Krishnan and Narayan (2007) better
than power-law like model and that they capture the experiment by Narayan et al.
(2012).

Hron J., Rajagopal K. R., Tima, K.: Flow of a Burgers fluid due to time
varying loads on deforming boundaries. To be submitted for publication to Jour-
nal of Non-Newtonian Fluid Mechanics.

In this paper we computed the simulations of standard Maxwell, Oldroyd-B and
Burgers model in time varying domain. In particular, we computed the pressing of the
viscoelastic rectangle, problem of rutting and rolling of viscoelastic material described
by Burgers model.

Some subtle results are also published in the following proceedings:

Tuama, K.: Numerical simulation of viscoelastic fluid described by Oldroyd-
B model using finite element method and finite volume method. Proceedings
of Seminar on Numerical Analysis, Technical University of Liberec, ISBN 978-80-7372-
821-2, 2012.
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Bodnar T., Pirkl L., Tama K.: Viscoelastic Fluid Flows at Moderate Weis-
senberg Numbers Using Oldroyd Type Model. AIP Conf. Proc. 1389, 102-105,
2011.

Tuama K.: On Capability of a Class of Incompressible Rate-type Fluid Models
to Fit Experimental Data for Asphalt. Proceedings of the 18th Annual Conference
of Doctoral Students — WDS 2009, MatfyzPress, 2009.
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Chapter 1

Non-Newtonian fluids

1.1 Continuum mechanics

In this thesis we study viscoelastic fluids using continuum mechanics which means that
we suppose that the material entirely fills whole space and we ignore the fact that the
fluid is made of atoms and molecules. Thus continuum mechanics can be used only on
scales that are much greater than the distances between molecules.

F..

_

Xkr

Figure 1.1: Reference and current configuration.

We briefly introduce the basic kinematical quantities and balance equations. For
more details see for example [24]. Let kg(B) and x¢(B) denote the reference and current
configuration at time ¢ (see Figure of the body B. Let X € kr and x € k; denote
the material point P € B at the reference and current configuration, respectively. Then
we define the motion X, of the body as one-to-one mapping

T = Xup(X,1). (1.1)
The velocity v is defined through
OXx
V(X 1) = SRR (X, (1.2)
ot
the acceleration in Lagrangian formulation (for fixed X) is given by
ov(X,t
a(X,t) = V(8t’)' (1.3)

However, it is more convenient to compute velocity and acceleration in spatial (Eulerian)
description (for fixed x)

. dv(x,t) B v OV(Xkg(X,1),t) OXkp B ov

11



CHAPTER 1. NON-NEWTONIAN FLUIDS

where the last term is usually written in the form [Vv]v = (v - V)v and

ds Os
S = — = — -V 1.5
S= 4w +v-Vs (1.5)
denotes the material time derivative of scalar s. Furthermore, we define the deformation
gradient

P, = (16)
and left and right Cauchy-Green tensor
Bip = FinFy,, Cup=Fi Fep (L.7)
It can be shown that the velocity gradient is equal to
L:=Vv=F.F,, (1.8)
the symmetric part of velocity gradient is denoted by
D= %(LJFLT) (1.9)
and the antisymmetric part of velocity gradient by
W — %(L—LT). (1.10)

1.1.1 Balance equations

In this section we introduce balance equations used in the study of fluids. Using the
Reynolds’ transport theorem the following balance equations can be derived:

Balance of mass
p+ pdivv =0, (1.11)

where p is fluid density. If the fluid is incompressible, it can only undergo isochoric
motion (i.e. detF,, = 1) and hence

trD =divv=0. (1.12)

If the fluid is also homogeneous, then it follows from ((1.11)) and ((1.12)) that density
is constant everywhere.

Balance of linear momentum
pv = pb +divT, (1.13)

where b is the volume force (for example gravity) and T is the Cauchy stress
tensor.

Balance of angular momentum
The balance of angular momentum in the absence of internal body couples leads
to
T=1"T. (1.14)

12
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Balance of energy ‘
pE =div(Tv) —divq+ pr + pb - v, (1.15)
where F is the specific total energy, q is heat flux and r is density of energy

sources.

Multiplying ([1.13]) scalarly by v and subtracting the result from ((1.15)), we obtain
balance for internal energy e

pe=T-D—divq+ pr. (1.16)
Balance of entropy
4 div (3) = £ £
;m+dw<9 =5 +3 (1.17)

where 7 is the entropy, 6 is thermodynamical temperature and £ is the rate of
entropy production. The second law of thermodynamics says that £ > 0.

In general, the entropy flux does not need to take the form of the heat flux q divided
by temperature 0, the setting given here is however sufficient as we are mostly dealing
with isothermal processes.

Note: If we define Helmholtz free energy v := e — 1 and we assume only isothermal
processes, we obtain a reduced thermodynamical inequality

0<¢&=T-D— p. (1.18)

1.2 Properties of non-Newtonian fluid

The description of non-Newtonian phenomena given in this section stems from the
lecture notes written by the author and the supervisor. These lecture notes have been
written as a study text for the series of lectures given by his supervisor at the University
of Warsaw (see [34]). For even more information about non-Newtonian fluids see [60],
[68], [53] and [35].

Definition 1.2.1. The fluid is non-Newtonian if it does not behave as a Newtonian
fluid described by the model of Navier-Stokes fluid where the Cauchy stress tensor is in
the form

compressible T = —p(p, )1+ 2u(p,0)D + A(p, 0)(div v)I,
incompressible T = —pl + 2u(p,0)D.

Most of fluids are not Newtonian and they exhibit different non-Newtonian phenom-
ena that characterize non-Newtonian fluids (fluid does not have to exhibit all phenomena
to be non-Newtonian). Consider a fluid flowing in the channel with the velocity in the
form

v = (u(y),0,0) (1.19)

and the Cauchy stress tensor in the form

T=-pl+S.

13
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For description of non-Newtonian phenomena we need to define few quantities. Shear
rate is a shear component of the symmetric part of velocity gradient D, in case of of
the velocity it is 2D12 = 4/(y), which is sometimes denoted by 4. Corresponding
shear stress is equal to S12, sometimes denoted by o.

Furthermore, we define a generalized viscosity ug as

S12(D
pg(D12) := 121()1212).

1.2.1 Shear thinning, shear thickening

Response of Newtonian fluid For the Newtonian fluid it holds that Sis is a linear
function of Dqo with the proportionality coefficient viscosity p (see Figure [1.2)), i.e.
S12 = puD12. The generalized viscosity is constant, i.e. pg, = = const., the graph p,
vs. 4 is depicted in Figure

o Hg
— A K
o=
0 A 0 A
Figure 1.2: Newtonian fluid Figure 1.3: Newtonian fluid
(shear stress / shear rate) (generalized viscosity / shear rate)

Response of non-Newtonian fluid A fluid is shear thickening if o grows faster
than linearly with 4 (Figure . The generalized viscosity pi4 is an increasing func-
tion, Figure gives the example where the generalized viscosity is degenerate at the
beginning, usually the generalized viscosity is positive in zero.

o Hg
ﬁeneralized viscosity
egenerates
0 A 0 ¥
Figure 1.4: Shear thickening Figure 1.5: Shear thickening
(shear stress / shear rate) (generalized viscosity / shear rate)

14
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Non-Newtonian fluid is shear thinning if o is a sublinear function of 4 (Figure [1.6)).
The generalized viscosity fi4 is a decreasing function, in Figure is the example where
the generalized viscosity is singular at the beginning, usually the generalized viscosity
is finite in zero.

o Hg
generalized viscosity
1s singular
0 A 0 A
Figure 1.6: Shear thinning, Figure 1.7: Shear thinning,
(shear stress / shear rate) (generalized viscosity / shear rate)

Typical power law model has the generalized viscosity in the form

r—2

1y = p(1+ D). (1.20)

For r = 2 it reduces to Newtonian fluid, for » > 2 to shear thickening fluid and for r < 2
to shear thinning fluid, see Figures [I.8 and [I.9

7 a) Ho )
c)
c)
Ho
b)
b)
0 A 0 A

Figure 1.8: Shear stress / shear rate Figure 1.9: Generalized viscosity /
a)r>2b)r<2,c¢r=2 shear rate
a)r>2b)r<2c)r=2

1.2.2 Pressure thickening

Experimental data show that the generalized viscosity pg of most fluids is not constant
as in case of Newtonian fluid, but it is an increasing function of the pressure (see
Figure .

One of the largest experimental studies concerning the pressure dependence was
done in 1926 by Bridgman [9] and recently by Bair [2]. He studied 43 fluids, most
of them organic, but including water. He verified that mostly all fluids are pressure
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thickening. He also studied water whose behavior is very interesting, for cold water
(below about 15 °C) its viscosity is decreasing with the pressure to around 1000 atm,
then it is increasing.

i
Hg g
Ho Lo
0

0 D p

Figure 1.11: Viscosity dependent on

Figure 1.10: Newtonian fluid
pressure

In [3] Barus proposed a pressure thickening model

tg(p) = pexp(ap), a > 0.

1.2.3 Presence of activation/deactivation criteria

Some fluids start to flow after they reach the critical value of the stress (threshold) 7,
called the yield stress. In case that the following dependence of the stress on the shear
rate is linear, or nonlinear, we call the fluid Bingham fluid named after Bingham [5], or
the Herschel-Bulkley fluid, respectively.

The standard formulation is the following:

D=0« |S|<T,
D 2
T =—pl+ 27’@ + fig(|D]*)D < S| > 7.
If fig is constant, it is the Bingham fluid, if not, it is Herschel-Bulkley fluid (see Fig-
ure . Further example is the fluid where the response is connected with the chemical
processes. At some value Dig the fluid locks and does not flow, see Figure [1.13]

Three non-Newtonian phenomena introduced in Subsections - can be
described by a non-linear explicit relation between the shear stress Si2 and shear rate
D1o. But we can consider a general implicit relation between the Cauchy stress T and
symmetric part of velocity gradient D

G(T,D) = 0. (1.21)

1.2.4 Presence of non-zero normal stress differences in a simple shear
flow

In three dimensional space we define three viscometric functions:
W viscosity
Ny :=Ti11 — T first normal stress difference
Ny := T59 — T35 second normal stress difference
In the simple shear flow we suppose a fluid velocity in the form v = (u(y),0,0).
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o o
<—— locking
T T
0 A 0 A
Figure 1.12: Herschel-Bulkley. Figure 1.13: Locking.

Response of a Newtonian fluid Let us compute the Cauchy stress T

1[0 Wy O —p  pu'(y) O
D= 3 u'(y) 0 0], T=-pl+2uD = | pu(y) —D 0
0 0 0 0 0 —-p

We can see that Ny = Ny = 0, and so there are no normal stress differences in the
Newtonian case.

Non-Newtonian fluid Non-Newtonian fluids like for example the amyl dissolved in
the water, exhibit the presence of non-zero stress differences in the simple shear flow.
If we press the fluid in one direction, it reacts in other direction, usually perpendic-
ular. This phenomenon is usually associated with the following effects: rod climbing
(Weissenberg effect), die swell, delayed die swell, flow through the sloping channel.

1.2.5 Stress relaxation and non-linear creep

Stress relaxation test Stress relaxation test gives as an output the relation of o
w.r.t. time (see Figure [I.14): At time ¢ = 0 we deform the material to the relative
prolongation g, keep it constant as time evolves and we study the evolution of shear
stress o.

€0

777

0 t 0 t
Figure 1.14: Stress relaxation test.

Consider two basic materials — linear elastic material and Newtonian fluid. Linear
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elastic material is described by Hookean law o = Ge, where G is the elastic modulus,
Newtonian fluid is described by the relation o = ue, where u is the viscosity.

The result of the stress relaxation test is in case of elastic material depicted in
Figure [I.15] in case of Newtonian fluid in Figure In case of Newtonian fluid the
stress is singular in zero (derivative of the Heaviside function).

o g

GEO

0 t 0 t

Figure 1.15: Stress relaxation test, lin- Figure 1.16: Stress relaxation test, lin-
ear spring. ear dashpot.

Creep test Creep test is the following (see Figure [1.17): At time t = 0 we put the
material into the state corresponding to o9 and we keep this value upto time ¢t = t*,
then we turn off the stress and study the relative prolongation e.

g 3

00

7?77

0 t* t 0 t
Figure 1.17: Creep test.
The result of the creep test is in case of elastic material depicted in Figure[1.1§] in
case of Newtonian fluid in Figure

The results of the stress relaxation test and creep test are usually described in terms
of the stress relaxation function

and the creep function

in order to eliminate the dependence of the responses on the initial deformation or
stress.

18
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g g
0o go
G [z
0 t* t 0 t* t

Figure 1.18: Creep test, linear spring. Figure 1.19: Creep test, linear dashpot.

Most of materials exhibit both viscous and elastic characteristic, their response is
viscoelastic. The typical response of material in stress relaxation test for viscoelastic
solid like and viscoelastic fluid like material is depicted in Figure response of
material in creep test is given in Figure[I.21] 7 is a relaxation time defined later in the
text. For more details on the response of real viscoelastic materials see for example [68§].

g g

0 T t 0
Figure 1.20: Viscoelastic solid Viscoelastic fluid

€ €

0 i 7 0 i i
Figure 1.21: Viscoelastic solid Viscoelastic fluid

In the next Section we introduce models that are capable of capturing viscoelastic
stress relaxation and creep. In this work we are interested in so called rate-type models
which are models where the Cauchy stress or the symmetric part of velocity gradient
(or their parts) satisfy an evolutionary differential equation. Such models are a special
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version of a general implicit relation ([1.21)).

1.3 One-dimensional viscoelasticity

In this section we introduce five one-dimensional viscoelastic models: Maxwell, Oldroyd,
Kelvin-Voigt, Burgers and Burgers with an additional Newtonian dissipation. We derive
one-dimensional stress-strain relation for all models and compute the stress relaxation
function G and the creep function J for the first four models. The result of the creep
test is not provided for these models in most of literature, usually the result is given for
the test in which the stress is not released after some time. We computed the full creep
test as described in the previous Section.

1.3.1 Mechanical analogs

We consider two basic materials: a linear elastic material and a Newtonian fluid. The
mechanical analog representing the linear elastic material is a Hookean spring (see
Figure[1.22|a)), where the relation between the stress and strain is described by o = Ge
where G is the elastic modulus.

Spring Dashpot

(a) Spring (b) Dashpot

Figure 1.22: Linear spring and linear dashpot.

Newtonian fluid is represented by a linear dashpot. Linear dashpot consists of
two concentric cylinders, the gap between them is filled with a Newtonian fluid (see
Figure [[.22b)). The relation between the stress and strain is o = ué, where y is the
fluid viscosity.

We use these two basic mechanical analogs for composing one-dimensional structure
of viscoelastic fluids, for more details on this topic see [65] and [68].

1.3.2 Maxwell model

Maxwell element is one of the basic mechanical analogs. It consists of two elements,
linear spring and linear dashpot connected in series, see Figure [I.23] for the device at
rest. We denote by F resp. Fg resp. Fp the force in the whole element resp. in the
spring resp. in the dashpot, and A resp. Ag resp. Ap the prolongation of the whole
element resp. of the spring resp. of the dashpot. Then for the linear spring it holds

Fs = GAs, o0s = Ges,
where eg = Ag/ly and og = Fg/ly. For the linear dashpot we have
Fp = pAp, op = uép,

where ep = Ap/ly and op = Fp/lp. First, we derive the constitutive relation between
the stress o = F/ly and strain e = A/ly where [y is the length of the whole element at
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Spring Dashpot

lo

Figure 1.23: Maxwell element.

rest. In the series connection is the stress in the spring and in the dashpot the same,
i.e. ¢ = op = og, the whole prolongation is the sum of the prolongation of the spring
and the dashpot, i.e. A = Ag+ Ap. We substitute from the constitutive relation for
the linear spring and the linear dashpot

A=Ag+Ap =242
G u
and get the constitutive equation for the Maxwell element
G
Ge =0+ —o0. (1.22)
7

The initial condition ¢(04) and €(04.) for is needed. We briefly show how it is
obtained (for details see [68]). For example in the creep test with a jump discontinuity
of o at t = 0, € can be obtained upto constant from by direct integration. Instead
of considering the jump of stress o at t = 0 we replace it by a sequence of stresses that
smoothly (and very fast) grow from zero to a given value. Let oy, (t),e,(t) € C1(R) be
sequences converging to o(t) and e(t) such that o,(t) = o(t),en(t) = &(¢t) for t > 4§,

and
n—oo n—oo
On

20, on(t) =X o(t), en(t) =3 e(t) VE>0
satisfying
O + ian = (G¢,, for t > 0, (1.23)

and 0,(0) = £,(0) = 0.
From the initial condition we obtain. Integrating (1.23)) over (0, d,,) we obtain

G [
on(0n) + M/ on = Gen(0n), (1.24)
0

taking the limit n — oo gives the initial condition

o(0+) = Ge(0+). (1.25)

Stress relaxation test

Now we compute how the Maxwell element behaves in the stress relaxation test, see
Figure Let e(t) = eoH (t), where H (t) is the Heaviside function, then the equation

(11.22) for ¢ > 0 reduces to

&—FgJ:O
1
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with 0(04) = Geg. The solution of this initial value problem is
_Gy
o(t) = Gege »

and the stress relaxation function is equal to

Thus, Maxwell model exhibits stress relaxation of viscoelastic fluid as can be seen in
Figure The ratio /G denotes relaxation time, in Figure denoted by 7, and
it is a time when the stress decreases by a factor of e.

Creep test

In the creep test the stress is prescribed as

oo 0<t<Hp
U(t)_{o t > 1op.

We divide the computation of the strain ¢ into two parts — for ¢ between zero and tg
and for ¢ > to. First, we integrate ([1.22)) from zero to t < tp and obtain
1
E(t) = E(O—I—) + —opt, 0<t <Ay, (1.26)
1
where £(0+) = %og according to (L.25). For ¢ > to we integrate (L.22) from ¢y to
arbitrary ¢ > ¢y and obtain

€(t) = €(t0) - éo‘o = E(O-i—) + 0o <i[j - é) , t>to, (1.27)

where €(tg) is computed from ([1.26). The result of creep test is described by ((1.26]) and
(1.27), see Figure m

Figure 1.24: Creep function of Maxwell element.

The creep function is equal to

1, ¢

Lyt og<t<t
t_{G m =
j() Z) t>t0‘
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1.3.3 Kelvin-Voigt model

The other basic mechanical analog is Kelvin-Voigt element, it is a model for solid like
viscoelastic material. It consists of one linear spring and one linear dashpots connected
in parallel, see Figure [I.25] Due to geometry the total strain ¢ is equal to the strain of

Spring

Dashpot

l

Figure 1.25: Kelvin-Voigt element.

the dashpot ep and it is the same as the strain of the spring eg, i.e.
Ep = €5 = €. (1.28)

Stress in the whole element o is equal to the sum of the stresses in the spring og and
the dashpot op, i.e.
o=o0p+o0gs. (1.29)

Combining (|1.28)), (1.29) and stress-strain relations for the spring and the dashpot we
get

o = ué + Ge. (1.30)

Similarly to the case of Maxwell element we obtain the initial conditions for Kelvin-Voigt

element from the limit 5
lim on = peo(0+), (1.31)

n—oo 0

which is for the stress relaxation test equal to
o(t) = ue(0+)dp(t) near ¢t = 0. (1.32)
and for the creep test
£(0+) = 0. (1.33)
Stress relaxation test

Now we compute the response of stress relaxation test for the Kelvin-Voigt element.
Let e(t) = eoH (t), where H(t) is the Heaviside function, then the solution of (1.30)

with (1.32)) is

o(t) = pdoeo + Geo,
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where 69 = H (t) is a Dirac distribution. The stress relaxation function, that is equal to

is a pure combination of the linear spring and the linear dashpot (see Figure|1.26) and it
is not satisfactory in the sense that it does not reflect well the behavior of real materials.

t

Figure 1.26: Stress relaxation function of Kelvin-Voigt element.
Creep test

Kelvin-Voigt element is deformed with the stress

a(t)—{ao 0<t<t

10 t > 1op.

Again we divide the computation into two parts — for 0 < t < tg and for ¢t > 3. First,
we solve (1.30) on the interval (0,%p) with the initial condition (1.33)) and obtain

e(t) = % <1 —exp (—it)) . 0<t<t. (1.34)

For ¢ > t( we solve (1.30]) with the initial condition £(tp) given by (1.34) and obtain

£(t) = e(to) exp (—j(t - to)) : (1.35)
J =<

g0

Ql=

T

to

Figure 1.27: Creep function of Kelvin-Voigt element.

The response of material in creep test for Kelvin-Voigt element is given by ((1.34)
and (|1.35)) which is a nice example result of creep test for solid like viscoelastic material

(strain goes to zero for ¢ — o0), see Figure m
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1.3.4 Oldroyd model

Oldroyd element consists of two linear dashpots (thus it is more fluid like than the
Maxwell model) and one linear spring, it is a parallel connection of the Maxwell element
and one dashpot (D2), see Figure m For the Maxwell element it holds

€D2

M2

Es €D,

Figure 1.28: Oldroyd element.

' L + ! (1.36)
EM = =O0M —O0OM .
G M1

and due to geometry the total strain € is equal to the strain of the dashpot Dy ep, and
it is the same as the strain of the Maxwell element €,y, i.e.

ED, = EM = E. (1.37)

The stress in the whole element o is equal to the sum of the stresses in the Maxwell
element and the dashpot Do, i.e.

o=0p,+0M. (1.38)
Combining (T36)-(L38) we get
L + 1 L + 1 + €
— 04+ —0=—0 —0 e =
G™ oGPt
M2 .. wa . . M2 .. M2\ .
_ _H2a (R, 1.39
G5D2+M15D2+5M G6+< +M1>€ ( )

Multiplying by @1 we obtain stress-strain relation for Oldroyd element in more
usual form
o+ H1 & = H1p2
G G
Similarly to the case of Maxwell element we obtain the initial conditions for Oldroyd
element. We replace € and o by sufficiently smooth sequences ¢,, and o, with o, (0+) =

en(0+) = £,(04) = 0 and integrate two times over (0,d,). We obtain

€+ (1 + p2) €. (1.40)

e(04) =0, o(0+) = puag(0+). (1.41)
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Note: Using ((1.36]) —(1.38) Oldroyd model can be also written alternatively in the

form

0 = [2€ + o, (1.42a)
1 1
Z o+ —onr = £, 1.42h
G M1 M ( )

Stress relaxation test

Now we compute the response of stress relaxation test for the Oldroyd element. Let
e(t) = egH(t), where H(t) is the Heaviside function, then the equation (|1.22)) for ¢t > 0
reduces to

<'7+£U:0
K1

with 0(04) = p26(0+). The solution is similar to the case of Maxwell model
_ Gy
U(t) = ,u,250(t)€0 + GEoe K1
and the stress relaxation function is equal to

_G,
G(t) = —= = p2do + Ge #1,
€0

which is a combination of the result for the dashpot and the Maxwell element. The
stress relaxation test exhibits non-linear viscoelastic fluid-like behavior, see Figure [1.29]

0 t

Figure 1.29: Stress relaxation function of Oldroyd element.

Creep test

Oldroyd element is deformed with the stress

_fog 0<t<Hp
J(t)_{o t > 1op.

Again we divide the computation into two parts — for 0 < t < tg and for ¢t > 3. First,
we integrate (|1.40) over (0,¢y), use initial conditions ((1.41)) and after this we look for
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the solution of ODE

1 G
12 <z—f - 00> G (1 + m) e=Zogt, 0<t<t. (1.43)
K2 M1 M1

The solution of (|1.43) together with initial conditions ((1.41)) is

2+ G t 2 G t
e(t):“1+ (M1+2M2) oo 1y i erxp<_(m+u2)>7 0<t<to.
(11 + p2)*G (11 + p2)*G fi1p2
(1.44)
For t > ty we integrate ([1.40|) from ¢y to arbitrary ¢ > ¢y and obtain
w2(é —£(to)) + G <1 + Z2> (e —e(tg)) = —o0, t >t (1.45)
1

where €(ty) and £(ty) are obtained from (1.44]). The solution of (|1.45)) with the initial
conditions (|1.41)) is

—oop1 + pap2é(to) + G(pa + p2)e(to) <1 ~ exp <_G(M1 + p2)(t — to))) L

t p—
=) G(p1 + p2) 12

G(p1 + p2)(t —to)
M2

(to) exp <— ) ,  t>tg. (1.46)

The response of creep test for Oldroyd element is given by ([1.43]) and ([1.46[), concretely
the result for yy = 10 Pa's, us =1 Pa s, G =1 Pa, 0p = 1 Pa, tg = 5 s is depicted in
Figure and it is a satisfactory result of non-linear creep test for viscoelastic fluid
like model.

Strain e

Time [s]

Figure 1.30: Creep function of Oldroyd element for 41 = 10 Pa s, uo = 1 Pas, G = 1 Pa,
og=1Pa, tyg=5s.

Thus, Oldroyd element gives nice results for both stress relaxation and creep test.

1.3.5 Burgers element

Burgers element consists of two linear dashpots and two linear springs, in this subsection
we introduce two types of Burgers models.
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Original Burgers element

The first element is a classical Burgers element by Burgers [I0] and it is a connection
of the Maxwell element and the Kelvin-Voigt element in series, see Figure For the
Maxwell element it holds

1 1
N = ——0O — . 1.47
EM GQUM-FMZUM ( )
Gy
Go H2
1231

Figure 1.31: Burgers element from [10].

The Kelvin-Voigt element is described by
0x = pék + Giek (1.48)

and due to geometry the total strain € = £j; + € and the stresses in both elements
as well as in the whole connection are the same, i.e. ¢ = oy = og. Using (1.47) and
(1.48) we obtain

.. .. . G G . .
Gk +én) + m(Ex +En) = 0k + —onr + (1 + Ml) on+ By (1.49)
2 Gy e Ga

which reduces to

H2 M1 U2 R Hip2 .. . H1M2 ..
—_— 4+ — 4+ = = . 1.50
G+<G1+G1+G2>G+G1G20 o€ + Gls ( )

Similarly to the case of Oldroyd element we obtain the initial conditions by integrating
(1.50) two times over (0, 6,). We obtain

_ L B2l p2 Bape ooy pgs
e(0+) = G20(0+), (G1 + e + G2> a(0+)+G1G20(0+) = p2e(0+)+ ar £(0+).
(1.51)

Burgers element — parallel connection of two Maxwell elements

The other other type of Burgers element is the element consisting of two Maxwell
elements connected in parallel, see Figure [[.32] For both Maxwell elements it hold

1 1
El= —&1 4+ —on, 1.52
ot M1 ! (1.52)
and
3 L, + 1 (1.53)
E9 = —O —09. .
2 G 2 s 2
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MW
W

G M2

Figure 1.32: Burgers element — two Maxwell elements.

The total strain is equal to the strain of both Maxwell elements, i.e. € = g1 = &9
and the total stress is equal to the sum of both stresses, i.e. ¢ = 01 4+ 02. In order to
obtain the final stress-strain relation we take the sum

3+ 20+ -+ L)

and obtain

H1 H2y . Hip2 .. . mip g2\ L
7oy Pe = 1.54
a+<G1+G2>a+G1G20 (ul—i-,ug)a—i—(Gl + GQ)a (1.54)

with the initial conditions

1
= 1.
£(0+) G14-G20«H0’ (1.55)
M1 M2 H1p2 . _ 12 H1p2 \ .
(G{+G)am+y+Gﬁbaw+) my+mkm+y+<Gl+»G2)dmﬁ
(1.56)

Both Burgers models can be written in the same form
0+ P10+ p20 = qi€ + q2€ (1.57)
with the initial conditions
p20(0+) = q2e(0+), p1o(0+) + p206(04+) = q1(04) + ¢2£(0+). (1.58)

The initial conditions for Burgers model are a complicated problem, for much more
details see [5I]. In this text we for simplicity suppose that £¢(0) = 0 in the stress
relaxation test and 6(0+) = 0 in the creep test.

Stress relaxation test

Now we compute the response of stress relaxation test for the Burgers element described
by (1.57) and (1.58]). Let e(t) = eoH (t), then the equation (1.50) for ¢ > 0 reduces to

0+ p1o+p2o =0
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and the solution is
o(t) = e0 [Crexp(A1t) + Coexp(Aat)]

where
N :—p1+\/m \ :—p1—\/p%—4p2
1 92 ) 2 9 5
q1P2 — P1q2 — A1G2p2 q2
Cy = , Ci=——-0
P3(A2 — A1) P2

and from the concrete form of pi,pa,q1,q2 given by (1.50) and (1.54) we have

P> 4pa, @p2 <pi1ga, A2 < A1 < 0.

The stress relaxation function is equal to

ot
g(t) = 8() = (] exp()\lt) + Cy exp()\gt).
0
The model has two relaxation times —1/A; and —1/X9. For p1 =4,p2 =3, 1 =2 =1
we obtain

G(1) = 5 ldexp(—t) — exp(~30)],

and Burgers model exhibits non-linear viscoelastic behavior in the stress relaxation test

(see Figure [1.33]).

92
p2

0 t

Figure 1.33: Stress relaxation function of Burgers element.

Creep test

The result of the creep test for the Burgers model is similar to the result for Oldroyd
model. The difference between these two models is that the term & is missing in the
stress-strain relation for Oldroyd and that £(0+) # 0 for Burgers. This causes that in
case of Burgers there are jumps of the strain at the beginning ¢ = 0 when the stress is
applied and at t = g when the stress is released.

Burgers element is deformed with the stress

oo 0<t<ty
U(t)_{o t > 1.
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As in case of Oldroyd we divide the computation into two parts — for 0 < ¢ < ¢y and for
t > to. First, we integrate (1.57)) over (0,¢ < (), use initial conditions ((1.58)) and after
this we look for the solution of ODE

@1 (e —e(04)) + g2 (6 —€(0+)) = oot, 0<1t<ty. (1.59)

The solution of (|1.59) together with initial conditions ((1.58) is

e(t) = %2_%0—0 (1 — exp <—qlt)> —1—1200 exp <—qlt> —i-@t, 0<t<tp (1.60)
qi q2 az q2 a1

For t > ty we integrate ([1.57)) from ¢y to arbitrary ¢ > ¢y and obtain
q1 (6 — E(to)) + @9 (é — é(to)) = —p109, > 1y, (1.61)

where e(tp) and £(tg) are obtained from |D The solution of equation (|1.61)) is

et) = (5(250) + %é(to) - ziao> <1 — exp (—Z;(t _ t0)>> n

(5(1&0) - Zjao> exp (—Z;(t - t0)> . t>to. (1.62)

The response of creep test for Burgers element is given by (|1.59) and ([1.62]), concretely
the result for p; = 20,p2 = 2,¢1 = g2 = 1 is depicted in Figure [I.34] and it is a
satisfactory result of non-linear creep test for viscoelastic fluid like model (for ¢ — oo
the strain is positive).

P2
q2

Figure 1.34: Creep function of Burgers element for p; = 20,p2 =2,¢1 = ¢2 = 1.

n order to solve ODE we need to know the initial condition at ¢ = tg, let us denote it
by €*(to) (different from £(to) which is obtained from (L.60)). First, in we replace ¢ and ¢ by
sufficiently smooth sequences e, and o, with o, (t0) = 0o and e, (to) and €, (to) given by . Then
integrate two times over (to,to + 0») and take the limit n — co. We obtain

% (to) = £(to) — %00, €% (to) = &(to) + q“”q#ao.
2 2

The initial condition £*(to) is not needed because we are solving the first order ODE. However, one
can easily verify that the time derivative of the solution (1.62) at t = to is equal to £ (¢o).
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Note: If we connect Burgers element with additional dashpot with viscosity us in
parallel we obtain a more fluid like model than Burgers model. New element is depicted
in Figure[I.35] The difference between the Burgers element and this element is the same
as the difference between Maxwell element and Oldroyd element. We will not compute

K3
Gl M1
Gy H2

Figure 1.35: Burgers element with additional dashpot connected in parallel.

the stress relaxation test and creep test for this element, just show the stress-strain
relation in the alternative form as in case of Oldroyd.

0 =0p + UsE, (1.63a)

M1 H2 \ . Hip2 .. . 12 Hip2 \ ..
7, Pe = . 1.63b
UB+<G1+G2>O'B+G1G20'B (,u1+,u2)8+< o + s )5 ( )
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Chapter 2

Standard viscoelastic models in
two- and three-dimensional space

2.1 Generalization of one-dimensional models

In the previous chapter we derived four standard linear one-dimensional viscoelastic
models made from mechanical analogs — Maxwell, Oldroyd, Burgers and Burgers model
with additional dashpot.

For real computations we need to generalize the models into higher space dimensions.
If we replace the stress o by the extra part of the Cauchy stress S and the time derivative
of the strain ¢ (the fluid like models do not contain strain e without any time derivative)
by the symmetric part of velocity gradient 2D, we do not obtain a proper model. To
illustrate it, we apply this generalization procedure to Maxwell model and assume
the the fluid is incompressible

divv =0, (2.1)

p <?9\t’ +v- Vv) =divT, (2.2)
T = —pl+8, (2.3)

s+ 29 _op (2.4)

G ot

One of the problem is that neither the partial time derivative, neither the material
time derivative are objective time derivatives, and the appropriate generalizations are
not unique. For the definition of the objective tensor, see Appendix [C] where it is also

shown that D is an objective tensor, but the material time derivative e +v-VAis

not.
The time derivative can be chosen from the family of Gordon-Schowalter objective
time derivatives given by

(5A> _9A (v V)A — (WA — AW)+ a(DA + AD) ac[—1,1].

ot), Ot
For a = —1, it leads to upper convected Oldroyd derivative
v A
A::%tJrv.VA—LA—ALT, (2.5)
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a = 0 gives co-rotational (or Jaumann) derivative

O
A::%?+V-VA—WA+AW,

and for a = 1 we get the lower convected Oldroyd derivative

N A
A::aatJrv-VAJrAL#—LTA.

Oldroyd [46] showed that Oldroyd-B model with upper convected Oldroyd derivative
described later in this subsection predicts rod climbing, while Oldroyd-A model predicts
opposite effect — the descend. Most of non-Newtonian fluids exhibit rod climbing and
that is why we prefer the upper convected Oldroyd derivative.

Maxwell model

We choose the upper convected Oldroyd derivative and generalize Maxwell model (1.22)
to

T=-pl+S, (2.6a)
v

S =2uD, (2.6b)
where the ratio /G is relaxation time, usually denoted by 7. If the material is at rest

at t = 0, then S(x,¢ = 0) = 0. This model can be alternatively written in other form
with a new tensor B defined by S = G(B —I) (G is the elastic modulus), we obtain

T= pl+GB -1, (2.7a)
B = %(1 _B), (2.7b)

and if the material is at rest at ¢t = 0 then B(0) = 1.
In the same way as Maxwell model we generalize Oldroyd model (|1.40)) and Burgers
models (1.54)) and (|1.63).

Oldroyd-B model

Letter B in Oldroyd-B model means that the upper convected Oldroyd derivative is used
as the objective time derivative, Oldroyd-A model is the model where lower convected
Oldroyd derivative is used. Model ([1.40) is transformed to

T=—pI+S, (2.8a)

W v
S + % S = 2(u1 + p2)D +2“1(52 D. (2.8b)

This model is usually written in the form (which corresponds to (|1.42]))
T = —pl + 2usD + S, (2.9a)

Mg oD, (2.9b)

S
TG

34
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and alternatively can be written in the form

T = —pl + 2D + G(B - 1),

v

1

B = 7(1 - B)v
-

where 7 = u1 /G is the relaxation time.

Burgers model

Burgers model (1.54)) is transformed to

T=—-pI+S,
M1 pip2 VY Hip2 | pap2 | ¥
S — 4 == =2(pu1 + p2)D + 2 +
+<G1+G2>S+G1G2s (1 + p2) <G1 G2>D
usually written using relaxation times 71 = p1/G1 and 79 = uo/Go
T=-pl+8S,
v A% v
S+ (r+m)S+nme S =2(u + p2)D + 2 (12 + T1p2) D -
Burgers model with additional Newtonian dissipation
Burgers model with additional dashpot (1.63) is transformed to
T=—pl+2usD+S,
M1 Hip2 VY Hap2 | pap2 ) Y
S — 4 == 2(p1 + p2) D+ 2 +
+<G1+G2>S+G1G2s (1 + p2) (G1 G2>D

usually written using relaxation times 71 = p1/G1 and 79 = uo/Go
T=—pl+2usD+S,

v vV v
S+ (r1+7)S+mnme S =2(pu1 + p2)D + 2 (u17me + T1u2) D .
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2.2 Derivation of Oldroyd-B from microscopical principles
— an elastic dumbbell model

Oldroyd-B model can be also derived from micro-

scopical principles in full three dimensional set- " \

tingf'_-] This model was first proposed by Kuhn m

in [30]. The brief derivation shown in this section 2

is based on the works [48], [6], [50] and [49]. T
Oldroyd-B model is described as a molecu- 0

lar model where polymer chains represented by
Hookean dumbbells are diluted in incompressible
Newtonian fluid with the viscosity pe. Hookean
dumbbell consists of two beads with a mass m
connected with the Hookean spring (zero mass), r; and ry are positions of the beads at
time ¢, see Figure [2.I] The elongation vector is denoted by q := ry — ry.

The equation of motion for both beads is described by the first Newton’s law

Figure 2.1: Elastic dumbbell model.

d2ri
m
dt?

=-F{+F;+B;, i=1,2, (2.15)
where Ff is a drag force exerted on the i-th bead described by Stokes law

Fl=¢ <(i;; - V(I'Z')) with ( = 6mpuza where a is a radius of the bead,
v(r;) is a fluid velocity in r; at time ¢, F is the force of spring acting on the i-th bead
and in case of Hookean spring they are: F; = —Fj = Kq where K is stiffness of the
spring. Finally, B; is the Brownian force caused by molecules of the fluid acting on the
1—th bead.

Since the mass m is very small and also the inertia effects are much smaller then the
elastic and viscous effects we can neglect the left-hand-side of . Substituting for
the forces acting on the beads we reformulate as a stochastic differential equation

Cdr; = ¢v(r;) dt + (—1)'Kqdt + B; dt. (2.16)
Brownian force B; can be written in the form

B, dt = \/2k0C AW,

where W; is the three-dimensional Wiener process, k is Boltzmann constant and 6 ther-
modynamical temperature. The scaling coefficient 1/2kf¢ comes from the equipartition
principle, for more details see for example [47].

Now we compute the form of the Cauchy stress tensor using the elastic dumbbell
model. Since the dumbbells are diluted in the Newtonian fluid, the Cauchy stress tensor
consists of three parts: contribution from the Newtonian fluid Ty, the Hookean spring
in the dumbbell T, and two beads 2T,

T:TN+T5+2T}), (2.17)

1 The other way how to derive Oldroyd-B model is using the theory of simple fluids with fading
memory. We will not discuss it in this thesis, for more details see [II] and [66], the generalization of
the notion of simple fluid was studied by [52].

36



CHAPTER 2. STANDARD VISCOELASTIC MODELS IN TWO- AND
THREE-DIMENSIONAL SPACE

where Ty = —psI + 2uoD. The contribution of the Hookean spring is computed from
the force acting on the imaginary surface S with its normal vector n that can be seen
in Figure 2.2] First we count how many dumbbells with the elongation vector q are
straddling the surface of area S as in Figure If N is the number of dumbbells per

Figure 2.2: Dumbbell straddling the surface S.

unit volume then the number of the dumbbells is equal to Nn - qS and each of this
dumbbell acts on the surface of area S with the force Kq. If we define ¢(q,t) the
dumbbell probability density function then the total force acting on the surface of area
S is equal to

/ Nn-qSKqy(q,t)dg=NKS [/ q®q(q,t)dq| n. (2.18)
R3 R3
Since we are interested in the force on a unit surface, we divide the result by S and
obtain
Tn = NK/ qQ®q ¥(q,t)dgn = Nk#Bn (2.19)
R3
where we defined the conformation tensor B
K
B=— 2.20
e a) (220)

and

(@(®) = [ ala.tw(a.n) da (2.21)

is the expected value.

Now, we show the properties of the conformation tensor B. From the equipartition
theorem we know that in the thermodynamical equilibrium the mean potential energy
of the Hookean springs in 3D is equal to 3k60/2, i.e.,

1 3
~K{(|ql*) = Zk6 2.22
5 (lal*) 50, (2.22)
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which gives
tr Beq = 3. (2.23)

Further, in the thermodynamical equilibrium all dumbbells are randomly rotated with
the same probability meaning that the dumbbell probability function is only a function
of the size, i.e. 1¥(q) = ¥(|q|) which together with implies that (Bjj)eq = 0sj-
Hence

Beq =1 (224)

The contribution of the beads is computed from the assumption that the beads are
not interacting and so they can be treated as an ideal gas. Hence, using the equation
of state for ideal gas we have

T, = —NEkOL (2.25)
All together we obtain the form of the Cauchy stress
T = —psI + 2D + NkOB — 2N k6L (2.26)

If we require that in equilibrium the total pressure p is the mean normal stress —(tr T)/3
we obtain

T = — (ps + NkO) I + 215D + NkO(B — 1), (2.27)
G
p

where G = Nk is the elastic modulus.
Now we obtain the evolutionary equation for the conformation tensor B. By sub-

tracting (2.16)) for ¢ = 1 from ([2.16)) for i = 2 we obtain

2K 2k6
dq = (V(I‘Q) — V(I‘l)) dt + qut + T(de - dWl). (2.28)
It can be shown that the process Wy — W7 is the same process as v/2W. We suppose
that the fluid velocity v is homogeneous, using Taylor expansion we can compute the
difference
v(rz) = v(r1) = (Vav)q

and we obtain the final form of stochastic differential equation

2K /
The joint Fokker-Planck equation for (2.29)) is
0 2K 2k0

where 1(q, t) is the dumbbell probability density function, for more details on connec-
tion between the stochastic differential equation and Fokker-Planck equation; see for
example [15].

We multiply by (q ® q), integrate over q and get

gt/RS(q@q)q/}dq = —/Rs divg (((va)q— 2?01) ¢> (a®q)dg+

ko
2C (a®q)Aqydq. (2.31)
R3
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First, we multiply (2.31)) by K/(k#) and since ¥ vanishes in infinity using Gauss theorem

we obtain

K 0 4K K

ala®a) = % [Vavia®aq) + (@@ aq)(Vav) '] + ra (I —1gla® q>> - (232)

Specifically, the Gauss theorem for both integrals on the right-hand-side of ([2.31)) is
used in the following way (we suppose that ¢ and its gradient vanish in infinity); the
first integral:

- 2K [ 0 (0w, 2K e
—/RS divg (((VIV)q— Tq> w) (a®q)dq = /RS 9ar ((ml w= qk) w) ¢:q; dq =
Ovg 2K _ ovy o Ov; AK _

/RS ((M @ qk) w) (5qu]+qz5jk)dq—/RB <axlqzqg+qzqz o c qij)wdq—

[ (Fv@oa+@oamy - Easa)vda

where 0;; is the Kronecker delta. The other integral is done in this way

2k0 2k6 0%
=7 Aghdq= " | ZZgqq;d
c /Rg(q®q) q¥ dq ¢ o 9gz @049

=20 [y asusda= 20 [ paq= 0
o < e ¢

Finally, we insert the definition of B (2.20]) into (2.32) and transform the resulting
equation from Langrangian to Eulerian formulatio

B 41K
%t-i-(V-V)B—LB—BLT—i-C(B—I):O, (2.33)
where L denotes the velocity gradient and 7 = (/(4K) is the relaxation time. Finally,
we obtain Oldroyd-B model (2.10))

T = —pl + 2D + G(B — 1),
OB

—+(v-V)B—LB—BLT+3(B—I):o.
ot T

2.3 Properties of Oldroyd-B model

Following [7], we investigate several properties of the Oldroyd-B model . Initially,
being at rest B(¢ = 0) = I is a symmetric positive definite matrix with det B(¢t = 0) = 1.
We show that it is positive definite for all ¢ > 0 by contradiction.

From the continuity of det B and eigenvalues of B with respect to time t we know
that B is positive definite and det B(t) > 0 at least upto some certain time tg, the
symmetry is satisfied for all ¢ because is symmetric. Let us suppose that there
is to such that for t < tg B is positive definite with det B(¢) > 0 and there is at least
one eigenvalue converging to zero for t — tg, and det B(t = t9) < 0. Then for ¢ < ty the
matrix B is symmetric positive definite, and the same holds for its inverse. In a further
computation we use Lemma [B.1.2] from Appendix saying

tr B~ > d(det (B~1))"4, (2.35)

2The only difference is the convective term in Eulerian formulation.
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where d is the space dimension. Now we use equation (2.10b]) and compute the ma-
terial time derivative of det B using Lemma (its consequence (B.3])) and the
incompressibility

d yd) _ 1 1/q d 1 1d,. (ap-1
mem))_#mm —(ndetB) = (det B) u@B)
(12.35))
2B, é(det B/l (BT 1) &1 (1- (detB)?).
T T

If we denote 2 := (det B)'/? we obtain ODE for x, with z(0) = 1
i +r>1eri+a=K(t) >1.

The solution of this ODE is
1 t
z(t) = (1 + / K(s)es/T ds) eV 0<t <ty
T Jo

which is greater or equal than one for ¢ < tg. From the continuity of det B w.r.t. time ¢
we also have that det B(t = tp) > 0 which is a contradiction with the fact that at least
one eigenvalues is zero at t = tg, i.e. B is still positive definite and so det B(t = ty) > 1.
Thus we found out that B is positive definite for all £ and

detB(t) > 1 Vt>0. (2.36)
Further, together with Lemma [B.1.2]
rB > d(det B)Y4 = d +d ((det B)V/d _ 1) > d + In(det B) (2.37)
we obtain

trB > d. (2.38)

This important result will be used for getting the apriori estimates for Oldroyd-B model
and it also has the following physical meaning. According to tr B is proportional
to the mean square length of the springs (i.e. polymer chains in simplified dumbbell
model). Thus (2.38) says that the average length of the polymer chainsE evolves in the
way that it is always bigger than the average length in the equilibrium @D

30ne particular polymer chain can shorten, but in average all polymer chains has to be longer or
equal to the length of polymer chains in equilibrium.
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Chapter 3

Thermodynamically compatible
viscoelastic rate type fluid models

3.1 A thermodynamic frame work for rate type fluid mod-
els

In this chapter we describe a thermodynamic framework for modeling the behavior of
inelastic materials, specifically the viscoelastic rate type fluid models. This framework
proposed by Rajagopal and Srinivasa is based on the concept of evolving natural con-
figuration and the principle of maximal rate of entropy production. For details see for
example [57, 55, 56]. The framework guarantees that the derived models satisfy the
second law of thermodynamics.

3.1.1 Natural configuration

The body made from the viscoelastic material is at time ¢ in configuration x, this
configuration is called the current configuration. We will compare this configuration
with the reference configuration kg which is a configuration of the system in rest at the
beginning, see Figure [3.1

|

Fop(t)

Figure 3.1: Natural configuration.
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We define now the natural configuration ;). It is a configuration of the body
associated with the current configuration k; and can be thought of as the configuration
that the body in the current configuration x; would take if the external stimuli are
removed, see Rajagopal [54] and Rajagopal and Srinivasa [58] for a detailed discussion
of the notion of natural configuration.

)

Figure 3.2: Motivational example for the natural configuration.

We motivate the notion of the natural configuration on example of Maxwell element
(see Subsection which consists of of one dashpot and one spring in series. In
Figure ) the element is at the beginning at rest, relaxed, the spring and the dashpot
are not stretched. The body is in the reference configuration kz. Then we stretch it
(Figure )) and the body goes to the current configuration ;. Now we let the system
relax, the spring shrinks to its reference length but the dashpot remains stretched.
(Figure )) The system is now in the natural configuration r,). Because during
the relaxation the deformation of the dashpot does not change, we can suppose that the
free energy of the system is hidden only in the deformation of the natural configuration.

By defining the natural configuration we split the total deformation into purely
elastic part and the dissipative part, the response from the natural configuration r )
to the current configuration x; is purely elastic.

We define some kinematical quantities. First we remind notation from Section [1.1
L denotes the velocity gradient and D its symmetric part

L = Vv, D:%(L+LT). (3.1)

Further, the relation between the deformation gradient F,, = Vx,, and the velocity
gradient L is the following .
L=F,F.}! (3.2)

KR’
the left and right Cauchy-Green tensors By, and C,, are defined through

KR

B.,=F.F., C.,=F. F..

KR* KR

as a mapping of the infinitesimal element from r,;) to x¢ and G
are related through the

Finally, we define Froo
that maps from kg to ;). The tensors G, Fy, and F
equation

Kp(t)

G=F_'F,

Rp(e)™ "R

(3.3)
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We define left and right Cauchy-Green tensor corresponding to k)

F. FV C FT

Kp(t) " p(t)’ Kp(t) — %(t)FHp(t)

B

Kp(t) —

and motivated by (3.2]), we define the quantity related to the rate of the deformation
of Kp(t), resp. its symmetric part

L.  +LT
 ANe—1 o p(t) Kp(t)
L“p(t) =GG, D“p(t) - 2 ’
The material time derivative of B,{p( p 18 equal to

. . T T
B,.ip“) = Fﬁp(t>F,€p(t) + an(t)Fﬂp(t) =

: 1T ST ST ~THT

F..G F,{pm +F,. .G an(t) +F,{p(t)G Fy,. —i—F,ﬁp(t)G F.. =

T T

LB”‘P(U + B“p(t)L o QF”p(t)D"p(t)F“p(tV (3'4)

where we used

AT—_AlAAL

Using the definition of the upper convected Oldroyd time derivative given by (12.5)) we
get

Vv
— T
B, = —2Fx,,Dr, FL . (3.5)

Kp(t)™ Kp(t)
v
Note that T = —2D. It holds that

tr By 2B D - 2C D (3.6)

p(t) Kp(t) Kp(t) ~ = Fp(t) "

3.1.2 Incompressibility conditions

By means of the natural configuration we split the total deformation corresponding
to deformation gradient F, into purely elastic part given corresponding to Fy,. and
dissipative part corresponding to G. Material is incompressible if the whole deformation
is incompressible, i.e.

detF,, =1, (3.7)
which upon differentiation (3.7)) with respect to time, see Lemma gives

divv=trD = 0. (3.8)

Material is compressible if is not valid. There are more possibilities how to ensure
the (in)compressibility of the material using the (in)compressibility of the elastic and
the dissipative part of the deformation. We denote the compressibility by ordered triplet
of letters "I’ and ’C’. The first letter corresponds to the total deformation, the second to
the dissipative part and the third to the elastic part, letter 'I’ stands for incompressible,
and letter 'C’ for compressible.

Material is incompressible in two cases: (III) and (ICC); and compressible in three
cases: (CCC), (CIC) and (CCI). We will now discuss all possibilities case by case.
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(III) Material is fully incompressible which means that both elastic a dissipative parts
of deformation are incompressible, i.e.

detF, , =1 = detB 1 (3.9)

Kp(t) —

and
det G = 1. (3.10)

By taking the material time derivative of (3.10)), see Lemma we get

trD, . =0. (3.11)

p(t)

Thus, fully incompressible variant (III) satisfies two independent constraints:

divv=trD=0, trD, 0. (3.12)

pt)
(ICC) The other possibility for incompressible material is that the elastic and the
dissipative part is compressible, such that

1 =detF,, =detGdetF (3.13)

Fp(t)”

but det F # 1 and det G # 1. Thus, the only restriction for material (ICC) is

Fp(t)

divv=trD =0. (3.14)

(CCC) For the full compressible material determinants of F, ,, F G are not equal

to one and there is no restriction imposed on such material.

Fp(t)”

(CIC) For the compressible material with incompressible dissipative part of deforma-
tion it holds that

detG=1 = trD 0. (3.15)

Kp(t) —

(CCI) The last possibility is the compressible material with incompressible elastic part
of deformation which satisfies only (3.9)).

In this thesis we are mainly interested in models where the total deformation is incom-
pressible — cases (IIT) and (ICC). For the sake of completeness we however derive for
every compressible variant (CCC), (CIC) and (CCI) one model.

3.1.3 Derivation of thermodynamical models

Following the approach developed Rajagopal and Srinivasa [57] two scalar constitutive
relations are given in order to derive thermodynamically compatible viscoelastic mod-
els. One scalar describes the elastic response (corresponding to the mapping F,{p@),
the other the dissipative response (corresponding to the mapping G). The first scalar
constitutive relation is the rate of entropy production 5 that says how the energy in
the body dissipates and if it is non-negative the second law of thermodynamics is auto-
matically satisfied. The other scalar that describes the elastic response is a constitutive
relation for thermodynamical potential, Helmholtz free energy ¢ was used in [57]. In
this work we equivalently use a constitutive relation for other thermodynamic potential
— the internal energy e — and using it we derive a thermodynamic inequality which gives
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a relation between the rate of entropy production and the thermodynamic fluxes and
affinities.

We derive the reduced thermodynamic inequalities (we consider constant tempera-
ture #) for two incompressible cases: (III) and (ICC), and thermodynamic inequalities
for three compressible cases (CCC), (CIC) and (CCI). In cases where the elastic re-
sponse is incompressible we assume that is corresponds to that of a incompressible
neo-Hookean solid, i.e. the internal energy is in the form

G
e=colnp)+ (trB%) - 3) . (3.16)

In cases where the elastic response is compressible we assume that is corresponds to
that of a compressible neo-Hookean solid and the internal energy is in the form (see for
example [45])

G
e=colnp)+ 5, (trBﬁp(t) — 3 — In(det B,W)) . (3.17)

(III) For fully incompressible material it holds that trD = trD, , and we assume
internal energy in the form (3.16)). Upon differentiation of e we get

Oe . Oe Oe

) G .
6 = p— —p —B =pn+ —trB 3.18
pe pann+papp+p8Bﬁp<t> oy =PI 9 TP (3.18)

by comparing (3.18]) and balance of energy (1.16)) we obtain a balance of entropy

) . /q 1 q-Vo G
Pn + div (5) = 5 (T -D— 9 - 51}1' Bnp(t) 5 (319)

3

where £ is the rate of entropy production. By inserting (3.6) into balance of
entropy (3.19)) we obtain

. V0 .
0<¢&= T.D_ﬂ_GtrB = <T —GB%J-D

q-Veo
9 5 Rp(t) — - +GC

0 rp(ey Doy

(3.20)
We consider only isothermal processes with constant temperature, i.e. V6O = 0,
and we obtain a reduced thermodynamic inequality

0<¢= (T N GB“p(ﬂ) D+ GC”P@) ’ D“P(t) (3’21)
_(mpd _ md T d N
- (T GB{ (t>> p'+Gcl Df (3.22)
Td

dis

ICC) In this incompressible case it holds that trD = 0 but trD, 0 and the
p(t)
elastic response is compressible, thus we assume that the internal energy in the
form (3.17)). Again we derive relation for the rate of entropy production

i Oe . Oe . de . G 1 .
e P T PapP T pa?wB”p<t> =0+ <I - B”pm) By, (3:23)
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by comparing (3.23)) and balance of energy (|1.16) we obtain a balance of entropy

. . (4 q-Vo G . 1
pn + div (5) 7 (T D - 5 "3 (trBﬁp(ﬂ B. o BHW)) . (3.24)

3

By inserting (3.6]) into balance of entropy (3.24]) and considering isothermal pro-
cesses VO = 0 we obtain

0<¢=(T-GB,, 1) D+G(Cy,, ~1) Dy, (3.25)
d
- (T ~G(B,,, — I)> D+ G(Cy,,, —1) Dy . (3.26)
Tgis
(CCC) In the fully compressible case there is no restrlctlon on trD or trDy,, , we

assume the internal energy e in the form Let us take the material time
derivative of internal energy e multiplied by p

€ = Oc + Oc + Oc B =
p Pap Pa n PaBm(t> Fp(t) —
5 0e G IR
—p a—dlvv + pOn + FY (trB ko) ~ By -B,{pm) . (3.27)
\,-/
p(p,9)
Substituting this relation into balance of energy (1.16) and comparing it with
balance of entropy (3.19)) we obtain the relation for the rate of entropy production

. G . q-Vo
§=T-D+plp,0)divv - 5 (trB S B,W) -3 (328)
Inserting (3.6) into (3.28]) we get

€= (T-G(B A

—1))-D+p(p,0)divv+G(C o~ g —

~1)-D (3.29)

Fop(t) Fp(t)

Now we split the Cauchy stress tensor T into its deviatoric part T¢ and the
spherical part m,
T =ml+T%

we also split the tensor B,

b d d
B,{p(t) = §I—|—B,€p<t), b:= tanp(t) =tr Cnp(t) = C,  —-1I=C . —l—( — 1) I

Then the rate of entropy production £ can be written in the special form which
divides the dissipation into the shear and the bulk part

¢ =(T¢-GB¢ (t>) Dd—i—<m—|—p(p,9)—G<g—1>>divv+
—_———

d
les tdis

b q-Véo
d
Gel -Di 4G < - 1> Dy, — . (3.30)

Rp(t)
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As indicated above we denote Tgis the viscous shear thermodynamic flux corre-
sponding to the viscous shear thermodynamic affinity D¢
d ._ md d
Ty, =T — GBKW)
and t4;s denotes the viscous bulk thermodynamic flux corresponding to the viscous
bulk thermodynamic affinity divv

b
tais =m+p(P79)—G(3—1>‘

(CIC) In this case the dissipative part is incompressible, i.e. tr Dy, =0, and we
assume that the internal energy is in the form (3.17)). We obtain a similar result
as in case (CCC) with the difference that tr D, = 0 in (3.30), thus it holds

b

&= (T - Gng(t)) D+ (m +p(p,0) — G (3 - 1)> divv
—_———

T, o -V
d tdis + Gczp(t) . Dd q )

fy ~ g (3:31)

(CCI) In this case we only assume that the elastic response is incompressible and the
internal energy is in the form (3.16]). Then it holds that

. q-Veo
{=(T-GBy,,) D+pp,0)divyv+GCy , - Dy, — 5 (3.32)
b
_ d 1d : d d
= (T -GBy,,)" D+ <m + p(p,0) — G3> divv + GCKW) : D,{p(t)
b q-Vo
+ G D, — S (3.33)

The methodology for developing constitutive relations for incompressible rate-type
fluids is the following: Instead of directly prescribing a constitutive relation for sym-
metric Cauchy stress tensor T, that in three-dimensional space consists of six elements,
we choose constitutive relations for the internal energy (equivalently Helmholtz free
energy) and rate of entropy production §~ .

In order to obtain a constitutive equation for T, the chosen constitutive relation for
the rate of entropy production {N’ has to be compared with the thermodynamic inequality
for £&. However, the equation & = £ does not uniquely determines the Cauchy stress ten-
sor T. We assume that from amongst the processes that are possible the body proceeds
in such a manner so as to maximize the rate at which entropy is produced. Thus, we
maximize the rate of entropy production £ under the constraint of the thermodynamic
inequality ((3.22)) for incompressible case (II), in case of (ICC), in case of
(CCQ), in case of (CIC) and in case of (CCI)) and the requirements of in-
compressibility given in Subsection[3.1.2] For more details on the principle of maximum
rate of entropy production see [59].

In the following sections we derive several different viscoelastic models. In their
derivation we assume different constitutive relations for the rate of entropy production
5 and according to this section we choose one compressibility variant which gives the
restrictions used for the principle of maximum rate of entropy production.
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3.2 Derivation of viscoelastic models RaSr2000
and MaRa2007

The model for the fully incompressible material (III) is derived in this section. We
choose the same rate of entropy production as in paper by Malek and Rajagopal [36]
and similar to the rate of entropy production in the original paper by Rajagopal and
Srinivasa [57]

€ =&(D,Dyyr), Cr,yy) = 202|D* + 211Dy Cry - Dy H2opa > 0. (3.34)

Note that é > 0 since D,{P(t)C,fp(t) ‘Diyy = |an<t)an(t>|2 > 0 and the second law
of thermodynamics is automatically satisfied. The first term in corresponds to
Newtonian viscous dissipation, the second dissipative mechanism takes into account the
mutual interaction of the amorphous phase and macromolecules. The rate of entropy
production that was used in [57]
§=D, B

D (3.35)

Kp(t) " Kp(t) ~  Kp(t)

does not contain the Newtonian dissipation and consists only of the second term with
the objective tensor By, - However, the whole rate of entropy production is
not an objective scalar, while the rate of entropy production is. This is shown
in Section [C] in Appendix. Here we derive a model with a rate of entropy production
given by used in [36].

Now, the assumption of the maximization of the rate of entropy production is used.
We maximize & (D, Dyps)s C’fp(t>) among the values of D, D, fulfilling the equality
and the constraints of incompressibility . For this purpose we adopt the
method of Lagrange multipliers and we define the Lagrange function

D,Dﬁp(t) C ) —AtrD — AztrD

» T hRp(t) Kp(t)

(
+ M1 (€D, Dy, Cryy) = (T =GBy, ) D= GCy Dy, ). (336)

and maximize it. The necessary conditions are

L L
SD =0, aD8 =0
Kp(t)
We substitute for L and obtain
14+ )\ 85 Ao
)\l % == T - GB“p(t) + )\711, (337)
1+MN € A3
A1 9Dy, GOy ATI' (3:38)
We compute the partial derivatives
ag D g D
oD = 42D, 0D, (t) =dm ”p(t)c"p(t)' (3'39)
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and eliminate the Lagrange multipliers. To do this we perform (3.37))- D+ (3.38]) - D, p(t)?

and use the constraints of incompressibility

T+A (T_GBﬂpm) D +GCr,) - Dryyy &1 (3.40)
= = —7..—5. .

A1 o€ ¢
ap Ptap,  Pro

Fp(t)

Next we take the trace of (3.37) and eliminate Ag/A; which together with (3.40|) gives

A 1
f =t (T GB, ) (3.41)
We define a pressure p as a mean normal stress
1
pP=-3 tr T. (3.42)

Substitution of (3.42)), (3.41)), (3.40) and (3.39) into (3.37)) yields

T = —pI + 25D + GBY )" (3.43)
Now we insert (| and (| - into and we get
A3
211Dy, Cr,ry = GCo(yy + )\—11 (3.44)

The elimination of A3/A; can be done in two different ways, one leads to model derived
by Rajagopal, Srinivasa (2000) (denoted as RaSr2000), the other to the model due to
Malek, Rajagopal (2007) (denoted as MaRa2007).

3.2.1 Derivation of model RaSr2000 due to Rajagopal, Srinivasa (2000)
Rajagopal and Srinivasa [57] eliminate A3/A; in the following way. We multiply (3.44)
from the left by C;pl(t> and take the trace of the result
A3 1
0—3G+>\—1tr(C )
which yields to

A 3G 3G
T3 = — =- —- (3.45)
1 tr (C,.; (t)) tr (B,.;p(t)>
By inserting this result into (3.44]) we obtain
21Dy, C =G| C 73 I 4
1Bk Crpry = Kp(t) (B . ) ; (3.46)
Fp(t)
we multiply it from the left by Fr, o and from the right by F.1 ) and get
3
T T
2M1an(t)DI€p(t)Ffip(t) =G Fﬁp(t)chp(t) (Bl>I : (3'47)
Fp(t)
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Now we realize that term on the left-hand-side of (3.47)) is equal to the upper convected
Oldroyd derivative of By, , using (3.5]) we obtain

v G 3
B, = —#— Bﬁp(t) - 7_11 (3.48)
! tr ( ffp(t))
and we obtain viscoelastic model in the form
T = —pl + 24D + GBY | (3.49a)
v G 3
B, = _/7 Bﬁpm — 7711 . (3.49Db)
! tr ( %(t))

Properties of the viscoelastic model ([3.49)

In this paragraph we show the properties of the model (3.49)). First we show some
properties of matrix By, . At the beginning (at rest) By, (t = 0) = I'is a symmetric
positive definite matrix with det By, (t =0) = 1. Using (B.3]) from the Appendix we
get

d : _1 1\ (B-19n) G
(et B, ) = tr (B%) Rp(t)) = 20D - = (01-3) =0 (3.50)
and
det By, (1) = 1Vt >0 (3.51)

which means that the evolutionary equation for (3.49b|) includes the incompressibility
condition of the elastic response (3.9). Further, since eigenvalues are continuous w.r.t
time ¢ and det B, , = 1, all eigenvalues have to be positive. Using Lemma from
Appendix we get the relation the trace of B,

trB > 3 in a three-dimensional space. (3.52)

Kp(t)

Alternative form of model RaSr2000

In model (3.49) there is a term tr B;pl(t) in the equation (3.49b)) which is difficult to
write in components. Using the observed property that det B,.;p< n = 1 and the Lemma
we obtain the model without the inverse of B, . Using (B.17) we modify the

—1
term 3/ tr <Bnp(t))

6 det B,
5 — = 2 = 0 (3.53)
— 2 2 2 2
tr (stp(t)) (tr By, ,,)° — tr (Bﬁp(t)> (tr By, )? — tr <Bﬁp(t))
and the model is then in the form
T = —pl+ 24D +GB} (3.54a)
v G 6

H1 (trBy,,)? — tr (B%p(ﬂ)

50



CHAPTER 3. THERMODYNAMICALLY COMPATIBLE VISCOELASTIC RATE
TYPE FLUID MODELS

Linearization of RaSr2000 We show that the model reduces to Oldroyd-B
model when the elastic response is linearized. Suppose that the left Cauchy-Green
tensor By, is small |B,,, — I =€ 0 <e < 1. By linearization we understand
that we neglect all terms of the order O(e?) and higher. We use in the Taylor

expansion of determinant and obtain

1 = det (I + By, - I) — 1+ tr(By, ~D+0() =  t(By,,)=3+0()
(3.55)

Further, the Taylor expansion of (I + By I)~! gives

p(t)

(I+B.,-D'=1-(B,, -D+0() = (B;pl(t>) =3+ 0(). (3.56)
Now we insert (3.55)) and (3.56) into (3.49) and obtain
T = —pl+ 2D +G (B,_%) . 0(62)1) , (3.57a)
v G 3
Bﬁjp(t) - _E <B’<’p(t) — ?H_O(GQ)I) 5 (357b)

after neglecting the terms of the order O(e?) we obtain Oldroyd-B model ([2.10))
T = —pl+2uD+G (B%> - 1) , (3.58a)

v G
Bryy =~ (Bry — 1) (3.58D)

3.2.2 Derivation of model MaRa2007 due to Malek, Rajagopal (2007)
Malek and Rajagopal [36] eliminate A3/\; in the following way. We take the trace of

(3.44) and obtain
1 B 1
2#1 Dlip(t) CHp(i) - g (an(t) . Cﬂp(t)) I — G Cnp(t) - g(tr Cﬁp(t))]: B (359)

we multiply (3.111]) from the left by Fr,, and from the right by F-! | and get

Fp(t)’

1 1
T —
2411 (FKMD%)F%) -3 (Pryi - Cr) I) =G <B%) — 5t Bnp(w)I) . (3.60)

Now we compute the upper convected Oldroyd time derivative of the deviatoric part

of By, using (3.5)

\

B (B LBy, 1) =B LB, T — L(trB, ) 1=
Rp(t) Hp<t>_§(tr mo) 1 | =By _§<tr o)) _§<tr rpny) 1=

1
—2F,, D, ,Fr S tr(LBy,, + L'B, )1+

Bp(t) " Rp(t) ™ Fpr) 3

2 2
+Ztr(FY F. D. )I+=(trB,. )D=

3 Kpt)™ Fp) ™ Fp(t) 3 Kp(t)

2 2
T (D - By, )+ (C

2
3\ hp() I+ S (trB

D”P(t) 3 Fp(t)

=-2F, . D

p(t) 7 Rp(t) T Rp(r) 3

)D. (3.61)

o1
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By comparing (3.61]) and (3.60) we get

o <_2 B“p(t) _§(D ' B"‘p(t))I + 5(“ B”P(t))D> B GB“p(t)' (3.62)

For further use let us denote b := tr B,; . Note that the trace of both sides of (3.62) is

zero, in the three dimensional space it is five scalar equations for six unknowns Bﬁ o b
We complete the system of equations with the equation of incompressibility of the elastic

b
d _
det <B’§p(t) + 3I> =1.

response

We obtain the set of equations for nonlinear viscoelastic rate-type fluid model

T = —pl + 25D + B}, " (3.63a)
2 1Bvd Lp.B? yn+p) =B 3.63b
H1\ 75 Pry _§( Bl Tt 3 = T PRy (3.G3b)
det (B +°1) =1 (3.63c)

Fpt) © 3 ) '

Together with balance of mass and balance of linear momentum we have in threedimen-
sional space a set of 10 PDEs for 10 unknowns p,v,B¢ b

Kp(t)? 7

Linearization of the viscoelastic model MaRa2007

We proceed in the same way as in case of the model (3.49)), suppose that the left Cauchy-
Green tensor B, issmall, i.e. By, —I|| =¢, 0<e< 1. We use the last equation

for incompressibility (3.63¢) and do the Taylor expansion of determinant. We obtain

1
1 = det (1 + B, — I) = 14+4x(By,,, ~D+ ((tr(Bﬂp(t) —1)% —tr ((B%m - 1)2)) +0(&) =

t(Br, ) = 3+ % (tr ((Bryy = 1) = (1B, ~1)°) +O(*). (3.64)

O(e2)

d

We compute the relation for Bﬁpm,

d b

Rp(t) B”p(t) o g

B —1- é (tf ((Bw) - I)2> — (tr(By,,, — I))Q) I+0()I (3.65)

v
Further we need to compute ng .
- v 1, 2
d — _ = —
B“p(t)_B“p(t) 3bI + 3bD -
v 1/.- . 2
Bu) 5 (BHM (By,,, —I) — btr (Bnp(t) - I) )I + 2D, (3.66)
| S
O(e2)
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Inserting all into (3.63b|) we get

1

o (4 B 4 (B 20) (B, 1)1) =0 (B, 1) -0 007

This model is very similar to Oldroyd-B model (2.10)), the difference is in the second
term. We show that this term is of the order O(€?), and so we will neglect it. We take
the scalar product of (3.67) with B —1I, and get

Kp(t)

]v3~p<t>
" ( B, +2D-L (BHM _ I) _ (B,W _ 1) LT) . (Bﬁp(t) _ 1) _
- mé (}'3%) - 2D) : (B,.%) - I) tr (BNM - I) +G|Bu, ., — IP+0(e?). (3.68)

O(?) 0(e?)

This implies that
(2D - B, ) (Bi, — 1) = O().

Thus, we show that the non-linear viscoelastic model linearizes to Oldroyd-B model
(2.10]).

T = —pl+ 24D + G (B%) - I) : (3.692)
v G
Bry =~ (BHM - I) . (3.69b)

To conclude, we observed that the linearization of both thermodynamically compatible
non-linear viscoelastic models and ends up with the standard Oldroyd-B
model . Although the models (3.49)) and look very different, they should be
equivalent because they are derived from the same constitutive relations for the internal
energy and for the rate of entropy production . The equivalence of both

models is shown next.

3.2.3 On equivalence of the models RaSr2000 and MaRa2007

We show the equivalence of both viscoelastic rate-type fluid models derived by
Rajagopal and Srinivasa and derived by Mélek and Rajagopal. For reader’s
convenience we write these two models below, the first one is (the initial condition
for det B,{W) is needed), the second one is (3.63):

T = —pI + 245D + GBgM, (3.70a)
v G 3
By = =0 | Brow ~ MI ) (3.70b)
p(t)
det By, (t =0) = 1. (3.70c)
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T=pl+2uD+GBL . (37l
1 24 d
2| =3 By 3(D Be) =GBy, (8.71b)
det 1 = 3.71
¢ ”“ p(t) § - (3.71c)

First we show how to get (3.71]) from (3.70). Let split the tensor B into deviatoric

and spherical part

Kop(t)

1
_pd
By = By T 300

Equation (3.51)) states that
det(By,,,) = det < ko T bI>

and we get the last equation (3.71c). Now take the trace of the equation (3.70bf) and
divide by 3

B O
g\ 3 tr(Bl)

Fp(t)

(3.72)

1 (b
3(87&+< V)b —2D - Bp(t)>

Now we perform ([3.70b)) — (3.72)I and multiply the result by
OB, ., 1 1
[ [m” +(v-V)By,,, — Vv (Bﬁp(t) + gbI> - (Bip(t) + gbI) (vv)*

106 1 2 1
_ (5& +30 V)b) I+(D- Bw))x} -—a (an) - gbI) . (3.73)
which is equivalent to (|3.71b)

oBY ) )
Rp(t) d d d T d _ d
. <_ 20— (v-V)BY,, + VVB], + Bl (V)" - (DBl I+ (trB,ip(t)) D| =GB, .

Further, we show how to get (3.70)) from (3.71). We apply a material time derivative

on (3.71b)) using (B.3]) from Appendix

_ dIn(det By, ) . dB”p(t)B—l
dt dt p(t)

Since ([3.73)) is equivalent to (3.71b)), we multiply (3.73]) by B,;pl(t) and take the trace of

this product

dB, 1 db
p(t) —1
M1 <tr <dtB,i (t)) —2trD — ga tr (Bﬁp(t)>> +

o4
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The first two terms are equal to zero. We can express tr B 0 from ((3.74])

3G

tr (B 1 =

p<t>> - 1db 2 b
- _2(D-B, Z
i (3 a3 M)) O3

1db 2 b 3G
- — _2(D-B. — = .
<3 ar 3" P<t>)> L B! (3.75)
Fop(t)

and substitute it into (3.73))

3

aB”p(i) T
m | ——=+(v-V)Bg . — VVBnp(z) — Bﬁp(t) (Vv) =G 711 — B,{p(t)
tr (B_p(t)>

ot p(t)
which is after division by p; equivalent to (3.70)).

3.2.4 Models RaSr2000 and MaRa2007 in two-dimensional space

The models (3.49) and (3.63) are derived in a three-dimensional space where trI = 3.
In two-dimensional space the derivation has to be slightly modified, the constitutive
relation for the internal energy (incompressible neo-Hookean) is then in form

G
= colm )+, (trB - ) . (3.76)
and it holds that trI = 2. Then ([3.49) modifies to
T = —pI + 2D + GBY . (3.77a)
v G 2
Buy = —— | Bryy — —————1 (3.77b)
H1 tr <B,§1 )
p(t)
and (3.63)) modifies to
T = —pl+ 22D + GBY | (3.784)
d d —
0 ( B! ~—(D-B! )I+iD >_ L (3.78b)
1
det < eott) 5 ) = (3.78¢)
where b = tr B, ...
p(t)

Alternative form of model (3.77) in 2D
Using the derived property det B, ,, = 1 and the Lemmawe obtain the alternative
form of the model (| - Using - we modify the term 2/ tr ( - (t))

2 _ 2det By, _ 2 (3.79)
(Bmpl(t)) By By,
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and the model is then described by

T = —pl + 24D + GBY " (3.80a)

v G 2
B, =— Bx, —————1I]|. 3.80b
p(t) m ( Fp(t) tr B'ip(t) ) ( )

3.3 Power-law like viscoelastic model PL2012

We derive a power law like viscoelastic model, we suppose that the model is fully
incompressible (IIT) and the constitutive relation for the rate of entropy production &
is in the form

~ o B
£=e1 (e + DJ?) 1yD\2+62(D C (i)-an(t)) (3.81)

Fp(t) ~Hp
foreg > 0,€;1 >0, >0, « € R, 8> 0.5. Note that

_ 2
D”za(t)c'ip(t) 'D“pm - ‘F”p<t>D“p<t)| > 0.

The reason why we consider 8 > 0.5 comes from the analogy related to the standard
power-law fluid model with dissipation in the form |D|?). In order to give a clear
meaning to the term [D|2*~VD that occurs in the formula for the Cauchy stress (in
standard power-law model) we need that 2(8 — 1) > —1. Here, we require the strict
inequality that leads to 8 > 0.5.

Similar model was proposed by Anand, Rajagopal [I] (see also [36]) where they used

B B
§=eaD-D+e (D“p(t)B“p(t) ' DHP(”) ’

The main difference was that they did not maximize £ among all values of D and D

Kp(t)’
B
but they maximized separately the term ¢;D - D over D and €5 (D,ip(t)B,{p(t) . Dﬁp(t>>
over an( 9 which is much simpler than maximizing é among D and Dﬁp(t).
We now maximize é(D, D,y Cnp(t)) among the values of D and Dy, fulfilling

the reduced thermodynamic inequality (3.21)) and the constraints of incompressibility
trD = trD,,, = 0. For this purpose we adopt the method of Lagrange multipliers.
Let us define the Lagrange function

L(D,Dy, ) :=¢(D, Dy, Cx,(y) — A2trD — Aztr Dy, +
M (g(D’ Diyry: Crpy) = (T = GBy)) - D = GCy - Dﬁp<t>>

and maximize it

1+ A - A
- 2¢1 (e0+ D) (e + a/D>) D=T ~ GB,, , + )\—?I, (3.82)
14+ M p-1 A3
1 20 (D'{P(t)c’ip(t) 'D"‘p(t)) D"p(t)c"p(t) = GC”;D(t) + )\711’ (3'83)
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where the Lagrange multipliers A1, A2 and A3 have to be determined. To accomplish

this we first take the scalar product of (3.82)) with D and (3.83]) with Dy, and sum
these products. With help of (3.81)) and (3.22)) we conclude that
. 8
1+ )\ e1 (€0 + |D|2)a ID[? + e (D'{pmcﬁpm 'D“p(t)>
2 = (3.84)
1

a_ 5
e1 (€0 + [D2)* 7% (eo + |D|?) D2 + Bey (Dﬁp(t)cfip(w ' D”p<t>>

Let Y denote the right hand side of (3.84). Obviously, Y > 0. Next we take the trace
of (3.82)), which delivers

2 u(T-GB,,,). (3.85)
We define a quantity p through
p= —% i (3.86)
Substitution of and into yields
T =—pl+Ye (e +[D)" " (o + a[DP*) D+ GBL (3.87)

Multiplying the equation ([3.83) by C;pl Y from the right and taking its trace we obtain
(using incompressibility constraint ((3.12]))
A3 3G

=Y G (3.88)

A tr(C,Zpl(t>)

Rewriting the equation (3.83]) using the variable Y we have

81

Y ey (Dﬁpmcﬁp(t) 'D"fpu)) Dryy Crpy = G (C“pu) B )‘I) ' (3.89)

Our aim is to get an equation only for Cr, ), that is why Dy, has to be eliminated
out of (3.89). This is done in the following way. Taking the trace of (3.89) we get

p-1
Y Bes (Df%(t) Crpr 'Dﬂmt)) Dipy  Crypy =G (tr Crpy ~ 3/\> (3.90)

and multiplying (3.89)) by D, ,, we obtain

B
YBe <D”p(t)c’€p(t) ' D“p(t)) - Gcﬁp(t) ’ D“P(i) ) (3'91)
Inserting (3.91)) into (3.90) we get the equation for Dy, Cs ) - Dr,,:
v2822 (D, . Co. Do) =@ (trC A 2
Z 62( Kp(e) Chne) %(t)) = (tr Fp(ty 3 >= (3.92)

which implies that
tr C,.@p(t) —32>0.

Now on taking the square root of (3.92)) we find that

p—1
Y fer (D'{p(t) Crpr 'D”p<t>> \/D"ﬁpu)cffp(t) "Dryy = G\/ tr Gy =34 (3.93)
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To prevent dividing by zero, 8 has to be greater than 0.5. Multiplying (3.89) by F
from the left and by F;! from the right, using (3.5) and (3.93)) we arrive at

Fop(t)

%
VB =30 By = =2/Di Cy - Diyy (B = M) - (3.94)

If we denote the last term

Kp(t)

X =Dy, Cryy " Dryy »
we can obtain an expression for it from the equation (3.92), i.e.,

BR2yrx?-l = 2 (trBHp(t) - 3/\> , (3.95)
where by (3.84))
= (co+ D)7 D2 + X7
. . . (3.96)
= (co+ D))" (co + o|DJ?) [DJ* + 5X7
2

Then, we obtain the following model

T +pL=Yer (eo +|DI*)" " (0 + a/D?) D + GB{ . (397a)

Vv
By, =3\ By, = —2VX (B, —AT) (3.97b)

where Y is defined through (3.96)), X is the solution of (3.95) and A is defined through
(3.88]). Using (B.17) we can modify A

_ 3 — 6det By, _ 6 . (3.98)
- 2 2 2 2
tr (B,.;pm) (tr By, )? —tr (Bnp(ﬁ) (tr By, )2 — tr (Bﬁp(t))

Notice that for a < 1 one gets shear thinning and for o > 1 shear thickening model.
For a = 8 = 1 this model reduces to the RaSr2000 model ([3.49)

A

T=—pl+¢D+ GBﬁW), (3.99a)
v G
By = —2- (B, —AT) . (3.99b)

3.4 Incompressible viscoelastic model with purely quadrat-
ic dissipation Quadl

Further model that is derived is again fully incompressible (III) with purely quadratic
form of the constitutive relation for the rate of entropy production

§D,D, . )=2uD-D+2uD,  -D (3.100)

p<t>) p(t)

Kp(t)?

where pq, o > 0 and thus §~ > 0 — the second law of thermodynamics is automatically

satisfied.
In order to use the principle of maximization of the rate of entropy production, we

maximize & (D,D,{p(t)) among the values of D, D, fulfilling the equality (3.21)) and
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the constraints of incompressibility (3.12)).

We define the Lagrange function

L(D,Dﬁp(t)) :g(D7an(t)7C —)\QtI‘D—AgtrDN

’ip(t)) p(t)

+ 21 (€D, D) - (T =GBy, ) D= GCry, - Diy,y) (3.101)

and find the extremes of L. The necessary conditions are
oL oL

—— =0, =0.
oD 0Dx,
We substitute for L and € and obtain
1+ M\ Ao
N 4p2D =T — GB, ) + )\—11, (3.102)
14+ M A3
)\1 4‘LL1DKp(t) = GCgp(w + )\711 (3103)

Further we eliminate the Lagrange multipliers, we perform (3.102]) - D + (3.103)) - Dmp(t), and use the
constraints of incompressibility

T+ (T—GBKW)) ‘D+GCuyy Dy ¢

1
= == =_. 3.104
A1 4,U,QD -D + 4H1an(t) . an(t) 25 2 ( )
Next we take the trace of (3.102)) and eliminate A2/A; which together with (3.104) gives
A2 1
T=-3u (T - GB%)) . (3.105)
We define a pressure p as mean normal stress
1
p=-3 trT. (3.106)
Substitution of (3.106]), (3.105)), (3.104)) into (3.102) gives
T = —pl + 2u:D + GBﬁp(t). (3.107)
Now we insert (3.104) into (3.103])
2uD, , = GC Asp 3.108
By = GClx, ) + AN (3.108)
and by taking trace of (3.108) we eliminate A3/
A3 G
Multiplying (3.108)) from the left by Fr,. and from the right by FEPM, and using (3.109)) we obtain
T 1
ZMIF“P(t)D”P(t)F“p(t) = GB”P(t) (BKP(f) - g(trB"P(t))I) : (3'110)
By comparing the left-hand-side of (3.110)) with (3.5 we get
v G d
Br,)= = Broco Bl (3.111)
We obtain
T = —pl+ 24D +GB; (3.112a)
v G
_ d
B,{p(t) = /,LlBHp(t)BHp(t). (3.112b)

We call this model Quadl.
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Note: Incompressible model with purely quadratic dissipation can be simply
modified in order to obtain model with pressure dependent (typically pressure thicken-
ing) viscosities 1 and po. If we assume the constitutive relation for the rate of entropy
production in the form

{(D,Dy, ) = 2u2(p)D - D + 21 (p) D, ) - D,y (3.113)

where p1 and po are positive functions of the pressure p, we obtain model

T = —pI + 2u2(p)D + GB. (3.114a)
v G d
Bryy = =7y Bt Bl (3.114b)
3.4.1 Alternative derivation of the model Quadl
Model (3.112)) can be also achieved if we start with the assumption that
1
g( dlS’Cdp<t)) 2/.1/ | dlS|2 + 7| p(t)‘Q’ (3115)

where thermodynamic fluxes les, Cip  are preferred to thermodynamic affinities D,
D,y similarly as in [37] where this idea was used for derivation of generalized New-
tonian models, T‘jhs =T — GBﬁp . We use reduced thermodynamic inequality
which assumes incompressibility conditions . Let us denote

L(T%.,c? yi=Td -D'+gct DI ETd,cl ) (3.116)

Fop(t) Rp(t) “ p(t) Fop(t)

and maximize £(T%, CZ (t)) among the values of T4, and CZ o fulfilling the reduced
thermodynamic 1nequahty

0= ( dlsvcd ) (3117)

Fp(t)

We use Lagrange multipliers which delivers the following set of equations

o€ oL
— =N, 3.118
aTdis? ~ ~ OTY (3.118)
o€ oL
3.119
oC4 8Cd ’ ( )
p(t) Fp(t)
that can be simplified to
—T¢ = DY 3.120
)\1 Lo dis ( )
1 + )\1 G2 d o d
N ICHP(” = GDHW). (3.121)

We determine A\; by taking the scalar product of ([3.120]) with Tﬁis and (3.121)) with
cd 0 and sum these products. With help of (3.22)) we conclude that
14+ XM

2
A1

=1
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and get
d d d d 1
Tais = 202D = T = —pl 4 20D + GBy; | , where p = —3 tr T, (3.122)
G 4
QDK’p(t) - E Kp(t) . (3123)

Multiplying (3.123) by Fy , from the left and by F' from the right, using (3.5) we

. Kp(t)
arrive at

Y, B (3.124)

v
By = _Ml Kp(t) D Kp(t) ©

which together with (3.122)) fives again model Quadl, see (3.112)).

3.4.2 Properties of model Quadl

Model ([3.112)) has similar properties as model (3.49)), we show some properties of matrix
By, - At the beginning (at rest) By, (t = 0) = I is a symmetric positive definite
matrix with det By, (t =0) = 1. Using (B.3) from the Appendix we get

d : _1 )\ BI2H) G d
—In(det By, ) = tr (BHW)BRP m) =" 2uD - SuBl =0 (3125)
and
det B, (t) = 1 V¢ > 0 (3.126)

which means that the evolutionary equation (3.112b]) includes the incompressibility
condition of the elastic response (3.9). Further, using Lemma from Appendix we
get the relation the trace of B

Kp(t)

trB > d where d is space dimension. (3.127)

Fp(t)

3.4.3 Linearization of model Quadl

We show that the model Quadl reduces to Oldroyd-B model when the elas-
tic response is linearized. Again, suppose that the left Cauchy-Green tensor is small
IBr,,, — Il =€ 0<e< 1 Weuse (3.126) in the Taylor expansion of determinant
and obtain

1 = det (I + By — 1) =1+ t(By, ~D+0() =  t(By,)=3+0().
(3.128)
Now we insert (3.55)) into (3.112)) and obtain
T = —pl+ 25D + G (B%) I+ 0(62)1) , (3.129a)
v G 9
Bryy =~ (Bryy = T+1) (Buy, — (1+0(ENT), (3.129b)
(B, — D)+ (Bﬁp(t) I+ 0(62))
2
O(e?)
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after neglecting the terms of the order O(e?) we obtain Oldroyd-B model (2.10)

T = —pI+ 2uD + G (B%) - 1) , (3.130a)
v G
Bryy = (BHM - I) . (3.130b)

Alternative form of model with purely quadratic dissipation in 2D

Using the derived property det B, ,, = 1 and the Lemmawe obtain the alternative
form of the model (3.112) in two-dimensional space

T = —pl + 245D + GBy . (3.131a)
v G /trBg @
By == <2PBW) - I) . (3.131b)

By comparing this alternative form with alternative form of RaSr2000 (3.80) we find
out that both models are very similar in two-dimensional space.

3.5 Incompressible mixed power-law like model

Using the maximization with respect to thermodynamic fluxes as in previous two sec-
tions we derive an incompressible power-law like model with the Cauchy stress tensor
that is similar to the Cauchy stress tensor of model PL2012. The advantage of prefer-
ring the thermodynamic fluxes to thermodynamic affinities is that we can maximize a
quadratic functional with respect to the fluxes and the material parameters depending
on the affinities can be simply prescribed, see (3.132]).

We make the following choice for the rate of entropy production & = & (Tgis, ct )

Fp(t)

1 G 26—1 G
- Tdil® + <> — ——|C, .. |? 3.132
€1 (€0 + |D|2)0“1’ il €2 |an(i)|2572| oo | ( )

782

for eg > 0, €1 > 0, e >0, « € R, 8 > 0.5. The reduced thermodynamical equality

remains in the form (3.22)).

Let us denote

L(Tdis, By, ) i= Tdis - D' + GCL_, Dy —&(Tdis, Caypyy)- (3.133)

p(t) p(t)

among the values of T4, and C¢ fulfilling the reduced thermody-

We now maximize £(T%,, C2 R (1)

K K Fp(t) )
namic equality
0= L(T&,, C

o)) (3.134)

For this purpose we adopt the method of Lagrange multipliers which delivers the following set of
equations

3 oL

Y 3.135
aTgis ' 8Tgis7 ( )
of oL

aC1 _Alacg , (3.136)

p(t) p(t)
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that can be simplified to

1+, L 14 -p? (3.137)
A1 e (e +|DP?)
T+, (G G
d . d
1 2 Fp(t)

We take the scalar product of (3.137) with T4, and (3.138) with Cﬁp (1) Sum these products and with
help of reduced thermodynamical equality we conclude that

14+ M\
2 =1
A1
and get
Td =i (o + D) ' D= T=—pl + e (e + D))" D'+ GB;
1
where p = -3 tr T, (3.139)
5 G\ 281
28-2
Dy [ Dy = (;) Br,, - (3.140)

Now we take the absolute value of (3.140))

28—2

D 2[3_1_ G 26-1 B D Qﬁ_z_ G 262 B 28—1
Do)l =\ By | = Dyl =\ B |

Multiplying (3.140) by F» from the left and by Fy  from the right, using (3.5) we arrive at

Fp(t)

v G 2-28 d
Brpwy = _25|B“p<t> |27 B,y By oy - (3.141)

We obtain a model with the Cauchy stress tensor similar to Cauchy stress tensor of

model PL2012 ([3.97)
T=—pl+e (co+ DP)" D! +GB! (3.142a)
v G 2-28 d
Br,) = —2;|B,{p(t)|26—1 B,y Br, - (3.142b)
The derivation of this model is much simpler than derivation of model PL2012 (3.97]).
For « = § = 1 this model reduces to incompressible model with purely quadratic
dissipation ([3.112)).

3.6 Incompressible viscoelastic model with purely quadrat-
ic dissipation and compressible elastic response

In this section we derive a compressible variant (ICC) of model Quadl (3.112). The
same constitutive relation for the rate of entropy production (3.100|) as in case of fully
incompressible model Quadl1 is used, i.e.

€ = 22D + 21| Dy, (3.143)

|2
p(t) !~

Now we use the principle of maximization of the rate of entropy production.

We maximize £(D, D.,,) among the values of D, D, , fulfilling the equality (3.25) and the constraint
of incompressibility tr D = 0. We define the Lagrange function

L(D, Dy, ) = €D, Dypity, Cr,yyy) — A2 tr D
+ (E(D,DM,@) - (T — G(Bu,, — I)) D - G(Cx,, —T)- D%)) (3.144)
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and find the extremes of L. The necessary conditions are

oL oL
ao " @, "
p(t)
We substitute for L and fN and obtain
1+ M\ A2
- 4pusD =T — G(B,ip(t) -I)+ /\—11, (3.145)
1+ M
" 41D, G(Cmp(t) -I). (3.146)

Further we eliminate the Lagrange multipliers, we perform (3.145]) - D + (3.146]) - D“pm’ and use the
constraint of incompressibility

T+ (T-G®B.,, ~D) D+G(Cr,y, ~1)- Dy, ¢

1
= == =_. 3.147
A1 4H2D -D+ 4,u1D,<p(t> . an(t) 2§ 2 ( )
Next we take the trace of (3.102]) and eliminate A2/A1 which together with (3.147) gives
A2 1
L= (T- GBNW)) —G. (3.148)
We define a pressure p as mean normal stress
p= f% tr T. (3.149)
Substitution of (3.149), (3.148), (3.147) into (3.145) gives
d
T = —pl+ 2D+ GB} . (3.150)
Now we insert (3.147)) into (3.146])
2Dy, , = G(Cu,,, — 1), (3.151)
Multiplying (3.151)) from the left by F,, and from the right by F:fp(t) we obtain
T
2 Fo, ) Dy By =GBy (B“pm - I) : (3.152)
By comparing the left-hand-side of (3.152)) with (3.5) we get
v
Br,= *E Kp(t) (B“pm -D. (3.153)
We obtain
T = —pl + 245D + GB{. o (3.154a)
v G
Bryy = By (B, ~ ) (3.154b)

It can be shown that this model reduces to standard Oldroyd-B model (2.10)) if the
elastic part of response is linearized.
Model (3.154)) can be also obtained by preferring the thermodynamic fluxes Tfhs

and C, ... We suppose the constitutive relation in the form
p(t)
Fmd 1 i, G 2
g(Tdisv Cfﬁp(t)) = 2419 |Tdis‘ + 241 |Clﬁp(t) - I| ’ (3'155)

and the reduced thermodynamic equality is equal to (3.26)). The model is obtained by
maximization of rate of entropy production (3.155) among the values of Tﬁllis =TI —
GB? and Crpy—1 fulfilling the equality (3.26]) and the constraint of incompressibility

Fp(t)

trD = 0.
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3.7 Oldroyd-B model

The model (3.154)) is very similar to Oldroyd-B model, we show how to derive Oldroyd-
B (2.10) from the thermodynamical principles. As in the previous section we use a
compressible variant (ICC). For the rate of entropy production we use the entropy

production (|3.34))
¢ = £(D.Dyyr), Cry) = 202|Df + 2Dy, C

p(t) Hp(t)

D, ., 201 >0. (3.156)

Now we again use the principle of maximization of the rate of entropy production.

We maximize £(D, D, ) among the values of D, D, fulfilling the equality (3.25) and the constraint
of incompressibility tr D = 0. We define the Lagrange function

L(D,D, ) =&D,Dyp), Cr,p) — A2 tr D

Fp(t)

+ X1 (€D, Dyyi) — (T~ G(Br,, ~ 1)) D - G(C

p(t)
I D%)) (3.157)

Rpt)

and find the extremes of L. The necessary conditions are

oL oL
oo ~-" @, "
We substitute for L and £ and obtain
1+ XM Ao
" 42D =T = G(Bg,,, — 1) + /\—11, (3.158)
1+ M
" 441Dy, ) Crpy = G(Crpy(yy — D). (3.159)

Further we eliminate the Lagrange multipliers, we perform (3.158)) - D + (3.159)) - anmv and use the
constraint of incompressibility

" (T — G(Br, ) — 1)) ‘D+G(Cupyy —1) Dy ¢

1
— == =_ 3.160
A1 442D - D + 41Dy, Cry ) - Dy 26 2 ( :
Multiplier A2/A; has to be eliminated in (3.158), we define a pressure p as
p= —)\2/)\1 (3'161)
and using (3.158) we get
T = —pl + 2u2D + G(By,,, — D). (3.162)
Now we insert (3.160) into (3.159))
2uDx,,, Cr,yy = G(Cx,(y, — ), (3.163)
Multiplying (3.163) from the left by F,,, and from the right by F;pl(t) we obtain
T
2K, ) Dy ey = G (B“pm - I) : (3.164)
By comparing the left-hand-side of (3.164]) with (3.5 we get
v G
Br, = 7E(Bﬁpm -I). (3.165)
We obtain standard Oldroyd-B model
T=—pl+2uD + G(B,Qp(t) -1, (3.166a)
v G
B,{p(t) = —I(B,{pm -1). (3.166D)
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Since we defined pressure p as a Lagrange multiplier through , pressure p is not
equal to a mean normal streSSH Hence, we showed that Oldroyd-B model can
be derived from the thermodynamical principles, and thus it satisfies the second law of
thermodynamics. Moreover we showed that the elastic response between the natural
and the current configuration corresponds to that of compressible neo-Hookean solid.

Note: Maxwell model (2.7) is obtained in the compressible variant (ICC), where the
elastic response corresponds to that of compressible neo-Hookean solid, and if we assume
that the rate of entropy production is in the form

EMDipt)» Cr,y) = 26Dk, Crpiy - Dryys 1> 0. (3.167)

3.8 Fully compressible model with purely quadratic dissi-
pation

In this section we derive a fully compressible viscoelastic model (CCC) with thermo-
dynamic inequality in the form (3.30). We make the following choice for the rate of
dissipation & = §(Tgis, tais, C  b/3—1,q)

Rp(t)’

-1 G? 3G2 b 2 1]qP
= —|Td P+ ——|tas]? + —|CL P4+ |- — — - (3.168
for G >0, po >0, 2us +3A >0, g3 > 0 and k£ > 0 and
d d d b
Tdis =T" — GBHP(U’ tdis =m +p(p, 9) -G g -1 y b=tr C'ip(t)‘

We now use the principle of maximization of the rate of entropy production.

Let us denote

L(Tgisz tdi57 Cd b, q) = f~+ )\1 (é - Tﬁis . Dd — tdis divv

Fp(t)?
b

d d
—GCrpy Dy =G <§

q-Veo
_ 1) 1Dy, + T)' (3.169)

We now maximize é(TﬁiS,tdis,Cﬁpm,b/S —1,q) among the values of T%,, tais, Cﬁp(t), (b/3-1), q

fulfilling the reduced thermodynamic inequality (3.30). For this purpose we adopt the method of
Lagrange multipliers which delivers the following set of equations

oL oL oL oL oL
= — =0 =0 =0, — =0 3.170
0Ty, ~ " Otax  OCE 7 0@3-1) " oq (3.170)

!"We could have defined pressure as p = —(tr T)/3 and obtain the Cauchy stress tensor in the form
T = —pl + 245D + GB*.

However, we aimed to obtain the model in the standard form (2.10) with the Cauchy stress tensor in
the form (3.166a)) where pressure is not a mean normal stress.
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that can be simplified to

x Q%Tdis =D, (3.171)

L 4;1’\1 ﬁtdm = divv, (3.172)
L Kﬁl 22%210;110 e (3.173)

! ;’\1 2% (g - 1) =GtrD, (3.174)
! j(l/\l %% = —%9, (3.175)

where the Lagrange multiplier A; has to be determined. To accomplish this we take the scalar product
of B171)) with T, B-172) with ta;s, (3-173) with Cﬁp(t), (3-174) with /3 —1 and (3.175) with q and
sum these products. With help of (3.30) we conclude that

14+ M
2 =1
A1
and get
d__ d d
T" =2uD" + GB,, (3.176)
m = —p(p,0) + G (g - 1) + (A + 2%) divv, (3.177)
G d e
27#1 Bp(t) — 7 Rp(t) ? (3178)
G (b 1
m (§ - 1) -3 trDva(f,) ) (3179)
q=—kVo. (3.180)
From equations (3.176) and (3.177) one can read
T=ml+T’= (—p(p, 0) + G <§ - 1> + (/\ + 2?’&) divv> I+ 24D+ GBY .
Adding (3.178) and (3.179)I one gets
G
m(cﬁpm —D =Dy
multiplying this equation by Fr,o from the left and by ng(t) from the right, using (3.5) we arrive at
v
By = _IB%(O Bryy — 1) (3.181)
We obtain the following set of partial differential equations
p+pdivv =0, (3.182a)
pv =divT, (3.182b)
T = (—p(p,0) — G+ Adivv) I+ 21D + GB (3.182c)
v G
i = = B (B = 1) 31520
q=—kV0. (3.182¢)

If we assumed in the constitutive relation for the rate of entropy production é
that the viscosities depend on shear rate D and temperature 8 we would obtain even
more general model. As in case of compressible Navier-Stokes equations, additional
constitutive equation for pressure p = p(p) (e.g. equation of state) is needed, the set of
equation can be closed with the balance of energy and relation between internal energy
e and temperature 6.
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3.9 Compressible variant (CIC) of model with purely quad-
ratic dissipation

In this section we derive compressible variant (CIC) of viscoelastic model with thermo-
dynamic inequality in the form (3.31). We make the following choice for the rate of
dissipation £ = g(Tgis, tdis, Czp(t),q)

G2 1]ql?
|tdis\2+2—m|cd |2+fﬁ (3.183)

c__ 1 d |2
6_27,&2|le$’ + Kp(t) ]’C 9

242 + 3A
for G >0, pa > 0, 2u2 +3A >0, 1 > 0 and k£ > 0 and
b
Tgis = Td - Gng(ty lais = m +p(p7 6) -G <3 - 1) ) b=tr Cnp<t)~
We now use the principle of maximization of the rate of entropy production.

Let us denote

(T tase. CF, ) ba) = €4+ M1 (€~ T DY~ tdivy — 6ot Df 4 977

Kp(t)? Bp(e) T Fp(t) 0

). (3.184)

We maximize g(Tgis, tdis, Cﬁp ,»b/3—1,q) among the values of T4, tais, Cﬁp(t) , q fulfilling the reduced
thermodynamic inequality (3.31)). For this purpose we adopt the method of Lagrange multipliers which
delivers the following set of equations

oL oL oL

0T, T Otas ) dq 0 (3.185)
that can be simplified to
1 4;1>\1 QiTg‘s =D*, (3.186)
! ;Al ﬁtdis — divv, (3.187)
2
1 —;1/\1 Q%Ciw) = Gszm’ (3.188)
1 —;1)\1 2%% - _%97 (3.189)

where the Lagrange multiplier A\; has to be determined. To accomplish this we take the scalar product

of (3.186) with T4, (3.187) with tais, (3.188) with Cip (1> and (8.189) with g and sum these products.
With help of (3.31) we conclude that
1+ XM\

2 =1
A1
and get
T = 24,D + GBiW) , (3.190)
- 202 .
m=—p(p,0) +G(b-1)+ )\Jr? divv, (3.191)
G da  _nd

2 S Dy, > (3.192)
q=—kVe. (3.193)

From equations (3.190) and (3.191)) one can read

2
T =ml+T¢ = (_p(p, 0)+G (g — 1) + <,\ + %) divv> 1+ 24D +GBY , .
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Since tr D, =0 (3.192) gives

p(t)
G

Tmcﬁpu) =D

Fp(t)

from the left and by F.  from the right, using (3.5)) we arrive at

Fp(t)

multiplying this equation by F

Kp(t)

G d

]vaﬁp(i): 7EB"‘p(t) Fp(t) (3194)
We obtain the following set of partial differential equations

p+pdivv =0, (3.195a)
pv =divT, (3.195b)
T = (=p(p,0) — G+ Adivv)I + 25D + GB,, (3.195¢)

v G d
Bﬂp(t) - _TBRP(” K’p(t) 9 (3195(1)
q=—kV0. (3.195¢)

3.10 Compressible variant (CCI) of model with purely quad-
ratic dissipation

In this section we derive a fully compressible viscoelastic model (CCI) with thermo-
dynamic inequality in the form (3.33). We make the following choice for the rate of
dissipation & = &(T4. , tais, , Cﬁp(t),b/S, q)

2 2 2 2
L N e 2 SRR SBR[ SRR
for G >0, po > 0, 2u2 +3A >0, g1 > 0 and £ > 0 and
Td. =T - GB? | tais, =m +p(p,6) — Gé, b=trCyg .
o) 3 p(t)
We now use the principle of maximization of the rate of entropy production.
Let us denote
L(Tis, tais;» Cn, ) b, @) = €+ A1 (5 — T - DY — tais, div
-Gcl D - Gg Dy, + 3 .eve). (3.197)

We maximize £(T%, tais; » Cﬁp ,,»b/3,d) among the values of T, tdisy Cﬁp(t), q fulfilling the reduced
thermodynamic inequality (3.31). For this purpose we adopt the method of Lagrange multipliers which
delivers the following set of equations

v T R TOYE R i (3.198)

p(t)
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that can be simplified to

1 ;Al ziTgiS =D, (3.199)

: 4/\-1)\1 ﬁtdisl =divv, (3.200)
1 —):)\1 22%210zp<t> = GDL ), (3.201)

1 4):1)\1 2% <g> =GtrDu, (3.202)

1 ;Al 2%% - _VTG’ (3.203)

where the Lagrange multiplier A\; has to be determined. To accomplish this we take the scalar product

of (199) with T, (B200) with tas,, (:201) with CZ . (3:202) with b/3, and (3:203) with q and
sum these products. With help of (3.31)) we conclude that

1+ X\ o
2 =1
and get
T! = 24,D? + GBy (3.204)
m = —p(p,0) + Gg + </\ + 2%) divv, (3.205)
G _a 1
m Ep(t) an(t) ) (3206)
Gb 1
50330 Dy, (3:207)
q=—kV0. (3.208)

From equations (3.204)) and (3.205)) one can read

T=mI+T¢= (—p(p,@) + Gg + ()\—l— 23ﬂ> diVV) I+2u2Dd + GBi

p(t)

Performing (3.206))+(3.207)I one gets
G

PTGl Diyiay -
multiplying this equation by Fy,,, from the left and by szm from the right, using (3.5) we arrive at
v G
Bryin = T ip(t) : (3.209)
We obtain the following set of partial differential equations
p+pdivy =0, (3.210a)
pv =divT, (3.210Db)
T = (—p(p,0) + Adivv) I+ 245D + GBy (3.210c)
v G 9
B,y = _E Kop(t) ? (3.210d)
q=—-kV0. (3.210e)
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3.11 Viscoelastic models with two natural configurations

Our aim is to model asphalt binder, a complex material consisting of many constituent
hydrocarbons. Since it is a material that exhibits two different relaxation mechanisms we
need model that would be able to describe them. We incorporate the complex response
of material by assuming the co-existence of two natural configurations (giving us the
possibility to describe two different relaxation mechanisms). In fact, by considering two
natural configurations we are able to model the fact that asphalt binder is a mixture.
Thus two natural configurations as described in Section are used, see Figure 3.3

F.n

Fopa(t)

G2

Figure 3.3: Two natural configurations.

We define kinematical quantities. Tensors Fr, ) map the infinitesimal element

from rp, () to ke and G; map from kg to kp, ) for « = 1,2. They are related through

the def(;rmation gradient
G, =F! F,.,. (3.211)

K
Fp; ()~ "R

The left and right Cauchy-Green tensors corresponding to ;) are defined through

_ T T L
Bﬁpi(t) o Fﬁpi(t)F”m(t)’ C“pi(t) - Ffipi(t)FNpi(t)aZ =12,

and the rates of the deformation of k(p;(t)), resp. its symmetric part

Ly, ., + L}
ekt Pi(t) Kps(t) .
ani(t) - GZGZ ’ Bpi(t) — 2 =12,
Upon differentiation Bﬁpl(t) we obtain

v . .

Br,in= ~2F 0 Dryp 0 Fryy 8 = 1,2 (3.212)
and

tr B”pi(z) = 2Bﬁpl(t) -D— 2F”pi(t)D“pi(t) . F"ipi(t)’i =1,2. (3.213)
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3.11.1 Incompressibility conditions

According to Subsection we can consider several compressible/incompressible vari-
ants in case of two natural configurations.

For example one natural configuration can be fully incompressible (III) and the
other incompressible with compressible viscous and elastic response (ICC), or simply
both can be fully incompressible (IIT)/(III) or we can consider a compressible variant
(ICC)/(ICC).

Since the natural configurations are symmetric, we can consider a compressible total
deformation with six possible combinations:

(CCC)/(COC), (CCC)/(CIC), (CCC)/(CC), (CIC)/(CIC), (CIC)/(CCL), (CCIL)/(CCI).

For the brevity, in this work we present only two variants of compressibility (IIT)/(III)
and (ICC)/(ICC).

(III) /(III) In case of (III)/(III) it holds that

trD=trD =trDy, 0 (3.214)

Kpy () pa(t)

and the internal energy describing the elastic responses that correspond to that
of incompressible neo-Hookean solids is in the form

3) + @(trB

s 3) (w1 > 0,2 >0) (3.215)

G
e=eo(n, p) + —~(tr By,

2p p1(t) Bpa(t)

where G1,Gy are two elastic moduli each corresponding to elastic response of
individual natural configuration. It follows from (3.215)) that

Oe Oe Oe . Oe .
pe =p—nN+p—p+p=——-B. . +p=—— B (3.216)
on p OB, n® T ToBy, p2(t)
. G Gy ¢
= p677+ ?tr B’%pl(t) —+ TtrB,ﬁm(t). (3217)

which on using ([3.213)) leads to
pe = pin + (1B, ) + H2Bs,, ) D = GiCy, ) - Dy, ) = G2Cy, () - D

P2 (t) Fpo(t)
(3.218)
By inserting this result into balance of internal energy (|1.16)) we obtain balance
of entropy
..o (d r, €
div (3) =05+ 5 3.219
pi+div () =pg+5 (3.219)
where
q-Vo
¢ = (T-G1By, () ~G2Br,, ) ) D+G1Cy, ) Dryy ) T G2C0k, 00 Dy — 0
(3.220)

is the rate of entropy production. Because we only consider processes wherein the
temperature of the body is constant, the last term disappears and we arrive at
the reduced thermodynamic equality

&= (T—GlB GQB,{Z)Q(t))-D—kGlC D +G2C,§p2 -D

(®) Fpa (1)

(3.221)

Kpy(t) Kpy(t) = Kpy(t)
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(ICC)/(ICC) In case of (ICC)/(ICC) there is only one incompressibility condition
tr D = 0. The constitutive relation for the elastic response is given by the internal
energy

Gy
e=coln.p)+ 5, (rBy,,, —3—In(det By, )

Ga
+ o (tr B, — 3~ In(det B, (t))) . (3.222)
which corresponds to two compressible neo-Hookean solids. Then the reduced
thermodynamic inequality is in the form

0<¢=(T-Gi(By,, — 1) =GBy, —1)) - D+

G (Cﬂp1<t> - I) Dy T G2 (C”pz(t) - I) "Dy (3.223)

3.12 Incompressible model with two natural configurations
and purely quadratic dissipation Quad2

First we derive a fully incompressible viscoelastic model (III) /(IIT) with thermodynamic
inequality in the form (3.221)). We choose a purely quadratic constitutive relation for
the rate of entropy production

0<&=ED.Dy, . Dry ) = 213D + 20Dy, o[>+ 2Dy [P, (3:220)

Fpy(t)? 7 Fpa(t)

where ug > 0, u1 > 0, ue > 0. Now, the principle of the maximization of the rate of
entropy production is used under the restrictions of reduced thermodynamic inequality
(3.221)) and incompressibility conditions tr D = tr anl(t) =trD

Kpo(t) —
Let us define

L(D, Dle(t) ) anz(t)) = £(D7 D”pl(t) ) D“pz(t)) A (.f(D, D. D"m(t))

p1(t)?

—(T=GiBx,, ) = G2Bx,, ) ' D= GiCys, ) " Dr,, ) = G2Crpy - D’%m)
— X trD — A3 tr DK’pl(t) — Mg tr DNPz(i) . (3.225)
We use Lagrange multipliers which delivers the following set of equations
oL
— = .22
ap =% (3.226)
oL

=0, (3.227)

8D"p1(t)

oL

=0 3.228
aDrap, ) ( )

2(t)

that can be simplified to
14+ M1 A2
)\1 4/,L3D = T — GlBK’pl(t) — G2B"ip2(t) —|— )\7117 (3229)
1+ XM A3
N 4Ds, (, =G1Cyx, ) + )\—11, (3.230)
14+ M\ A

N 4/L2D,$p2(t) = GQC%W) + 711 (3.231)
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We first take the scalar product of (3.229)) with D, (3.230) with Dmpl(t) and (3.231) with Dfﬁmm and
sum these products. With help of (3.224) and (3.221)) we conclude that

1+ 1
=_. 3.232
" 5 (3.232)
Next we take the trace of (3.229)), which together with (3.214)) delivers
A2 1
N3 tr(T — GiBe, () — GgBﬁpzm) . (3.233)
We define a quantity p through
1
p=-3 trT. (3.234)
Substitution of (3.234), (3.233)) and (3.232]) into (3.229)) yields
d d
T = 7pI + 2,LL3D =+ GlB“pl(t) + GgBﬁpz(t) . (3235)
Further, taking the trace of (3.230) and (3.231)) we obtain (using incompressibility (3.214]))
A3 1 A4 1
71 = —gGl tr C,gpl(t), 71 = —§G2 tr Cﬁpz(t) s (3236)
which after substitution into (3.230) and (3.231)) yields
d .
2uiDs,, ) = GiC%i(t)7 1=1,2. (3.237)
Multiplying these equations by Fy, ,, from the left and sz“) from the right and using (3.212) we
obtain
B. G g i=1,2. (3.238)

P (t) = _;Bﬁpi(t) Fpi(t)?

We obtain the model with two relaxation mechanisms

_ d d
T =—pl+23D+GiBL  +G:BL . (3.239a)
v Gl d
Bry o = = Brono By (3.239D)
v G 4
BHPQ(t) = _EBHPQ(t)Bsz(t) ° (3239C)

This model can be also obtained by preferring the thermodynamic fluxes Tgis, c

p1(t)
and Cﬁpg . We suppose the constitutive relation in the form
EThocl 0t = e Shot pe el P 2
dis? Mrpy (1) Thpy ) T gy T dis 2y ) DY POl '

and the reduced thermodynamic equality is equal to

I) 'D"vm 0 +G2 (C%(t) —I) 'D%(t) :

Kpr(t) Kpy(t)

d d
0<¢=(T-GiBy,,, ~ GiBy,,, ) D+Gi(C

Tiliis
(3.241)
The model is obtained by maximization of the rate of entropy production (3.240|) among

the values of Tgis’ ng) and Cﬁm(t) fulfilling the equality (|3.241]).
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3.12.1 Properties of model Quad2

Model (3.239)) has similar properties as model (3.112)), the properties of both matrices
B, , and B,ﬁp2<1t> in model (3.239)) are the same as the property of By, for model
(3.112). At the beginning (at rest) B, (t = 0) = I are positive definite matrices with
det By, ., (t =0) = 1. Using (B.3) from the Appendix we get

d : L EZee) G :
—(det By, ) =tr (B, B! ) 52" 20D - B, =0, i=12
(3.242)
and
detBy, , () =1Vt >0, i=1.2, (3.243)

which means that the evolutionary equations (3.239b)) and ({3.239¢)) include the incom-
pressibility conditions of the elastic responses (3.214)). Further, using Lemma from
Appendix we get the relation the trace of By

trB

pi(t)
>d, i = 1,2, where d is the space dimension. (3.244)

Rps ()

3.12.2 Linearization of model Quad2

We show that the model with purely quadratic dissipation and two relaxation mecha-
nisms reduces to Burgers model with additional Newtonian dissipation
when the elastic response is linearized. We showed this reduction in [38]. If we suppose
that the left Cauchy-Green tensors are small | B —“I|=¢, 0<eg<<l, i=1,2,

Rp; ()
then (3.239) reduces to ’
T =—pl+2u3sD + Gl(BNp1<t) -I)+ GQ(B,%@) -1, (3.245a)
\ Gl
B = =7 B ~ 1 (3.245b)
v Gy
Bryy = 7 Brayy ~ 1) (3.245¢)

Linearization is done in the same way as linearization of model (3.112)). Let us denote
two relaxation times 71 = p1/G1 and 19 = /G2 and let us define

S| = Gl(BNpl(t) — I), Sy = Gz(BKPz(O — I), S=S;+ SQ, (3246)
then the system (3.245al) — (3.245¢]) reduces to
T =—pl+2u3D + S, (3.247a)
$ =18 426D, (3.247D)
;1
S2 =~ 8;+2G:D. (3.247¢)

v vV
Using (3.247b)) and (3.247¢|) repeatedly we calculate S and S. We obtain

v Vv v 1 1
S =S1 + S2= —T—Sl - T—Sg +2(G1 + G2)D, (3.248)
1 2
YAY 1 v 1 v v
S=——81—82+2(G1+G2) D
1 T2
1 1 Gy G v
= 5S1+ 35Sy —2 <1 + 2) D+2(G1 +G2) D . (3.249)
1 ) T1 T2
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Adding then the (71 4+ 72) X (3.248) + 7172 % (3.249) we arrive at

v vV
(11 +72) S +1112 S=—(S1+ S2) + (211G + 272G2)D+
v
21172(G1 + G2) D, (3.250)

which is Burgers model with additional Newtonian dissipation (2.13)

T = —pl+2u3D + 8, (3.251)

v \YAY \Y
S+ (m+m)S+mme S =2(u1 + p2)D +2(pume + Tip2) D . (3.252)

Since the model with purely quadratic dissipation and two relaxation mechanisms
(13.239) reduces to Burgers model we call this model ‘non-linear Burgers.

3.13 Burgers model with additional Newtonian dissipation

Burgers model can be obtained in a similar way as Oldroyd-B model. We assume
that both elastic responses are compressible corresponding to that of compressible neo-
Hookean solids with the internal energy given by . The total deformation is
incompressible and we assume a compressible variant (ICC)/(ICC) with the thermody-

namic inequality in the form (3.223)).
The constitutive relation for the rate of entropy production is in the form

€(D, Dy, (1), Drcpa(t): Crvyy 12 i) = 2113 D"+
211Dy, C D +2p2Ds,  Crpy iy Doy B35 12,1 > 0. (3.253)

p1(t) “Hpy(t) T Kpy(t)

By maximization of the rate of entropy production £ among the values of D, D,{pl(t) and

D,.% @ fulfilling the equality (3.223)) and the constraint of incompressibility trD = 0
we obtain the Burgers model

T = —pI +2u3D + G1(By, ,, — 1) + Ga(By, , — 1), (3.254a)
B = —CL(B I A
Bryyo = =7 Br =1 (3.254b)
v Glo
Bryyo = =7 Bra ~ 1 (3.254c)

In the previous subsection we showed that this model is equivalent to Burgers models
with additional Newtonian dissipation , tensors B; are used instead of tensors
Bﬁpim. Ratios p1/G1 = 11 and pg/Go = 1o are called relaxation times and the model
is written in this work in the form

T=—pl+ 2M3D + G4 (Bl — I) + GQ(BQ — I) , (3.255&)
1

Bl = ——(B1 - 1), (3.255b)
T1
v 1

B2=—-—(B2-1). (3.255¢)
T2
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3.13.1 Properties of Burgers model

Upon applying the same procedure as in Section the following property can be

proved. If B;,i = 1,2 is symmetric positive at the beginning (at rest) ¢ = 0, then

B;,i = 1,2 remains to be symmetric positive definite for all ¢ > 0 and it holds that
detB; >1 Vt>0, i=1,2. (3.256)

and
trB; >d, i=1,2. (3.257)
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Chapter 4

Fitting of the experimental data
with derived models

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If
it doesn’t agree with experiment, it’s wrong.”

Richard P. Feynman, 1964E]

In this chapter we present three different sets of experiments concerning asphalt
concrete or asphalt binder and use them to corroborate the models derived in the
previous chapter.

Most of experimental results reported in literature present the data in which some
model is assumed, usually the linear viscoelastic model, rather than the raw data that
can then be used to corroborate models. Raw experimental data are provided in the ex-
perimental studies of Monismith and Secor [41] 42], and other papers by Monismith and
his co-workers. We use standard stress relaxation and creep test experiment performed
by Monismith, Secor (1962) in [41].

Furthermore, we use raw experimental data obtained by Krishnan and Narayan [27]
that exhibit a very interesting phenomenon of the torque overshoot due to the specimen
in the torsional rheometer, under constant shear-rate. This set of experiments is very
useful with regard to the corroboration of models because the torque overshoot can not
be captured by linear models like Oldroyd-B or Burgers.

The last experiment is a stress relaxation experiment performed by Narayan et al.
[43]. They measured the torque and normal force in a torsional rheometer and showed
that the material exhibits markedly different relaxation times with regards to the torque
and normal force which can not be predicted by model with one relaxation time.

The last two sets of experiments were performed with different types of asphalt
binder. In [38] we used the model Quad2 Quad2 for fitting these two experiments. The
experiment by Monismith and Secor was performed with asphalt concrete. Although
the density of such material is not constant (compared to asphalt binder that is almost
incompressible), mainly due to the air voids reduction of asphalt concrete (see [62]), we

! According to [14].
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suppose for simplicity that the material is incompressible. This experiment is used in
this work to corroborate the model Quad2.

The experiment by Narayan et al. [43] that documents the torque overshoot was
also used to corroborate PL2012 and RaSr2000 model, we published this result in [21].

4.1 Experimental data

In this section we present experimental data by Monismith, Secor (1962), Krishnan and
Narayan (2007) and Narayan et al. (2012). We start from the oldest one.

4.1.1 Monismith, Secor (1962) — stress relaxation and creep test ex-
periment

Monismith and Secor (1962) performed an experiment with a cylindrical piece of asphalt
concrete. The height of the cylinder is 6.5 in, the radius is 1.4 in. This experiment was
performed at three different constant temperatures 7": 40°F (cca 4.4°C), 77°F (=25°C)
and 140°F (=60°C). The lateral pressure on the cylinder is equal to zero. Monismith
and Secor tried to fit this experiment with standard Burgers model, and the fit was
quite satisfactory. Later, this experiment was better fitted for example by Krishnan
and Rajagopal, see [29], where a model with eight parameters was used.

Stress relaxation experiment

In this experiment a cylindrical piece of asphalt was at time ¢ = 0s suddenly deformed
with a constant strain, this deformation was kept for all time and the corresponding
stress (T, component) was measured.

Temp [°F] | Strain s [%] Stretch ratio A=1—s
0.75% 0.9925
40 0.52% 0.9948
0.29% 0.9971
0.30% 0.9970
7 0.21% 0.9979
0.10% 0.9990
0.28% 0.9972
140 0.18% 0.9982
0.09% 0.9991

Table 4.1: Experiment setting for the stress relaxation Monismith, Secor (1962).

In the Table you can see the settings of the experiment. The experimental data
are depicted in the Figure

Creep test experiment

In this experiment the cylinder was pushed in the z—axis with a constant pressure
between the time 0 s and 12000 s (200 min) and after that the pressure (73, component)
was released and the evolution of the strain was recorded. Like in the stress relaxation
experiment, this experiment was performed for three different temperatures: 40°F, 77°F
and 140°F.

80



CHAPTER 4. FITTING OF THE EXPERIMENTAL DATA WITH DERIVED
MODELS

0 00 00 600 800 1000 0 200 400 600 800 1000 0 50 100 150 200 250 300 350 400 450
i Time [5]

a) 40°F b) 77°F ¢) 140°F

Figure 4.1: Experimental data for the stress relaxation, Monismith, Secor (1962).

In the Table you can see the settings of the experiment and the experimental
data are depicted in the Figure

Temp [°F]| | Pressure [psi| Pressure [kPa]
85.50 589.5

40 68.40 471.6
51.30 353.7

25.60 176.5

7 16.10 111.0
8.55 99.0

4.27 294

140 2.56 17.7
1.71 11.8

Table 4.2: Experiment setting for the creep test Monismith, Secor (1962).

0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
Time [5] Time [s] Time [5]

a) 40°F b) 77°F c) 140°F

Figure 4.2: Experimental data for the creep test, Monismith, Secor (1962).

4.1.2 Narayan et al. (2012) — torsional experiment

This experiment studies relaxation torque and normal force in torsion. In this experi-
ment and the other experiment from 2007 the torsional rheometer is used. It consists of
two plates, the lower is fixed and does not move, the upper one can rotate, the radius
of the plates is R = 4mm. The experiment was performed with several different asphalt
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binders: unaged base binder and aged base binder, unaged polymer modified binder
and aged polymer modified binderﬂ

At the beginning a sample of asphalt was placed between the plates and it was
squeezed to the height ~ = 1lmm. The excess material was trimmed off. Then the
specimen was allowed to relax and settle at the given temperature. Finally, at time ¢ = 0
the upper plate started to rotate with an angular velocity 0.5 rad s~ and at ¢t = 0.5s
it stopped rotating and the corresponding torque and normal force was recorded up to
the time t = 2s. The angular velocity w is equal to

-1 s <t <
_ {0.5rad S 0s <t <0.5s (4.1)

Orad s™' 0.5s < t < 2.0s.

The experiments with four types of asphalt binder were performed at four different
constant temperatures: 25°C, 30°C, 35°C and 40°C. Experimental data are depicted in
the Figures [4.3p), [1.3p) ~[4.6R), [1.6b). The error measurement is 0.02 N for the Normal
force data and 0.05 mNm for the torque.

0.03r

—6—25°

0000

0.025

o
1=
S

0.015f

Torque [Nm]

o
2

Time [s] Time [s]

a) Experimental data for the torque b) Experimental data for the normal force

Figure 4.3: Experimental data, unaged base asphalt binder.

It is clear from the experimental data that at least two different relaxation mech-
anisms are present in all materials. The relaxation time in the normal force data is
significantly higher than the relaxation time in the torque data. That is why we have
to use the model that is able to describe these two mechanisms.

4.1.3 Krishnan and Narayan (2007) — torque overshoot experiment

In 2007 Krishnan and Narayan performed a similar experiment like the one described
in the previous subsection. The difference is that they used different material and they
did not stop rotation of the upper plate like in the year 2012, so the angular velocity
was constant.

They performed the experiment at a constant temperature 35°C with three different
angular velocities 0.5 rad.s™!, 0.25 rad.s™! and 0.125 rad.s~!. They measured only
the torque needed to achieve the constant angular velocity and not the normal force,

2 Asphalt binder is modified in order to improve the engineering performance of the resulting asphalt
cement when it is used in asphalt concrete.
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Figure 4.4: Experimental data, aged base asphalt binder.

—6—25°C|

Torque [Nm]
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a) Experimental data for the torque b) Experimental data for the normal force

Figure 4.5: Experimental data, unaged polymer modified asphalt binder.
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a) Experimental data for the torque b) Experimental data for the normal force

Figure 4.6: Experimental data, aged polymer modified asphalt binder.
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Figure 4.7: Experimental data, Krishnan and Narayan (2007).

measured data are depicted in Figure . The overshoot of the torque (that can be
mainly seen for w = 0.35 rad s~!) at the beginning of the measurement is very interesting
because linear viscoelastic models like Oldroyd-B or Burgers can not capture it.

4.2 Fitting of the experiments

Fitting of the experiments was done with the following models: Oldroyd-B @ , Burg-
ers , RaSr2000 , PL2012 , Quadl1 and Quad2 @ All
these models were used for fitting the experiment with the torque overshoot by Krish-
nan and Narayan (2007). Sets of experiments by Monismith and Secor and Narayan et
al. (2012) were fitted only with the model Quad2.

All models contain some set of material parameters. Our aim is to find for each set of
experiments a set of material parameters for which the model describes the experimental
data best.

Let {E;}!'_; be a set of experimental data consisting of n experiments E; : [0,7] —
R. For example, in case of Monismith and Secor (1962) n = 6, E;,i = 1,2,3 is the
measured pressure in the stress relaxation experiment at three different strains and
FE;,i =4,5,6 is the measured strain in the creep test at three different pressures, while
in case of Krishnan and Narayan (2007) n = 3 and E;, ¢ = 1,2,3 stand for three
measured torques for three different angular velocities and in case of Narayan et al.
(2012) n = 2, E; is the measured torque and Fs is the measured normal force. The
values of F;(t) are measured only at discrete times t/, 5 = 1,...,k. Since all used
models are isothermal, different temperature of the experiment defines a new material.

Further, let C;(parms, t) be the theoretical values predicted for the experiment F; by
a given model, where parms are the material parameters (for example for model Quad2
parms are pi, p2, p3, G, Ga) corresponding to the given model. For i = 1,...,n we
define the absolute error g;bs and the relative error gﬁel of one experiment E’ through

T
dhgs(parms) = . [ 1C" (parms. 1) — (), (42)
0
i 1 [T|C(parms,t) — E'(t)
Grel(parms) = T/o Eit) dt, (4.3)

84



CHAPTER 4. FITTING OF THE EXPERIMENTAL DATA WITH DERIVED
MODELS

where the integral over time is a mean value of k discrete experimental data points
measured at times t!, ..., t*

1 (7 LA
T/ f(t)dt::EE f@), 0=t'<t?<. .. <t l<tb=1
0 -
Jj=1

In [21] we fitted the experiment with model PL2012 using the relative errors gy
We were fitting three experiments at once by one set of material parameters, in such
case it seemed that the relative error is a good measure because it is enough to sum
individual relative errors to obtain the global error

n
Grel = Zgiel' (4.4)
=1

Later in [38] we preferred the absolute error g,ps over the relative error g, as a proper
measure of the error because the relative error at times when the values of experimental
data are close to zero, fits the such almost perfectly to the detriment of the times when
values of data from the experiment are large. However, in case of absolute error, the
global error can not be obtained as a simple sum of individual errors. We aim to fit
the set of experiments {E;(t)}!_, with different corresponding characteristic values N;.
For example in case of the experiment by [43] Na/N; ~ 50. In case of the absolute
errors, we have to weight individual experiments by these characteristic values of the
experimental data, i.e. our global error is defined through

n

1 .
g = Z ﬁg;bs? (45)

i=1 "

where n is the number of experiments in the set, g;bs is the absolute error of the
experiment FE; defined by and IV; is a characteristic value associated with the
experiment F; that is being considered.

We use the functional g introduced in (4.5 also to quantify how well one particular
set of experiments is fitted with different models. If g = 0 the set of experiments is
fitted perfectly.

The minimization of the scalar function g described by or is carried out
using Matlab function fminsearch with the Nelder-Mead simplex algorithm, see [44].
It is known that this algorithm converges less often to local minima than for example
the Newton method. However, there is no universal algorithm for finding the global
minima for a general non-convex function, therefore the solution depends strongly on
the initial guess. We improved the way of finding the minimum in the following manner.
The same algorithm is still used, but after it converges to a (local) minimum, we round
the minimizing parameters, use them as a new initial guess and run the minimization
again. We repeat it until the cost function g of the solution decreases. The reason that
this helps is due to the fact that at the beginning of the algorithm the neighborhood
where the method tries other values of the parameters, is greater than in later runs of
the algorithm. In virtue of this the algorithm is able to converge to a new lower (local)
minimum.
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4.2.1 Fitting of Monismith and Secor (1962)

The set of experiments performed by Monismith, Secor in [41] is described in Subsection
and it consists of two parts: stress relaxation test and creep test. It was fitted
with model Quad2.

The initial-boundary value problem that is corroborated

For the simplicity we suppose that all variables depend only on time ¢ and not on the
coordinates. Since the deformation for both experiments is uniaxial it holds that all
non-diagonal components of the stress tensor and its elastic part are zero

Tor 0 0 Birr 0 0 Baoyr 0 0
T=|0 Tp 0], Be y=|0 By 0 | B ,=|0 By 0 |.
0 O Tzz 0 0 Blzz 0 0 BZzz

Due to the incompressibility the deformation in the cylindrical coordinates is described

by r = R/ VA, o = ®, 2z = \Z, where capital letters correspond to undeformed coordi-
nates and small letters to deformed coordinates, A is the stretch ratio meaning how the
height of the cylinder decreases. The deformation gradient and the left Cauchy-Green
tensor are in the form

_A 1
a0 »n X0
F=| o, L | Vv=L=FF'=| ¢ _2 4|, B=FF'=|, 1 |
\/X 22 . A )

0 0 A 0 0 % 0 0 A

The initial conditions are different in the stress relaxation and the creep test. Due to
the instantaneous application in both cases we can suppose that the response is elastic
and we can read the initial condition from it, i.e. By, , (0) =By, (0) =B(0):

Blrr(o) = Ber(O) - Blw@o(o) = B2<p<p(0) = TO)’ Bizz = By, = )\(0)2_ (4'6)

Now, we will write the components of the model (3.239]) that are valid for both
experiments

C_ G G
Trr = —D— NSA)\ ! + ?1 (QBlrr - Blgogo - Blzz) + ?2 (2327“1“ - BQcpcp - BQZZ) (47)
C G G
Tcpcp =D - ,u3)‘)\ ! + ?1 (2Blcp<p - Blrr - Blzz) + ?2 (2B2g0g0 - BQTT - Bsz) (48)
c—1 . G1 Ga
Tzz =P + 2“3)\>\ + ? (2Blzz - Bl<p<p - Blrr) + ? (2B2zz - BQLpgp - B2rr> (49)

Because the lateral pressure is equal to zero, i.e. T,, = T,, = 0, subtracting (4.8)
from (4.7) we get G1B1yr + GoBopr = G1B1yp + G2Bag, which is generally valid if
Biyr = Bigy and Bayy = Bay,. From (4.7) we get

Co_ G G
iy Z H3>\)\ I = ?I(Blzz - Blrr) + ?2(-82ZZ - BQTT)-
Inserting this into (4.9) we get
Tzz = 3,“3).\)\_1 + Gl (Blzz - Blrr) + GQ(BQZZ - B2rr)- (410)
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The governing equations for By, Boqr, B1,, and Bsy,, are

OB1yr G

ot AMIBy,, = —3—MBW(BW — Bi.z), (4.11)
agrz —2\\71By,, = —zillBlrr(Blzz — Byyr), (4.12)
LR NS VR 1
OB AN 1B = —f,)ijBMBzzz ~ Boy). (4.14)

Our aim is to use the equations (4.11)) - (4.14) and the equation (4.10) to compute T,

in case of the stress relaxation experiment and A in case of the creep test.

Stress relaxation

In the stress relaxation experiment the cylinder is suddenly deformed with constant
strain, that is why we suppose that A = 0 and the initial condition for X is given by the
Table [I.1] Then we obtain 7%, in the following way. First we solve the set of ODE

agiw = —?illBlrr(Blrr — B1z:2), (4.15)
mzjjz = —f)il Biyy(Bizz — Bipr), (4.16)
agiw = —?)CZBM(BQW — Ba..), (4.17)
agizz = —?522 Boyr(Baz: — Barr) (4.18)

with the initial conditions (4.6)) and then we compute
Tzz = Gl (Blzz - Blrr) + GQ(BZzz - B2rr)-

Note that parameter us is not present in any of the equations and so we can not fit it
using stress relaxation experiment. To solve the set of ODE, Runge-Kutta method of
the fifth order is used, concretely Matlab function ode45.

Creep test
In the creep test experiment we press the top of the cylinder with the pressure P
given by the Table .2 and after 200 minutes we release it

- 7{P 0s<t<12000s
=710  t>12000s.

The initial condition is that the cylinder is undeformed at ¢ = 0, i.e. A(0) = 0, and
corresponding initial conditions for By, , and B, are given by (4.6). We use the

equation (4.10) and we express ML in terms of T, Biyr, Borr, Biss, Boss

1

M= _——
313

(Tzz - Gl(Blzz - Blrr) - GZ(BQZZ - BQTT)) . (419)
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Further, we substitute it into (4.11)) —(4.14)) and adding A\ x (4.19) we obtain

8?;” i (T>2 — G1(B122 — Birr) — G2(B2:> — Barr)) Birr = _%BlTT(BlTT — Bi:2), (4.20)

o 3o (T = Ga(Bres = Buy) = Ga(Baws = Barr)) Bres = =32 Bure (Brow = Bure), - (421)

agiw i (Te: — G1(Bizz — Birr) — G2(Bazz — Barr)) Barr = _SGTZBZW(BQW — B2:2), (4.22)

agizz - % (T:2 — G1(B122 — Birr) — G2(B2:» — Barr)) B2z, = _%B2TT(BZZZ — Barr), (4.23)
a1

E — 37/.1,3 (Tzz - Gl(Blzz - Bl'r"r) - GQ(BQZZ - BQT’I‘)) )\ (424)
For fitting this experiment we minimize absolute error g given by (4.5)), i.e.

6
1 .
g = Z ﬁg;bsv (425)
. (2
=1
where N; = N for i = 1,2, 3 in the stress relaxation test and N; = N, for i = 4,5,6 in
the creep test are given in Table together with fitted material parameters for each
temperature T'.

T [°F] | G1 [MPa] G2 [MPa] Gi/u1 [1/s] Ga/us2 [I/s] ps [GPas| N [107% N, [10°]
40 73.36 108.85 7.50 x 107> 8.50 x 10~ ° 3.44 25.0 20.0

7 21.95 37.22 2.72x107° 2.88 x 1072 0.82 16.0 1.5
140 10.07 586 1.43x107° 3.96x 1072 1.85 8.0 0.8

Table 4.3: Fitted parameters for the stress relaxation experiment and the creep test.

The result for 40°F is depicted in Figure for 77°F in Figure [4.9)and for 140°F in
Figure[£.10] The results for the lowest and the highest temperature are very reasonable,
the fit for 77°F is not too much satisfactory. This is strange because we are able to
fit quite well the lowest and also the highest temperature and the parameters in the
Table [£.3] depend monotonically on the temperature. Is it possible that the experiment
was not performed perfectly? Monismith, Secor tried to fit the experiments with the
linear Burgers model and they had also problems with fitting the middle-temperature
experiment, see [41].

If we compare our result obtained with the model Quad2 (five parameters, extra
solvent viscosity p3) and their result obtained with the linear Burgers model without
additional Newtonian dissipation (i.e. pus = 0, model consists four parameters), we find
out that though our result is better, the difference is not enormous. However, there is
a reason to use non-linear models like we did. This will be seen in the Subsection [4£.2.3]

4.2.2 Fitting of torsional experiment by Narayan et al. (2012)
The set of experiments performed by Narayan et al. in [43] is described in Subsection

and it is fitted with the model Quad2 (3.239).

The initial-boundary value problem that is corroborated

Ky (1) and Bﬁp2(t) that appear in the model (3.239))

= I, which means that at the beginning the material is relaxed.

The initial conditions for the tensors B
are B, B

pr(t) 2 Fpy(t)
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Figure 4.10: Data fit, Monismith, Secor (1962), 140°F.
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We compute the problem in cylindrical coordinates (7, ¢, z), see Figure Due
to the symmetry all the unknowns are assumed to not depend on the variable ¢. The
unknowns of the equations are

Blr'r Bl'rgp Bl'rz B2'rr BQrap BQTZ
p=p(rz2), Bﬁplm = | Bire Bige Big: | (1,2), Bﬂpzm = | Bare B2gy Bag: | (1,2).
Blrz Blgpz Blzz

B27‘z BQQDZ Bsz

P

V2

V3 ) 71

Y4 r

Figure 4.11: The geometry of the axially symmetric flow in a cylinder.

In this experiment we suppose that the material flows only in the direction of ro-
tation, i.e. the p—direction, satisfying the no-slip boundary conditions on the bottom
and the top plate, that is

v:(o,%,o),

which automatically satisfies the constraint of incompressibility i.e. divv = 0.

We are interested in computing the torque M and the normal force F' on the upper
plate:

R
M= [ rT,,dS =2~ / 72T, dr, (4.26)
I'uy 0

R
F :/ T..dS = 277/ rT,, dr. (4.27)
Ty 0

Using cylindrical coordinatesﬂ and supposing that the inertial effects can be neglect-
ed since the flow is slow (we neglect time derivative of w), we can express the balance

3For details on differential operators in cylindrical coordinates, see Appendix
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of linear momentum and the constitutive relations

8Trr Trr - Tcpcp aTrz
0= 4.28
or + r + 0z’ (4.28)
aT, T 0T,
0= "2 422 4 — £ 4.29
or T T Tas (4.29)
aTrz T, 8Tzz
0= 4.30
or r 0z’ (4.30)
G G
Trr = —-Dp + ?1(2B17"7° - Blgoga - Blzz) + ?2(2321”7" - BZgogo - B2zz)a (431)
Tnp = GlBlrgo + GQBZTgoa T, = GlBlrz + G2B27‘27 (4-32)
G G
TL,DL,D =-—p+ ?1(2Blcp<p - Blrr - Blzz) + ?2(2B2<p<p - B2rr - Bsz)a (4'33)
Trw
Ty, = Mg? + GlBhpZ + GQBQSOZ, (4.34)
G G
Tzz =D + ?1(2Blzz - Bl<p<p - Blrr) + ?2(232,% - B2<p<p - BZTT)a (435)
0B; G G;
8:7« _ _/7 (B}, + Bi.) + aB (=2Birr + Bipy + Bizz) (4.36)
0B; rw G G
aztrtp = ?Bzrz - ;lerszwz + 37L;Bi7"<p (_2Bi7‘7‘ - 2Bigogo + Bzzz) ) (437)
i i
0B; G G
872 = _iBirgoBigaz + iBzrz (_2Bi7‘r + Bicpcp - QBzzz) ) (438)
i i
0B; rw G G
# =27 Bip: — ;7 (B, + Bi,.) + BT;BW (Birr — 2Bipy + Biz),  (4.39)
7
0B; rw G; G;
a;;oz - fBizz - iBirgaBirz + 37/;'31.90'2 (Birr - QBigogo - QBizz) ) (440)
i i
OB, G G
a;zz — —i ( 7227',2 + Bi%pz) + ﬁsz (Birr + Bigo«p — QBZZZ) . (441)
i i

Equations f are valid for ¢ = 1,2. The set of equations does not seem
to have an analytical solution. They can be simplified considerably in the follow-
ing manner. First, we observe that none of the initial conditions as well as none of
the equations — depend on z and therefore also the components of B“m( 9
and B,%(t) do not depend on this coordinate. Further, the zero initial conditions
for By,y, Bary, Bir: and Ba,. together with the equations f imply that
By = Barp = Biyz = Bop, = 0. In view of this result and from equations and
we determine that also p does not depend on z and so, all the components of the
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stress tensor T does not depend on z and the equations simplify to (i = 1,2)

oT,, n Trr — Tpp

02 Lo, (4.42)
81;:;M _ ?i Birr (—2Biry + Bigy + Biss) . (4.43)
8%5% - 2%sz - ii‘iBi%PZ * :f;;Biww (Birr = 2Bipy + Bizz) (4.44)
8%;"2 = %Bm + ?)CZBWZ (Birr — 2Bigpp — 2Bizz) (4.45)
ot = B B (B + By 2Bi), (4.46)

Our aim is to compute the torque (5.141f) and the normal force (5.142) on the upper
plate.

Torque The case of the torque is simple, we solve the set of ODEs (4.43)) — (4.46) for
fixed r and compute

R R
M =2r / 2T, (r) dr %R‘l—l—%r / r2(G1 By (r) + GaBay.(r)) dr. (4.47)
0 0

To solve the set of ODEs Runge-Kutta method of the fifth order is used, namely Matlab
function ode45. For the numerical integration the composed Simpson’s rule with five
nodes is used.

Normal force The case of the normal force is more difficult because in order to
compute it using we need to know the solution for the pressure p. In order to
avoid it, we compute the normal force using the first and the second normal stress
differences in the following manner.

We express the term T, in the form

1) = Torr) 4 (1) = Ty ) = | 0D gyt 4 (Toslr) ~ T (1), (408)

and use (4.42)) to get the information for the partial derivative

T Tpp — Trr

or r ’

substituting it back into (4.48) we obtain
"Top — 1T,
T.. = / A + (Teo — Tyr). (4.49)
R T

Now, this can be inserted into the formula for the normal force

R R T _T R
F:27r/ rTzzdr:27r/ r/ Mdr'dr—i—%r/ r(T,, — Typ)dr.
0 0 R r 0
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The first term can be computed by applying integration by parts on the first integral
(the boundary terms are zero)

R
277/ / Top = 1o dr’ dr = 7r/ (T — Tpp) dr
0

R R
F= 77/ r(Trr — Tipyp) dr + 27r/ r(Tyy — Typ)dr. (4.50)
0 0

Using equations (4.31)), (4.33)) and (4.35) we get

and so

R
F = ﬂ'/o 7(G1(Birr (1) = B1ypy(r)) + Go(Barp (1) — Bagy(r))) dr+

R
27T/0 T(Gl(Blzz("") — Blm«(’l“)) + GQ(BQZZ(?”) — BQTT(T))) d?".

This integral is computed as in the case of the torque using the composed Simpson’s
rule where Bj(r), Biop(r) and B;..(r) are obtained as the solution of the set of ODEs

D) - ().

Results

We find, for each type of binder and for each temperature, one set of parameters for
which the computed torque M and the computed normal force F' best fits the exper-
imental data. The fitting is done by minimizing absolute error , here Ny is the
maximum of the measured torque and Ny is the maximum of the normal force, both
values and the measure g are in the Tables.

Unaged polymer modified binder Fitted parameters for unaged polymer modified
binder are shown in the Table .4l

Temp °C | Gy [kPa] Gs [kPa] Gi/pi [1/s]  Ga/pe [1/s]  ps [kPal N N; g
25 543.7 105.8 9.37 0.90 46.3 0.029 1.83 0.033
30 273.8 541.7 7.12 0.69 472 0.022 1.22 0.059
35 130.4 27.7 5.96 0.66 45.3 0.016 0.71 0.087
40 58.7 8.04 4.10 0.35 25.0 0.009 0.39 0.096

Table 4.4: One set of fitted parameters for the torque and the normal force for unaged
polymer modified binder.

The Figures |4.12h) and 4.12p) depict the experimental data and the computations
based on the model for the above values of the material parameters.

Aged polymer modified binder Fitted parameters for aged polymer modified
binder are shown in the Table [4.5

The Figures ) and ) depict the experimental data and the computations
based on the model for the above values of the material parameters.

For both polymer modified binders one can see that the material parameters depend
monotonically on the temperature and that with the higher temperature the asphalt
binder behaves more like a fluid. Experiments with both polymer modified binders are
fitted very well.
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Figure 4.12: Fitted experiment for unaged polymer modified binder.

Temp OC Gl [kPa] Gz [kPa] Gl//,bl [1/8] G2 /,u,g [1/5] M3 [kPa] N1 N2 g
25 934.2 190.6 9.01 0.92 110.3 0.054 2.84 0.062
30 398.1 86.7 7.80 0.80 78.8 0.033 1.68 0.071
35 143.0 41.0 5.90 0.78 63.7 0.022 0.85 0.106
40 124.0 26.9 6.42 0.77 344 0.013 0.63 0.078

Table 4.5: One set of fitted parameters for the torque and the normal force for aged
polymer modified binder.
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Time [s]

a) Fitted torque b) Fitted normal force

Figure 4.13: Fitted experiment for aged polymer modified binder.

Unaged base binder Fitted parameters for unaged base binder are shown in the
Table E.6l
Temp °C | pa [kPa] po [kPa]  pa/er [1/s]  pa/es [1/s]  ps [kPa) M N g
25 333.5 7.48 6.81 0.23 78.8 0.026 0.968 0.046
30 185.3 19.1 15.14 2.51 37.6 0.011 0.260 0.055
35 50.2 3.45 9.80 1.68 19.7 0.005 0.099 0.033
40 125.3 4.46 19.03 2.82 6.33 0.003 0.080 0.062

Table 4.6: One set of fitted parameters for the torque and the normal force for unaged
base binder.

The Figures{4d.14h) and4.14p) depict the experimental data and the model prediction
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for the material parameters given by Table
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Figure 4.14: Fitted experiment for unaged base binder.

Aged base binder Fitted parameters for aged base binder are shown in the Table

4.7
Temp °C | Gy [kPa] Gs [kPa] Gi/pi [1/s]  Ga/pe [1/s]  ps [kPal N N;
25 397.7 25.4 5.07 0.55 118.7 0.041 1.77 0.048
30 280.5 18.6 4.34 1.17 43.6 0.017 0.72 0.044
35 280.8 289 18.95 2.77 26.0 0.010 0.30 0.050
40 196.8 13.3 19.78 2.81 13.9 0.006 0.16 0.038

Table 4.7: One set of fitted parameters for the torque and the normal force for aged

base binder.

The Figures |4.15p) and [4.15p) depict the experimental data and the computations

based on the model for the above values of the material parameters.

According to value of the measure g, both fits of base binder are good. Contrary
to polymer modified binder, except the viscosity us other parameters do not depend
monotonically on temperature. This may be one of the reasons for adding the polymer,

so as to not have such a behavior.
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Figure 4.15: Fitted experiment for aged base binder.
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4.2.3 Fitting of torsional experiment with torque overshoot by Krish-
nan and Narayan (2007)

Experiment performed by Krishnan and Narayan in [27] is described in Subsection [1.1.3]
and it was fitted with all models: Oldroyd-B, Burgers, PL2012, RaSr2000, Quadl and
Quad2. We solve this problem in the same way as in case of experiment by Narayan et
al. (2012) described in the previous subsection.

The initial-boundary value problem

The initial conditions that are appropriate for the initial-boundary value problem that
corresponds to the experiment are:

B =1 for Oldroyd-B model,
B; =By =1 for Burgers model,

Bi, ) = Bs,,; =1 for Quad2 model, (4.51)
B.,,, =1 for Quadl model, (4.52)

B.,, =1 for the model PL2012, (4.53)

B.,, =1 for RaSr2000 model, (4.54)

(4.55)

(4.56)

which means that the material is at rest and relaxed at t = 0. We use the same ansatz
for the velocity v satisfying boundary conditions on the lower and upper plate

wrz
- 0,—,0).
v ( h

First we show that the torque overshoot can not be captured by linear models

Oldroyd-B ([2.10) and Burgers (3.255)).

Oldroyd-B model The governing equations for (2.10)) after neglecting time derivative
of w are

T,. = m% + GB,,, (4.57)
0B, 1
— Z(1— By, 458
o= (1~ By) (4.59)
0B, rw 1
e _ 9B, + =(1- Byy), 4.
0B,. rw 1
- "™p.- B, 4.60
ot h % ( )
0B,, 1
— 2(1-B..). 4.61
D= = 1Bl (1.61)

Together with the initial conditions B,,.(0) = B,,(0) = B..(0) = 1 this gives B., =
B, = 1. The solution of (4.60) together with the initial condition B,,(0) = 0 gives

Be: = WTM (1 B e_t/T) = Tpz = %T (,u2 +Gr <1 — e—t/7>>

2 =T (s r (1))
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From this formula one can immediately see that this model is incapable of describing the
overshoot of the torque towards the beginning of the experiment. The time derivative
of M (t) with respect to time ¢

dM ﬂ'wR4
“dt 2h

Ge t/™ >0

is always greater than zero. Thus the torque M is monotonically increasing and for
times much longer than the relaxation time, i.e. ¢ > 7, the torque is almost constant.

Burgers model The governing equations for (3.255)) after neglecting time derivative
of w are

Ty Ms N gt G1B1y: + G2Ba,, (4.62)
)] (4.69
8%;0@ = 2%32‘% + 72(1 — Bigy), (4.64)
ag?@z = %Bm - ;sz, (4.65)
S (- B, (4.66)

for i = 1,2. As in case of Oldroyd-B model we get
(1 — e_t/”) = Tipo = % (,ug + G111 (1 — e_t/Tl) + Gamo (1 — e_t/“>>
<u2 + G111 (1 — e*t/ﬁ> + Gamo (1 — e*t/”)) .

TwR
The time derivative of M (t) with respect to time ¢

Trw

Bi<pz = h

=M =

2h

dM  7mwR*
dt  2h

(Gle_t/T1 + Gge_t/W) >0

is always greater than zero. Thus the torque M is monotonically increasing, for times

much longer than the relaxation time, i.e. ¢t > 71 + 7o, the torque is almost constant.
Further, we use four non-linear models — PL2012, RaSr2000, Quadl and Quad2 —

and compare their abilities to capture the experiment by Krishnan and Narayan (2007).

Power law like model PL2012

Using the power law like model PL2012 we fitted the experiment by Krishnan and
Narayan (2007) in [2I]. Upon substituting the ansatz

p=p(t,rz), v= (07 % 0) , (4.67)
an(t,T, Z) Brnp( 72) Brz(t,r Z)

B,{p(t) = | Brp(t,r,2) Byy(t,r,z) By.(t,r,2) | . (4.68)
BTZ(tarv Z) Bgoz(t T, Z) Bzz( T )
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into the governing equations (3.97)) we get

ap dB,, B, B,, OB
O —_ _r G rr rr _ pp rz 4.69
or * ( or + r + 0z ) ’ ( a)
rz dw 0B, 2B,, 0B,
phdt_G< o T o >+
arw 0y + 2 + (4.69b)
oh 0z 0 2h2 0 tagy 2h2 ) :
8]) 837’2 Brz 0
= T3, 4.
0 8z+G<8r+r+8z>’ (4.69¢)
OB _ /X By, +2V%
trBuyy = 3A—— = —2VX By +2VXA, (4.69d)
0B, rWw
tr By, — BA— - = —2VX By, + /By, — 3\ Br, (4.69¢)
OB,
rBr, ) —3A ot ~2VXB,., (4.69f)
0B 2rw
tr B,{p(t) — 3\ 8?0 _ _QVYB@@ + 4 /tr BHW) - 3)\TBW + 2\/)7(/\, (4.69g)
8B<pz TW
tr By, = 3A—5 7 = —2VX By, + /tr By, — 3A-Bes, (4.69h)
aBzz .
tr By, = 8A—2 = —2VX Ba. + 2VX )\, (4.691)
where Y is defined through (3.96]), X is the solution of (3.95) and
3 (B1) 3
A= = . (4.70)
tr B“ l(z) B‘P‘PBZZ - B?oz - BEZ + BrrBzz - Brzw + BTTB%O

We neglect time derivative of w and observe that none of the initial conditions as well
as none of the equations (4.69d]) — (4.691) depend on z and therefore the components of

Bi, o do not depend on this coordinate. We are interested in
1 22\ * 72 r?w?\ rw
Tcpz = §Y€1 <€0 + 2h2> (60 + o— 2h2 ) T -+ GB(,OZ . (471)

We solve these equations in the same way as in the previous subsection. For fixed
r we solve the system of ODEs in time and one algebraic equation and once we know
By (€0, €1, €2, G, o, B) we can compute the component of the stress tensor (4.71]). Torque
is computed with the composite Simpson’s rule with five nodes

R
M(GOa €1, €2, Ga Oé,ﬁ,t) = / 27TT2T¢Z(€07 €1, €2, Ga O[,ﬁ,’l“,t) dr.
0

First we fit only the experiment with the angular velocity w = 0.5 rad s, this is
done by minimizing absolute error

11

NT/ |E(t)—M(eo,el,eg,G,a,ﬁ,t)] dt.

g(eo, €1,€2,G, 0, B3,) =
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G [kPa] ¢ [107°s77 ¢ [kPas®™ 1] e [kPas] « Jé] N g
29.8 0.24 52.8 89 0.16 2.88 0.0061 0.0065

Table 4.8: Fitted parameters for the torque overshot experiment using power law like
model PL2012 for w = 0.5 rad s™1.

Obtained material parameters, maximum N and the value of minimizing functional g
are given in Table Note that we obtained o < 1 which means that asphalt binder
is a shear thinning material. The graph of the fitted torque is plotted and compared
with all non-linear models in Figure

In [21] we also fitted all three angular velocities w at once by minimizing L? norm
of relative errors

1/2
Grel = ((91}61)2 + (g?el)2 + (ggel)z) : (472)

By minimizing g,.; we get material parameters given in Table the graph of the
obtained result is plotted and compared with all other non-linear models in

G [kPa] € [1073 572 ¢ [kPa.s?®7!] e [kPa.s] o g
5.9 0.27 52.1 13.3 0.95 1.44

Table 4.9: Fitted parameters for the torque overshot experiment using power law like
model PL2012 for all three angular velocities w.

RaSr2000 model

In [21] we also used model RaSr2000 to fit the experiment by Krishnan and Narayan
(2007). Upon substituting the ansatz

t
p=plt.rz), v= (0, “’(h)m,O) , (4.73)
Byr(t,r,2) Bpy(t,r,2z) Br.(t,r, z)
Bﬁp(t) = | Brp(t,r,2) Byy(t,r,2) By.(t,r, 2) (4.74)
B,.(t,r,2) Bg.(t,r,2) DB..(t,r z)

into the governing equations for nonlinear model RaSr2000 ([3.49)) we get

0:—?;+G(a§7fr+i"—3f"+%>, (4.75a)
- (% 2 )
0= —gi +G (agf + B;"Z + 85;) : (4.75¢)

82’"’” = —ZBTT + ZA, (4.75d)
ag’;@ _ _Yp.+ %Bm, (4.75¢)
8§£z = —iBm (4.75f)
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0B G 2rw G
WW = _EBW + TBW + E)\’ (4.75g)
0B, G
ez Bt %Bm (4.75h)
BZZ .
9 _ _ngz + g)\7 (4.751)
ot 1 1
where 3
N o

2B,,B.. — B2, + B,

These equations do not seem to have an analytical solution. They can be noticeably

simplified in the following way. First, equations (4.75¢]) — (4.75f) have together with the
initial condition (4.54]) the solution

By =B, =0. (4.77)

Next, from equations (4.75d)) and (4.751) together with the initial condition (4.54) yields

B, = B,,. (4.78)

Furthermore, we observe that none of the initial conditions as well as none of the

equations (4.75d)) — (4.751) depends on z and therefore also the components of B,.ip( 9 do
not depend on this coordinate. In view of these results, equations (4.75)) simplify to

8]? 8Bzz Bzz B‘PGD
b _ . 4.
or ¢ ( or * r r)’ (4.750)
Op 0B,
5 = G - (4.79b)
OB G 2rw 2p
0B, G rw
=——B,,+ —B,., 4.
ot w e o
0B.. G 24
= _7Bzz — A 4.
ot H1 * Ml)\ (479)

Since we are interested only in By, we need to solve only the last three equations

(4.79¢) — (4.79¢)) for the three unknowns By, By, B, that depend on r and ¢.
The torque is obtained from the knowledge of T,

HoTw G
Tapz(,u%/«bl?Gvra 75) = W + GBgoz <M1arv t> .

Torque is computed with the composite Simpson’s rule with five nodes

R
M(M%MbG)t) = / 27TT2T<PZ(M2MU'1>G)T7 t) dr.
0

First only the experiment with the angular velocity w = 0.5 rad s~ is fitted which is
done by minimizing absolute error g,ps Obtained material parameters, maximum N and
minimizing functional g are given in Table .10} The graph is plotted and compared
with all non-linear models in Figure
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G [kPa] G/p [1/s]  pa [kPas| N g
5.7 0.81 242 0.0061 0.0227

Table 4.10: Fitted parameters for the torque overshot experiment using RaSr2000 model
for w = 0.5 rad s~ L.

In [21] we also fitted all three angular velocities w by minimizing L? norm of relative
errors

1/2
Grel = ((gl}el)2 + (93e1)2 + (gfel)2> : (480)

By minimizing g,] we get material parameters given in Table [£.11] the graph is plotted
and compared with all non-linear models in Figure [1.16]

G [kPa] G/pi [1/s] 2 [kPa s
7.4 1.09 24.8

Table 4.11: Fitted parameters for the torque overshot experiment using RaSr2000 model
for all three angular velocities w.

Models Quadl and Quad2

We fitted the experiment by Krishnan and Narayan (2007) using both models Quadl
and Quad?2 in [38]. The governing equations for model Quad2 for the problem under
consideration are the same as in the previous subsection, namely the equations -
(4.46]) (the only difference is that angular velocity w is now constant). The torque is
computed by . The governing equations for the model Quadl are

rw

Typ. = H2- + puBgz, (4.81)
0B G

8tw - 3TuB”" (=2Byr + Byp + B:2), (4.82)
0B rw G , 2u

a;‘mp = QWB(PZ - IB(‘DZ + QBWP (BT‘T' - QB(pip + Bzz) ’ (483)
0B rw G

8202 - WBZZ + ﬂBm (Brr —2Byp — 2B:2) (4.84)
0B G G

8tzz - _EB?@Z + 31 B2 (B + Bpp — 2B::) (4.85)

and the torque is computed using (5.141)).

First we start with fitting the data for one angular velocity w = 0.5 rad s~!. It turns
out that the model Quad2 with two natural configurations as well as the one natural
configuration Quadl model provide equally good results. However, this should not lead
one to the erroneous conclusion that the simpler model Quadl is as good as the more
complicated model Quad2. In fact, it is not. The model Quad1 is incapable of capturing
the previous experiment where one has different relaxation times associated with the
normal force and torque. Model Quadl has only one relaxation time associated with.
It is just in this particular experiment, Krishnan and Narayan (2007) did not measure
the normal force and we have to deal with only one relaxation mechanism associated
with torque.
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The parameter values that were obtained in fitting the model Quad2 and model
Quadl are provided in the Table (G1 means G for Quadl and pg is used instead of
s for Quadl). The graphs of the result are almost the same for both models Quadl and
Quad2 and they are depicted in the Figure together with the other two non-linear
models.

x 10
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Figure 4.16: Fitted torque, w = 0.5 rad.s~!.

Gi [kPa]  G» [kPa]  Gi/pi [1/s]  Ga/pe [1/s]  ps [kPal N 9
Quad2 5.6 37.4 0.38 13.70 23.2  0.0061 0.0045
Quadl 6.4 - 0.42 - 25.5 0.0061 0.0064

Table 4.12: Fitted parameters for models Quadl and Quad2, w = 0.5rad.s™.

For comparison, power law like model PL2012 with 6 material parameters has g =
0.0065 which is comparable to the fit of the model Quadl with only three material
parameters. However, model RaSr2000 model with three material parameters has g =
0.0227 (more than three times larger).

If we try to use model Quad2 with the parameters obtained during fitting the angular
velocity w = 0.5 rad s~! (see Table for prediction of the experiment with the two
lower angular velocities we get the result depicted in the Figure [f.17] We can see that
the prediction is quite satisfactory, to be more precise the measure g defined by ,
where N; are the maximums of individual experiments, is equal to 0.0996. Thus, using
material parameters obtained by fitting the experimental data for w = 0.5 rad s~!
we can predict experimental data for lower angular velocities w = 0.25 rad s~! and
w = 0.125 rad s7 1.

Further, we fit all three angular velocities with one set of parameters. For fitting we
prefer the experiment with w = 0.5 rad s~! because two other experimental data are
too flat. Let us define a new functional

3 1 L 5 L3
Gpref, = ﬁlgabs + Egabs + ﬁggabs
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Figure 4.17: Model Quad2, parameters from Table

that is minimized.

The material parameters are given in Table [£.13] N; = 0.0061 is the maximum of
torque for w = 0.5 rad s~!, Ny = 0.0033 is maximum of torque for w = 0.25 rad s~ ! and
N3 = 0.0016 is maximum of torque for w = 0.125 rad s~!. However, we also computed
the functional g given by in order to make a comparison with predictions of the
models PL2012 and RaSr2000.

Gi [kPa] G, [kPa] Gi/pa [1/s|  Ga/pa [1/s]  ps [kPal 9 Gprety
Quad2 3.7 35.5 0.46 8.2 23.1 0.071 0.096
Quad1l 5.0 - 0.37 - 26.2 0.091 0.107

Table 4.13: Fitted parameters for model Quad2 for all three angular velocities w.

In [2I] we fitted this experiment using model PL2012 with six material parameters
with g = 0.088 and gprer, = 0.139 and using model RaSr2000 g = 0.101 and Jpref, =
0.156 4

The graphs of all non-linear models are plotted in Figure zoom to t = [0, 1]
is plotted in Figure According to the absolute error g the best fit gives model
Quad2. Model PL2012 with 6 material parameters is comparable to Quadl with only
three material parameters and the worst is model RaSr2000. Further, in Figure it
can be seen that model Quad2 is for all angular velocities much better at the beginning
of the experiment than the other models.

Note on comparison of the material parameters for Quad2 model obtained
for different experiments Model Quad2 was used to fit all three sets of experiments
— Monismith, Secor (1962), Narayan et al. (2012) and Krishnan and Narayan (2007).
Experiment by Monismith and Secor was performed with asphalt concrete which is very

4 Tt is important to remind that the fit of all three angular velocities using PL2012 and RaSr2000
models was obtained by minimizing relative errors which is a handicap for these two models when
comparing absolute errors. However, the fit was done in order to obtain the best looking fit using
power law like model PL2012 and one can compare both fits visually. Moreover, when fitting only one
angular velocity w = 0.5 rad s™!, the absolute error was used for all non-linear models and models
Quad2 and Quadl have lower errors than models PL2012 and RaSr2000.
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Figure 4.18: Fit of all angular velocities using all non-linear models, zoom to ¢ = [0, 1].
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Figure 4.19: Fit of all angular velocities using all non-linear models.

different from asphalt binder used in remaining two experiments. Asphalt binder used
by Krishnan and Narayan (2007) at temperature 35 °C is quite similar to unaged base
binder at temperature 35 °C used by Narayan et al. (2012). In Figure we can
compare the torques for w = 0.5 rad s~! (for t < 0.5, after that w = 0 in experiment by
Narayan et al. (2012)) and we find out that the difference is approximately 15%.

In Table we can compare obtained material parameters (due to the symmetry
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Figure 4.20: Comparison of experimental data for the torque from Krishnan (2007) and
Narayan (2012).

of the natural configurations in model Quad2 we can swap (G1, it1) and (Ga, p2)), three
of five parameters are similar (15% and lower), two parameters are different (30% and
70%). According to the fact that different materials were used in both experiment, the
similarity of the material parameters is reasonable.

Gi [kPa] Go [kPa] Gi/pa [L/s|  Ga/ps [1/s|  ps [kPal
Narayan (2012) 50.2 3.45 9.80 1.68 19.7
Krishan (2007) 35.5 3.70 8.20 0.46 23.1

Table 4.14: Comparison of material parameters for similar materials used from two sets
of experiments: Krishnan and Narayan (2007), and Narayan et al. (2012).
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Chapter 5

Numerical solution of initial and
boundary value problems for
selected rate-type fluid models

In this chapter we define weak formulations for two standard viscoelastic models Old-
royd-B and Burgers, and for two new viscoelastic models Quadl and Quad2. Further-
more, we introduce finite element method based on these weak formulations for the
numerical computation of different problems in fixed and deforming domains.

At first we compute two benchmark tests using Oldroyd-B model and model Quadl
for proving abilities of our numerical method. As the next step, we perform full simu-
lation of the experiment using the fitted experiment parameters with the model Quad2
and verify that the solution of our full simulation agrees with the assumption for the
simplified computation used for the fitting.

Finally, we introduce the Arbitrary Lagrangian-Eulerian (ALE) formulation which
enables us to compute the problems in time-varying domains. We use this approach to
simulate real life problems, for example “rutting” of roadways or rolling of the asphalt
with our new models.

We abbreviate “the initial and boundary value problem” by IBVP, and “the boundary
value problem” by BVP.

5.1 Weak formulation for BVP and IBVP involving Oldroyd-
B, Burgers, Quadl and Quad2 models

In this section we derive formal apriori estimates for unsteady Oldroyd-B model (2.10)
and Burgers model (3.255) and also apriori estimates for models Quadl (3.154]) and
Quad2 (3.239)). Furthermore, we define a weak formulation for all these models.

Initial and boundary conditions For time-dependent problems we assume that the
material is at rest at ¢ = 0, i.e. the initial conditions are the following: v(¢ = 0) = 0,

107



CHAPTER 5. NUMERICAL SOLUTION OF INITIAL AND BOUNDARY VALUE
PROBLEMS FOR SELECTED RATE-TYPE FLUID MODELS

p(t =0) =0 and

By, (t=0)=Bg, ,(t=0)=I for Quad2 model, (5.1)
kpry (E=10) =1 for Quadl model, (5.2)

B(t=0) =1 for Oldroyd-B model, (5.3)
Bi(t=0)=Ba(t=0) =1 for Burgers model. (5.4)

The problems are solved in domain ). For the boundary conditions we assume
that the boundary 0f2 consists of two parts I'y and I'p such that 'y UT'p = 9 and
I'vy NT'p = 0. We suppose that Dirichlet boundary condition v = vp is prescribed
on I'p and the normal traction Tn = t is given on I'y. For the tensors B; in case
of Oldroyd-B and Burgers model, and B in case of models Quadl and Quad2 no
boundary condition is prescribed.

In derivation of apriori estimates, for simplicity, we suppose that v.= 0 on whole

boundary 0f).

Fps ()

5.1.1 Apriori estimates for unsteady Oldroyd-B and Burgers model

We show the apriori estimates only for Burgers model because in case of Oldroyd-B
model the transport equation for the second tensor Bs is missing and the estimates are
the same as in case of Burgers.
In order to obtain the apriori estimates for Burgers model we use the property
saying that
trB; —d>0,:=1,2, (5.5)

where d is the space dimension.
First, we multiply balance of linear momentum ([1.13)) by v, integrate over 2 and

use Gauss theorem
3 dt/ Iv|?de = — /T Ddz, (5.6)

where the Cauchy stress tensor T is defined through ([3.2554 . Then we take the trace
of (3.255b)) and (3.255¢)) and integrate the result over €2

d
g tr(Bl—I) d:l:—i—/tr (B; —1) dx—2/B1 Ddzx, (5.7)
d
= tr(Bg—I) dx—l—/tr (B2 —1) dx—Q/BQ Ddx (5.8)
andweperform+G1/2><+G2/2><
Gy d G
2 2 1 1
B, -1 — B, -1
th/\v\ dx+u3/|Vv| dot G [ o@D des 2 [ @1 do
Gy d

Ga
t B,—-1I)d — tr(Bo —I)de =0. (5.9
T r(Bo )$+2TQQY(2 ) d (5.9)

Relation (5.5)) guarantees that all terms are non-negative. Using Lemma we obtain
that all components of B; are bounded in the same space as tr B;. Hence, see Temam
[63] for example,

Ivllv <C, Bl o101 (@yaxe < Cs IBall oo 0,711 (0)yaxa < C, (5.10)
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where V = L>(0,T; L?(Q))? N L2(0, T; W12(22))9. Hence
IVIILa(o,r)xye < C for d =2, (5.11)
||v||L10/3((0,T)><Q)d < C for d = 3. (512)

The estimate for pressure is obtained from the balance of linear momentum, we apply
divergence on balance of linear momentum ((1.13) and get

— Ap=divdiv(v®v —2u3sD — G1(B; — I) — G2(B2 — 1)) (5.13)
which suggests that pressure p can at most satisfy the following estimate

Izllv,, <C, (5.14)

where ) )

_ L¥(0, T L (Q2)  ford=2,

Voo = {L5/3(0,T; LYQ) ford=3. (5.15)

Note on apriori estimate corresponding to reduced thermodynamic inequal-

ity

If 4 denotes the Helmholtz free energy corresponding to ([3.222)) and it is given by[|

G Go

v=5, (rBe,, ) — d = In(det By, )+ )

and the rate of entropy production ¢ is given by ([3.223))

Kpg (1)

(trB —d—ln(detB,iPQ(t))) (5.16)

¢ = 2u3|D|* + 211Dy, () Cryy ) Py T 242D, Crnpyy* Dty (5.17)
then the reduced thermodynamic inequality (1.18]) in the form
— pzbdat—}—/f—/T-D (5.18)
Q Q Q

can be obtained in the following way: We start as in the previous apriori estimate ([5.9));

we perform G1/2 x (5.7) + G2/2 x (5.8]) an obtain

Gl d G G2 d
B, -1 — B, -1I)d —_— By —1
5 & tr( 1 )daH—2T1 tr (By —I) do + 5 & tr( o—1I)dz
—i—ﬁ tr(BQ—I) dx:Gl/Bl‘Dd$+G2/B2'Ddx. (519)
27’2 0 Q Q

Jo T-Dde—2u3 [, |D|? da

Further, we compute the following G /2 x (3.255b)) ~B1_1 +Ga /2% ([3.255¢)) ‘B2_1, integrate
over ) and obtain

Gl —1 G -1
2/B1 dx+277'1 tI’(I—Bl)diL‘

+G2/BQ-B21dx+G2/tr(I—B21) dz =0. (5.20)
2 Q 27’2 0

Note that tensors B; and B for Burgers model in our thermodynamical approach correspond to
tensors B and B

Fpy(t) Fpa(t)”
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Now, we subtract relations (5.19) and (5.20) and get another form of apriori estimate

Gy _
> [dt/tr(Bl—I dx—/Bl lldx}

—{—622 [:;t/tr(Bg—I dx—/BQ B, d$:|—|—2,LL3/|D|2dl'

+& tr(B1—21+B1_)da:+2G— tr(B2—2I+BQ_)dx:/T-de.
Q Q

21 i)
(5.21)

Note that according to (5.5) trB; > d and also trB;1 > d for ¢ = 1,2, and thus
tr (B1 —2I + Bl_l) is non-negative. In order to show that (5.21)) is equivalent to ([5.18|)
we have to show that

d G| d . Gy | d : 1
¢ =2u3|D> + Gy (B —21+B') + G2y, (B —21+B;'). (5.23)
2n ! 27 2
Since
d o
aln(det B)=B-B
relation ([5.22)) holds and first two terms in ([5.21)) can be written in the form
d
u pw

The integrand p1) is non-negative accordmg to (2.37)). In order to prove (5.23)) we have
to show that

Gy

2“1Dﬁp<z>cﬁp<t) "D,y = 27, o (B”zv(t) 21+B, 1(») (5.24)

where 7 = 11 /G1. Relation (5.24)) is shown by using (3.163]):
QMIDK‘p(t)CK‘p(t) = Gl(Cﬁp(t) - I) (525)

We take the scalar product of (5.25) by Dy, and we obtain
201D Cryiy - Dy = G1(Cryyy = 1) - Doy (5.26)

then we take the trace of (5.25) and multiply the result by G1/(2u1)
Gl

GiDyy - Oy = 5o i1 (S — 1) (5.27)

Further, we take the scalar product of (5.25) with C_-! and multiply the result by

Fip(t)
G1/(241) ,
G

1
GrrDy,, =5 L <I — o m) (5.28)
Finally, by combining (5.26)), (5.27) and (5.28)) we obtain
G
241D, Cryy Dy = ot (Cupy —21+C1 L)) (5.29)

which is equivalent to ([5.24]) because tr B, ., =trCyg,, and tr (B;pl(t)) = (C*1 )

Fp(t)
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5.1.2 Weak formulation for IBVP involving Oldroyd-B and Burgers
model

Since B; is bounded only in L>(0,T; L'(Q))%*¢ we derive a weak renormalized formu-
lation which is obtained by taking the Hadamard product of , resp.
with (RL)](B1), resp. (RF),(B3). We define the Hadamard product of two matrices
as (in the three-dimensional setting the definition is similar)

A1 B A12312>

5.30
A1 By AgeBa (530)

AoB:<

Further, we define RY(B) € R as a set of continuously differentiable matrix functions
in the form

ORY,  ORL

L L
R0 = (Rl whin) ®® |08 Ge) ow
0B 0Ba
where
R={(R )¢ j=1 continuously differentiable matrix function of Bij;, RE +(Bij) = Bij
for |Bl-j| < L and Rij( ij)=L+1for |[Bj|>L+1, L=2,...,00}.

Then the renormalizations of the transport equations (3.255b) m and m are equal
to
OREF (B, 1
%EZ)HVRZ.L(BZ-H ((Vv)Bi - By(Vv)T + =(B; - I)> o REY(B;) =0, i=1,2.

Ti

(5.32)

Note that (RF)(B;) = 0 for |B;| > L+ 1, and thus the last term in (5.32) is integrable.
The weak renormalized solution is obtained by multiplying balance of mass (1.11)) by
test function ¢, balance of linear momentum ([1.13]) by test function q and renormalized
equations ([5.32) by test functions Q; and Q3. The Gauss theorem is applied on the

convective terms in (1.11]) and (5.32)).
The weak renormalized solution 1s the following: The quadruple (v, p,B1,B2) € V' x

Vpo x L2(0,T; LH(2))4* x L*(0, T; L(92))#*?, such that v —v € L2(0,T; Wy 7 ()¢
is a weak renormalized solution of the Burgers model (3.255) in Q c R¢ if

/ tr(Vv)gdz =0, (5.33a)
Q
/ {Zt (Vv)v } qdac—/QT-quJL’—i—/FNt-qu:07 (5.33b)
T=—pl+us ((VV) (vV)T) 1 G1(By — 1) + Go(By — 1), (5.33¢)
/ GRL ( VV Bl B1 VV) + %(Bl — I)) o (Rf)/(Bl) . Ql dzx
—/ R{(B1)®v-VQidz+ [ (v-n)R{(B1) Qi dS=0, (5.33d)
) Q 1519] )
L
/Q 8R2a(tB2) + (-(W)m —Bo(Vv) + ;12(32 - 1)) o (RYY(By)| - Qudz
—/ R (B2) @ v-VQa dm-l—/ (v-n) R¥(B2) - Q2dS =0 (5.33¢)
Q o0
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is satisfied for all (¢,q, Q1, Q2) € CH(2) x V; x CH( Q)4 x C1(Q)4*4, all RF € R and
a.a. t € (0,T), where V; = {v € C}(Q)%,v=0onT'p} and V|, = vp.

For numerical implementation all computations are done for R;;(B;;) = B;; with the
original convective term in the transport equations for B;, then the weak formulation
is in the form

/ tr(Vv)gdz =0, (5.34a)
Q

/ [-i— (Vv) ]-qd:c—/T-qux—i—/ t-qdS =0, (5.34Db)
Q INY;
T

= —pl+ us ((VV) -+ (VV)T) + Gl(Bl — I) + G2<B2 — I), (5.340)

/ aalil + (VBI)V — (VV)B1 — Bl(VV) :1 (Bl — I) -Qidz =0, (5.34d)
/ 88]? + (VBQ)V — (VV)BQ — BQ(VV) :2 (32 — I)] -Qadz = 0. (5.346)

5.1.3 Apriori estimates for unsteady models Quadl and Quad2

We show the apriori estimates only for model Quad2 because in case of model Quadl
the transport equation for the second tensor B,%2 () is missing and the estimates are
the same as in case of model Quad2. In order to obtain the apriori estimates for model
Quad2 we use the property saying that tr B —d > 0,i = 1,2, where d is
the space dimension.

First, we multiply balance of linear momentum by v, integrate over ) and

use Gauss theorem
th/ v|?dz = — /T Ddz, (5.35)

then we integrate the trace of (3.239b|) and (3.239b)) over 2

d d 2 d
A (Bnm(t) dx + / B, | dz = 2/ Bi . -Ddz, (5.36)
d d 2 d
o Qtr (B%(t) dx + / B! | [Pde= 2/ Bi ,-Ddu (5.37)

and from (5.35) + G1/2 x (5.36) + G2/2 x (5.37)) we get

Gp d
2 2 2
3 dt/ [v| dx+u3/ |Vv|*de + — T tr <B,€p o da:+2m/| le(t)! dzx

G2 d d 2
+ 25 tr(B%(t)) d:c+2u2/\B Pdr=0. (539)

Rp; (¢)

Equation (|3.244) guarantees that all terms are non-negative. Thus, we obtain the
following apriori estimates (using Lemma we obtain that not only tr By, 18

bounded in L°(L') but the whole tensor B, o)

[vllv <C, HBfipi(t)HLOO(O,T;Ll(Q))dXd <C, HBd

Fps ()

HLQ(O,T;Lz(Q))dXd S C,'L - 1, 2,
(5.39)
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where V = L>(0,T; L?(Q))? N L2(0, T; W12(22))9. Hence

VIl Lago0,r)x)e < C for d =2, (5.40)
IVl z1oss 0,1y x0ya < C for d = 3. (5.41)

Note that by summing G1/2 x (5.36)) + G2/2 x (5.37)) we obtain the reduced thermody-
namical inequality ((1.18) in the form

— va,/;dx—i—/Q{:/QT-D, (5.42)

where
B, d Go B, d 4
1’/) - (tI‘ Kpy(t) — ) + Z (tI‘ Kpo(t) — ) (5' 3)
is the Helmholtz free energy corresponding to the internal energy (3.215]) used in the
derivation of model Quad2 and

24 G2|

¢ =2u3DJ* + | ? (5.44)

Kpy (1) Fpa ()

is the mixed alternative form of the rate of entropy production that could have been
used in the derivation of model Quad2 (compare the standard form (3.100) and the
alternative form (3.115]) used in the derivation of model Quadl).

We would like to show that whole tensor By, is bounded in L%(0,T; L2(Q))dx4

and not only its deviatoric part B,,€ e It holds that

1
d(tr By, )% (5.45)

Gi 2, G3 >
Thus, we add/ <2d,u1 (trBy, )" + 2415 (trBy,, ) > dz to ((5.38))

B I+

2 _
,{Pi(t)| - | Fopi (1)

G d
2 2 2
b [ [+ S8 [ (B, ) ars Z5 [, as

Gy d .
-+ 7@ tr (B’ipz(t) dﬂi’ + 2#2/ ‘B PQ(t)| dr =
G% 2 2 2
trB,, tr B, )d . (5.46
/Q (Qdm \( ’ ”1(”), +2du2 \( ' ”2“)), z. (5.46)
(trBﬁpl(w)(trB,ﬁpl(t)) (trB”pz(t))(trB'ipg(t))

is bounded in L'(0,T; L'(Q)) we can apply Gronwall
and finally we obtain

Since we know that tr B,{p‘(t>
inequality on the term tr B, @

HBRpi(t)HVB <C,i=1,2, (5.47)
where Vg = L*>(0,T; L' ()¢ N L2(0,T; L*(Q))%*9. The estimate for pressure is
obtained from the balance of linear momentum, again we apply divergence on balance
of linear momentum ((1.13)) and get

— Ap = divdiv (V ®v —2usD — GlBH 0 Ggde (t)) (5.48)
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which suggests that pressure p can at most satisfy the following estimate

Ipllv,,, < C, (5.49)

where 2 2(q)
L#(0,T; L“(Q for d = 2,
Vra = {L5/3(0,T; L¥3(Q)  ford=3. (5.50)

5.1.4 Weak formulation for IBVP involving models Quadl and Quad2

In case of model Quad2 (and also Quad1) no renormalized solution is needed. The weak
solution is the following: The quadruple (v,p,B1,B2) € V x V},, x Vg x Vp, such that

v —¥ € L0, T; Wy (Q))? is a weak solution of the model Quad2 (3.239) in  C R¢
if
/ tr(Vv)gdz =0, (5.51a)
Q

/ [—1— (Vv)v ]-qu—/T~qum+/ t-qdS =0, (5.51b)
I'n
T

= —pL+p3 (VV) +(VV)") + GiBY | +G2By (5.51c)
0B, G
p1(t) T 1
/Q atl B (VV)B”pl(t) - B”m(ﬂ (VV) + EB’im(t) Kpy(t) Qud

_/ B, o,y ®V-VQi dx+/ (v-m) By, ,, - Q1dS =0, (551d)
{ o0

OB G
Kpy () T 2
— - (Vv)B o B”PQ(O (Vv)" + 12 B”Pz(t)B"p (t)] Qzdz

Fpa(t)

_/ Bs,, @V-VQadr + / (v-n) By, -QedS=0, (55le)
Q a0

is satisfied for all (¢, q, Q1, Q2) € CH(Q) x V1 x C1 ()4 x C1(Q)4*4 and a.a. t € (0,T),
where V; = {v € C}(Q)%2,v =0 o0n I'p} and V|p, = vp. Since the last two equations
are transport equations for B,.gpi w8 =12, boundary conditions for B,.gpl( 9 and B,%2 @
have to be prescribed on the inlet.

For numerical implementation all computations are done using the weak formulation
with the original convective term in the transport equations for Bﬁpi(t) (we do not
prescribe any boundary condition for tensors B,Qpi ( t)), so the weak formulation is in the

form

/ tr(Vv)gdz =0, (5.52a)
Q
ov
pl—= +(Vv)v|-qdz— [ T -Vqdz+ t-qdS =0, (5.52b)
Q ot Q Iy

T = —pI + 13 ((Vv) +(VV) ) +GiBL  + @B L (5520)
Brow | (vp Vv)B B v+ B, . B dz =0, (5.52d
o ot +(VBe, )V = (VV)Be, () = By, (V) ) PRy (1) "Qudz =0, (552d)

OBreyacy (VB. . )v—(Vv)B B v+ 1B, B dz=0. (5.52
o o wpa )V = (VV)Br ) = B,y (VV +7'2 Fpa 0 Brpyy | - Qzde = 0. (5.52¢)
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A short overview of mathematical results. In the previous section we derived
formal apriori estimates for both standard models Oldroyd-B and Burgers and the new
non-linear models Quadl and Quad2. We have not studied other mathematical results
concerning the existence of solution for models Quadl and Quad2.

It is necessary to recognize that even in the analysis of standard Oldroyd type models
there are several open problems concerning long time and large data existence. Lions,
Masmoudi [33] and Bejaoui, Majdoub [4] proved the global in time existence of the
weak solutions for large data of the viscoelastic Oldroyd model with the corrotational
(Jaumann) derivative. In case of standard Oldroyd-B model this seems to be an open
problem. Short time results or long time results for small data were proved in [18] by
Guillope and Saut. Further interesting results concerning the local well posedness of
the initial boundary value problem for the Oldroyd type fluids have been done in several
other studies, see |26}, 311 [32].

5.1.5 Weak formulation for BVP involving models Oldroyd-B, Burg-
ers, Quadl and Quad2

In the previous Subsections we derived apriori estimates and possible weak formulation
for evolutionary Oldroyd-B and Burgers models and models Quadl and Quad2. In this
subsection we write the weak formulation for steady models.

Weak formulation for BVP involving Oldroyd-B and Burgers model

Inspired by the weak renormalized solution for Burgers model (therefore also Oldroyd-
B model) it can be expectedthat the weak formulation of steady Burgers model is the

following: The quadruple (v,p, B1,Ba) € WH2(Q)4 x LY(Q) x LY(Q)™*? x L1(Q)*d
such that v —vp € VVO1 ’?D(Q)d is a weak renormalized solution of the Burgers model

in Q@ C RY if
/ tr(Vv)gdz =0, (5.53a)
/Qp[(Vv)v]-qdm—/ﬂT-qux—i—/FNt‘qu:O, (5.53b)
T = pl+us ((VV) n (vV)T) 1 Gi(By — 1) + Go(By — 1), (5.53¢)
/Q (—(vv)B1 —-B.i(Vv)" + Til(B1 - 1)> o(RYY(B1)| - Qi —RI(B1)®v-VQ;dz

+/ (v-n) RI(B1)-QidS =0, (5.53d)
o0

/Q (*(VV)B2 - Bz(Vv)T + %(Bg — I)) o (Rg)’(B2) -Qa — RQL(BZ) ®v-VQadz
+/ (v-n) Ry (B2) - Q2dS =0  (5.53¢)
o0

is satisfied for all (¢,q,Q1,Q2) € CH(Q) x V1 x CL(Q)¥*4 x CL(Q)*4 all RF € R,
where V1 = {v € C}(Q)%,v = 0 on I'p}, o is the Hadamard product defined by (5.30)
and R(B) is defined by ({5.31]).

For numerical implementation all computations are done for R;;(B;;) = B;; with the
original convective term in the transport equations for B;, then the weak formulation
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is in the form

/ tr(Vv)gdz =0, (5.54a)
Q
/Qp[(Vv)v]-qu—/QT-qux—k/FNt-qu:O, (5.54b)
T=—pI+u3 ((Vv)+ (VVv)") + Gi1(B1 — 1) + G2(B2 - I, (5.54c)
/Q (VB1)v — (Vv)B; — By (Vv)T + Tll(B1 ~I)|-Qidz =0, (5.54d)
/Q (VB2)v — (Vv)By — By(Vv)T + 712(32 - I)] -Qadz =0. (5.54¢)

Weak formulation for BVP involving models Quadl and Quad2

Inspired by the weak solution for model Quad2 (and also model Quadl) it can be ex-
pectedthat the weak formulation of steady model Quad2 is the following: The quadruple

(v,p,Be, (1), Br,, ) € Wh2(Q)? x L2(Q) x L2(Q)P? x L2(Q)%*9, such that v —vp €
W()l”lgD(Q)d is a weak solution of the model Quad2 (3.239) in Q c R? if

/ tr(Vv)gdz =0,  (5.55a)
Q

/p[+(Vv)v}~qu—/T-qux+/ t-qdS =0, (5.55b)
Q Q Ty

T = —pl+ps ((Vv) + (Vv)T) +GiBY  +GyBY

Fpy (t)

iy (5.55¢)

[ G
T 1 d
/Q = (V)Bs, () = B,y (VV) " + EB“mmBﬁm(t) Qi =B, () ®V-VQudz

+/ (v-n) By, , -QidS=0, (5.55d)
o0

[ T, G2 d |
L — (Vv)Bnm(t) — Bﬂm(f,) (Vv)" + EB”WU)B%z(t) -Qg — Bﬁm(t) ®v-VQadx

+ / (von) By, -Q:dS =0, (5.5%)
o0

is satisfied for all (¢,q, Q1, Q2) € CH(Q) x V} x CH(Q)¥*4 x C1(Q)?*4, where V] = {v €
Cl()2,v=0onTp}.
For the numerical implementation all computations are done using the weak for-

mulation with the original convective term in the transport equations for B, @) the
steady weak formulation is in the form
/ tr(Vv)gdz =0, (5.56a)
Q
/p[aavar(Vv)v} -qdx — T-qux+/ t-qdS =0, (5.56b)
Q 13 Q I'n

T = —pI + ((vV) + (vV)T) +GiBY, , +GaBL (5.56¢)

1
/Q (VBr,, )V = (V¥)Bu,, () = Br, () (V) + nB“P1(t)sz1(t):| Qudz =0, (5.56d)

1
/Q (VBszu))V N (Vv)Bﬁpzm - B“pzm (VV)T + 7'2BKIJ2(1/)BiP2(t):| *Qzdz =0. (5.56¢)
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5.2 Finite element method

In this section we show how the Finite element method works on an example viscoelastic
model QuadlE] in two dimensional space. In the first Subsection we describe how the
steady solution is found, in the second Subsection we show how the evolutionary problem
is solved and describe four different time discretizations.

5.2.1 Steady solution of model Quadl

Let us remind that the strong formulation of model Quadl is (for simplicity we denote

Cauchy-Green tensor By, by B)
divv =0,
p(v-Vv)=divT,
T = —pI+ ps (Vv + (V)T + GB, (5.57)

v-VB - (Vv)B - B(Vv) = —%BBd.

These equations has to be satisfied inside €2, on the boundary 02 consisting of two
non-intersecting parts I'p and 'y it holds that v=v on I'p and Tn =t on ['y.

Finite element method is based on the weak formulation. The weak formulation
for model Quad?2 is described by , in case of model Quadl the equation for By is
missing. Here we define the Galerkin system. The problem is to find (v, pp, Bp,) such
that

Pr € Ph7
vy, — vV € Vy,, where v, = vp on I'p,
B, € B,

satisfying
/ (diV Vh)”(/Jh dx = 0, V¢h € Ph,
Qp
/ p(Vh - Vvi) '<Phd$+/ Th - Ve, dz 2/ th - ppdS, Ve, €V,
Qh Qh I'n

1
/Q (Vh : VBh — (VV)B}L - Bh(Vvh)T) . Qh dz = —7_/9 (BhBZ) : Qh da:, VQh € Bh,
h h

where
Ty, = —ppl + po (Vv + (Vvp)T) + GBY

and the finite dimensional spaces are following

Py = {qh € L*(Q), qn|r € P{C(T) VT € Th} : (5.58a)
Vi, = {Wh S (C’(Qh))z,wh!T € QQ(T) VT € 771} , (5.58b)
By, = {Kj € (C(%))* % Kn|r € Q2(T) VT € T} . (5.58¢)

2In case of another viscoelastic model the only difference is in the transport equation for tensor B,
this tensor is always approximated by biquadratic finite element that is defined later.
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The domain €25, has a polygonal boundary and it is an approximation of the domain
Q. By 7T we denote a set of quadrilateral elements T covering the domain 5. We
assume that 7y is regular which means that any two quadrilaterals are disjoint or have
one common edge or a common vertex.

The combination of Q2 (standard continuous biquadratic with nine degrees of free-
dom per quadrilateral, see Fig. )) for the velocity and P (discontinuous linear
with three degrees of freedom per quadrilateral given by the value and two derivatives
in the middle, see Fig. |5.1p)) for the pressure is a stable pair for velocity and pressure
satisfying Babuska-Brezi condition. Extra stress part B is also approximated by Q2
elements.

@ © S

b) Q2 element for the
velocity v and extra
stress tensor B

a) Plis¢ element for the
pressure p

Figure 5.1: Location of degrees of freedom on the reference quadrilateral

Now, let us denote {qi}ézl a usual Finite element basis of the finite dimensional
space Py, {w;}", a basis of the finite dimensional space V}, and {K;}?_; a basis of the
finite dimensional space Bj. Then we can express the approximate solution in the form

l
ph=">_ P, (5.59)
=1
m
Vi =Y+ Y Viws, (5.59h)
=1
n
B, =) BK, (5.59¢)
=1

where [ is equal to three times number of all quadrilaterals and m and n is equal to the
number of all vertices + number of all edges + number of all quadrilaterals. We use
the following test functions in the Galerkin system

Yn=q5, j=1,...,1, (5.60a)
er=w;, j=1,....m, (5.60D)
Q. =K;, j=1,...,n, (5.60c)
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after substitution of (5.59)) and (5.60) into (5.58) we get
g/ (Gh—s—Z%wZ)(V\?h—kZkak)} -ij—l—n V{/h~VW]‘—/ th-Wj-i-
2 i=1 Qn Iy

k=1

N1(V); Fy

+iVm
i=1

VWZVWJ*ZPZ/ qldIVW]+

Qy Q

=1

Aji

i=1

—Cji

1
I{i-VW]‘—5(1'/I‘I<i)diVWjZO7 j=1....m
Qp

Ej;

/ i ( <\7h + i Viwi> - (BLVKy}) — <V\7h + i Vivm) (BxKy) — (BeKy) (veE + i ViVw;

)

k=1 i=1 i=1
N2 (V,B);
1 n n 1 ‘
+/ ;ZBsz (ZBk (Kk - 2(trK,@I)) ‘K;=0, j=1,...,n
Qn ' i=1 k=1
N3(B);
Z%/ (divwi)g; dm+/ (divin)g; =0, j=1,...,1
i=1 Qp Qp
—Cij G,

which can be rewritten into the set of (I + m + n) nonlinear algebraic equations

v AV +N;(V)+CP+EB+F
¢ |B|:= N>(V,B) + N3(B) =0,
P ~-CTv+G

where vector V contains components V;, vector B components B; and vector P com-
ponents P;. We solve it by the Newton method

J§ =R, (5.61)

where the Jacobian J is computed by finite differences

Vk

k
Do ]Ig)k Vk—l—l Vk Vk
J=——7 and =B |- [B*|], R=-0|BF
5 }37 pk+l Pk pk

P

We iterate in the Newton method in this sense

Vk+1 Vk
B | = | BY | +wé, we(0,1],
Pk—l—l Pk

where w is adaptively chosen to improve the convergence. Stopping criterion are the L?
norm and the energy-like norm of the residuum. The set of linear algebraic equations
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(5.61]) for the unknown 4 is computed by the direct solver UMFPACK (see [12]) for small
problems, for larger problems iterative solver GMRES with ILU1 preconditioning from
the package SPLIB by [§] is used. The implementation is based on the code developed
in [20].

5.2.2 Time discretization for IBVP involving the model Quadl

In the previous subsection we described spatial discretization of the problem. In this
section we focus on time discretization of the evolutionary problem described by

divv =0,

— +p(v-Vv)=divT,

5.62
T = —pIl+po (Vv + (Vv)T) + GBY, (5:62)

9B +v-VB - (Vv)B-B(Vv)l = —lBBd,

ot T

which is solved in £ x [0, 7]. We split the time interval [0, 7] into N subintervals using
N+1timest":0=1" <t <... <tV =T, where At" :=t"t!1 — " is the n—th time
step, n =0,..., N — 1. We use four different one-step time schemesﬁ] in order to solve
which is generally in the form

ou(z,t)
ot

4 f (u(e, ) = 0 in Q x [0, 7. (5.63)

At every time level "1 we have to find solution for u"*1(z) := u(z,to + Y AtY).
All time schemes are implicit, thus on every (n + 1)-th time level the space problem
is solved using FEM described in the previous Subsection. The time derivatives are
discretized by four different time schemes:

(1) Implicit backward Euler scheme (BE):

u" () — u"(z)
Atn

+ f (W (2)) =0 (5.64)
which is the first order unconditionally stable time scheme.
(2) Crank-Nicolson scheme (CR):

u”+1(x) —u(x) 1 n " B
INT +5 (f (@) + f (" (@) =0, (5.65)

which is the second order conditionally stable time scheme.

(3) Implicit three-step §-scheme (TH): For = 1 —v/2/2, o = (1 —26)/(1 — 6),
the time derivative is approximated in three steps (requires three times more CPU

3By one-step time scheme we mean that it is enough to remember the solution on the last time level
but the time scheme can consists of more than one step.
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time compared to BE time scheme):

uI(@) —ut(@) o "
1. XD = af(u"s (@) + (1 — ) f(u"(x)),
o W@ W@ m o) ¢ et @)
' (1—20)Atn |
s u(z) — u"*%(x) _ af(u”“(a?)) +(1— a)f(un%(x))’
OAL™

This is the second order unconditionally stable time scheme (see for example [16]).

(4) Implicit Glowinski three-step scheme (GL): For § := 1 — 1/4/2, it consists
of two implicit Euler steps and one explicit Euler step (requires two times more
CPU time than BE time scheme)

"t (x) — u(x n
b (Q)At” - ().
1-46 20 —1
n+1—-60 __ n+60 n
2. wu = U +7€ u'",
un-l—l T 7un+1—9 T "

This time scheme is better that the second order (almost the third order according
to [I7]) conditionally stable time scheme. This time scheme was proposed by
Glowinski [I7] and tested in [64].

Since f in ALE formulation instead of ([5.63]) includes time derivative of u, i.e.

ou(x,t)
ot

ou(z,t)
ot

+f <u(:v,t), ) =01in Q x [0,7], (5.66)
it is not clear how for example the Crank-Nicolson time scheme or three-step 6-scheme
should be implemented in case of with fully mixed time derivatives. For this
purpose BE time scheme and GL time scheme are used.

For reader’s convenience we provide time discretization scheme of where BE
scheme is used. It leads to

divv™t! =0, (5.67a)
v v n+1 n+1 A
pT + ,0<V -Vv ) =divT s (567b)
Tn+l — _pn-i-lI + po (an—H + (an+l)T) +,G (Bn+1)d (5.67(3)
B! — B" 1
T 4 vn+1 . VBnJrl . (anJrl)BnJrl _ Bn+1(vvn+1)T — _7Bn+1 (Bn+1)d’
T

(5.67d)
p°, v, BY are known from the initial conditions. On the (n 4 1)-th time level the space

problem is solved using FEM as described in a previous subsection, values with index
n are known from the previous time step.
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5.3 Poiseuille flow

In this section we compare the numerical and analytical solution for steady Poiseuille
flow problem concerning the Oldroyd-B model and the model Quadl .
The viscoelastic fluid is pushed from the left into the planar channel whose length is 4
m and height is 1 m. The fluid freely leaves the channel on the right. The boundary
condition on the inlet and the outlet are the following:

Tm(x = O) =—4+ G(BH — Bgz), Tm(az = 4) = —G(Bll — Bzg). (568)

The problem is depicted in Figure [5.2]

= N := G(By1 — Ba2) no-slip v=20
—ey=1
By Y
7= 2
I ©
(= L
N — x S E?
= 0
-y =
> no-slip v=20

=4

Figure 5.2: Poiseuille flow, problem description.
For the analytical solution we suppose that the fluid velocity is in the form

v = (u(y),0) (5.69)

which automatically satisfies the balance of mass divv = 0. The convective term in the
balance of linear momentum for this steady problem

pv-Vv =divT, (5.70)

is with help of (5.69) equal to zero. Hence, we are solving the following problem

divT =0, (5.71)
sz(x = 0) =—4+ G(Bll - BQQ), Tm(a: = 4) = —G(BH — BQQ), (572)
w(0) = u(1) = 0, (5.73)

where the Cauchy stress tensor T is given by (12.10)) for Oldroyd-B model and by ((3.112))

for quadratic model. For later use we compute the velocity gradient L and its symmetric
part D
0 1/0 o ou
L — D = — h ! = . . 4
<0 0), 2<u’ 0>,w ere u 9y (5.74)

5.3.1 Oldroyd-B model
In case of the Oldroyd-B model (2.10]) the Cauchy stress tensor T is in the form

T = pI + 2u2D + G(B - I). (5.75)
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Assuming that B = B(y) is only a function of y, i.e.,

_ (Bu(y) Bia(y)
B= (Bu(y) B22(2/)> ’ (5.76)

the balance of linear momentum leads to

7@ 62’& 8B12

| ABa—1)
5, TG 5, =0 (5.78)

From (5.78) we get that p = C(z) + G(Ba2(y) — 1), inserting this into ((5.77]) we obtain

GC 82u 8312
r ~Map Ty

Since the left-hand side of ((5.79) is only a function of x and the right-hand side is only
of function of y, both sides have to be equal to some constant K. Then

(5.79)

p(x) = Kz + C + G(Bayy — 1). (5.80)

Now we use the boundary conditions (5.72)) with 7, = —p+ G(B11 — 1). Using (/5.80))
and ([5.72) we conclude that

p(r) =4—2x+4+ G(Ba —1). (5.81)
Now we rewrite the transport equation for B
1
v-VB-LB-BL'+ - (B-1)=0
T

into components. Since B is only a function of y and v = (u(y),0) the term v - VB
vanishes. Using ((5.74)) we obtain

Bys =1,
Bia = 7u' Baa,
BH —1= QTUIBlg.

The solution is

By =1, By = Tu/, Bii=1+ 27’2(11,/)2. (582)
By inserting ([5.82)) into (5.79) and using (5.81) we obtain
0%u

Now solving this ODE by integrating it twice with respect to y, we get
1
50+ Cry+ ot (i + Gr)u =0,

Using no-slip boundary conditions u(0) = u(1) = 0, we eliminate C; and Cy and get

the solution .

2+ )

y—y°). (5.83)
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By inserting ((5.83)) into (5.82)) we obtain

2

BQQ = 1, Blg = 2( (1 - 2y), Bll =142 (1 - 2y) . (584)

.
p2 + GT) 2(u2 + GT)

Since Baog = 1, pressure p = 4 — z and it does not depend on y.

We compare this analytical solution with the numerical solution and compute the
full problem with p = us = G =7 = 1. We use Finite element method as described in
Section The mesh is regular (128 x 32, ~ 96 000 DOFS). The full simulations of
pressure p and z-component of velocity u are depicted in Figure [5.3

Velocity u
0.063
ED.DG

=0.04

0.02

(@]

Pressure p

3

2
1
0

Figure 5.3: Full simulation of Poiseuille low of Oldroyd-B model for u and p.

We plot the solution of u, p, B11, B12, Boe and also tr B and det B at = 2, red solid
line is the solution of FEM, green dashed line is the analytical solution. The graphs are
plotted in Figure [5.4]

The numerical solution corresponds very well with the analytical solution. However,
there is a little difference near no-slip boundary (y =0 and y = 1).

5.3.2 Model Quadl
In case of model Quadl (3.112)) the Cauchy stress tensor T is in the form

T = pI + 2uD + GBY, (5.85)

again we suppose that B = B(y) is only a function of y with the components

_ (Bu(y) Biz(y)
b= <Bl2(y) ng(y)> ’ (5.86)
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Figure 5.4: Comparison of analytical solution with full simulation using FEM for
Poiseuille flow of Oldroyd-B model, for u, p, Bi1, Bi2, Bog, tr(B), det(B) at x = 2.
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Then the balance of linear momentum is in the form

8]9 qu 8312

—% + w2 ayi +G By =0, (587)
ap G 8322 8311

_r ., = — =0. 5.88

ay 2 ( Ay Ay ) ’ (588)

From (5.88)) we get that p = C(z) + G(B22(y) — B11(y))/2, inserting this into (5.87) we
obtain ,
oC o0“u 6312
— =l +G——.
or  1? Oy? + oy
Since the left-hand side of ([5.89) is only a function of x and the right-hand side is only
of function of y, both sides have to be equal to some constant K. Then

(5.89)

~ G
p(z,y) :K$+C+§(B22—B11)- (5.90)

Now we use the boundary conditions (5.72) with T, = —p + %(BH — By3). Using

(5.90) and (5.72)) we conclude that
G
p(z,y) :4—37+5(B22 — B11). (5.91)
Further we use the alternative form of the transport equation for B ([3.131))
1 /trB
v-VB-LB-BL" 4 - (23—1) ~0
T

and rewrite it into components. Since B is only a function of y and v = (u(y),0) the
term v - VB is equal to zero. Using ([5.74)) we obtain

Bas(B11 + Ba2) = 2, (5.92)
(Bu + BQQ)Blg = QTu/BQQ, (5.93)
1
5(311 + BQQ)BH —1= QTulBlg. (594)

Note that tr B = B11 + Bao > 2 due to (3.127). Let us denote

20N\ _
OSX::\/1+4T(U) 1

5.95
272(u')? ’ ( )
then the solution is
1+472(u/)? -1 2-B2, 2-X
By =VX, Bp=1uX-= By = 2 . (5.96
22 \/> 12 TU 27'U/ ) 11 BQQ \/y ( )
Note that
lim X =1 = lim By = 1, lim Bi1=1 (597)
u’—0 u’—0 u’—0
and also it holds
u’—0
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By inserting (5.96)) into (5.87)) and using (5.91)) we obtain

1+472w)? -1 0
27/ o

(5.99)

This ODE can not be solved analytically. First, we integrate this equation with respect
to y and we get
1+472(uw)?2 -1

y+C1+ pou’ + G - =0, (5.100)
2Tu

using the symmetry of the problem and no-slip boundary conditions «(0) = u(1) = 0
we suppose that ' in the middle of the channel is equal to zero, thus v/(y = 1/2) = 0.
Using ([5.98) we obtain that C7 = —1/2 and get the algebraical equation for u’

1 VIt ar2(W)E — 1
gL ¢ VAT W) —0. (5.101)

2 2T/

Using Newton method equation (5.101)) with the material parameters p = uo = G =
7 = 1 is solved numerically and thus v’ is found. Velocity u is obtained by

u(y) = /Oy u'(a) da + u(0), (5.102)

where u(0) = 0. Five-point Newton-Cotes integration formula is used for the integra-
tion. We obtained numerically a solution for v’ and u, solutions for p, B11, Bi2, Boo are
described by formulae and .

We compare this semi-analytical solution with the numerical solution of the full
problem with material parameters p = us = G = 7 = 1. Again Finite element method
as described in Section is used. The mesh is regular (128 x 32, ~ 96 000 DOFS).
The full simulations of pressure p and x-component of velocity u are depicted in Figure
Al

We plot the solution of w,p, B11, Bi2, Boo and also trB and det B at z = 2, red
solid line is the solution of FEM, green dashed line is the semi-analytical solution. The
graphs are plotted in Figure 5.6, They show that the numerical solution almost merges
the semi-analytical solution, but there is a little difference near no-slip boundary (y = 0
and y = 1). This can be seen very well in the plot of det B where FEM does not preserve
detB = 1.
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Velocity u

064
0.06

-0.04
[0.02
0

Pressure p

o TR

O M b
— N

Figure 5.5: Full simulation of Poiseuille flow of model Quadl for v and p.

5.4 Axisymmetric Couette flow

In this section we compare the numerical and analytical solution for steady axisymmetric
Couette flow problem for the Oldroyd-B model and model Quadl . The
domain is bordered with two concentric circles, radius of the inner one is 1 m, radius of
the outer one is 2 m, the material flows inside these two circles and fully sticks to both
boundaries. The inner circle is fixed and does not move, the outer one rotates with
constant angular velocity w = 0.5 rad s~', thus the fluid rotates with it. The problem
is depicted in Figure [5.7]

For the analytical solution we compute the problem using polar coordinateeﬁ, we
suppose that the fluid velocity is in the form

v = (0,vy(r)), (5.103)

which automatically satisfies the balance of mass divv = 0. Then the Dirichlet bound-
ary conditions are equivalent to

Vp(r=1)=0, vy(r=2)=wr=1. (5.104)
The balance of linear momentum for this steady problem is equal to
pv-Vv =divT, (5.105)
where the convective term is with help of in the form

©

’U2
pv-Vv=p <_07> . (5.106)

4See cylindrical coordinates in Appendix in case of polar coordinates all derivatives with respect
to z and all z-components are equal to zero.
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Figure 5.6: Comparison of semi-analytical solution with full simulation using FEM for
Poiseuille flow of model Quadl, for u, p, B11, B12, B2z, tr(B),det(B) at = = 2.
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w=20.5
/\

Figure 5.7: Couette flow, problem description.

For later use we compute the velocity gradient L and its symmetric part D

Ve v v
L= W D-1 ’ 3;0_7@ (5.107)
v, o | 2 | Ovp, vy 0 : '
or or r

5.4.1 Oldroyd-B model

We compute the problem using Oldroyd-B model where the Cauchy stress tensor T is
in the form

T = pI + 242D + G(B - 1), (5.108)

due to symmetry B = B(r),p = p(r) are only functions of r with the components

B.. B
B=(_" W’) . (5.109)
(Bw B,

Then the balance of linear momentum is in the form

dp 0By B,.— B v2
_EJFG = +G . “"“":—pf, (5.110)
0B, 0 [Ov, v, 2 Ov, vy,
Z =2 _ 2| +2|GB, e _ 2l =o. 111
¢ or +’u28r[0r r +r GBrp + 12 or T 0 (5.111)

Now we rewrite the transport equation for B

1
v-VB-LB-BL'+-(B-1)=0

T
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into components and we obtain

B, 1= 07
v ov
Brp+ 7 (;-(;) By =0,
By —1+2r (% -\
e r or N
The solution is
ov v 5 (Ov v\
B, =1, BTQK,:T((?;"—;’), By, =1+271 <6:’—:’> . (5.112)
By inserting ([5.112)) into ([5.111]) we obtain
2 (Ov v 0 (0v v
G - =Z-ZL)+===-=L)| =0 5.113
(T+M2)[r(ar r>+8r<8r r ( )
Hence, we have to solve the following ODE
0? 0
20 % | %%y, =0, (5.114)

or? or
which together with the boundary conditions (5.104) has the solution

2(p-1 (5.115)
Vo=—|r——1_. :
73 r
Using (5.110f), (5.115)) and (5.112) we get pressure p
4 (r? 1 8 1
=C+p- (= —-2Inr— — |+ -Gr*— 5.116
p +p9<2 nr 2r2>+9 T ( )

upto constant C' because there is only gradient of the pressure in the balance of linear
momentum. We fix the constant C' by imposing the condition p(r = 1) = 0, thus

4 (r? 1 8 1 8
—p—[— —2Inr— — |+ G2~ — 2. 5.117
P p9<2 nr 2r2>+97r4 9 (5.117)
Using (5.115]) and ([5.112]) we find the elements of the tensor B
At 3272
B’r"r‘ - 1, BTgO = ﬁ’ B(,D(,D = 1 + W (5118)

For numerical simulation we use finite element method as described in Section (.2l
The mesh is depicted in Figure [5.8] it is three times refined locally near the boundaries
(18944 elements, 438272 DOFS).

The full problem was computed in Cartesian coordinates with the material parame-
ters p = G = puo = 7 = 1. Pressure p was fixed to be zero for r = 1. We plot pressure p
and velocity magnitude |v| in Figure Both solutions are symmetricﬂ Furthermore,

5Obviously, components v, and vy would not be symmetric, we would obtain components in polar

COOrdinateS by
(U’I‘> (UI> ,
'ng ’Uy

where A is coordinate transformation matrix defined by (|5.120)).
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Figure 5.8: Mesh for Couette flow problem.

components of tensor B: By, By, Byy are plotted in the left column of Figure [5.10}
The Cartesian components B are not symmetric, but after the transformation into polar
coordinates according to relation

(B”“ B’"@) = A (B“ Bxy) AT (5.119)
Bry By By  Byy
where A is the coordinate transformation matrix
x Yy
A — 5(T(:E,y),g0(:n,y)) _ \/.’I:i"’ y2 \/1‘2 +y2 ) (5120)
Az, y) y r

x2+y2 x2_|_y2

the transformed components By, By, By, are symmetric (see right column of Figure
5.10)).

We plot the solution of v,(r), p(r), B (1), Bro(r), Bep(r) and also tr B(r) and
det B(r) for r € [1, 2], red solid line is the solution of FEM, green dashed line is the an-
alytical solution given by , and . The graphs are plotted in Figure
It is important to repeat that the full simulation was computed in Euclidean coor-
dinates in the curved domain. Hence, this problem, that can be computed analytically
in polar coordinates, is a good benchmark. Moreover, the solution is much complicated
(see for example the solution for pressure ([5.117))) than the solution of Poiseuille flow.

The numerical solution corresponds very well with the analytical solution. There is
a little difference near boundaries (r = 1 and r = 2) as can be seen in case of By,.
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Figure 5.9: Full simulation for |v| and p for Oldroyd-B model.

5.4.2 Model Quadl

We compute the problem using model Quadl for which the Cauchy stress tensor T is

in the form

1
T =pl + 212D + G (B - §(trB)I) .

(5.121)

Due to symmetry B = B(r),p = p(r) are only functions of r, components of B are

B B
B = rr e )
(B“P B‘P‘P)

Then the balance of linear momentum is in the form

dp GO B,, — B v?
~4+-_-(B,,—B i 2 RS &
8r+28r( wp) + G r =

0B, 0 [Ov, v, 2 Ov, vy, B
G@r +'u267"[8r_7" +r GBro + 12 or r =0

Now we rewrite the transport equation for B using alternative form (3.131)

v-VB—LB—BLT—kl(?B—I) =0
T

into components and we obtain

(Brr + B@@)Brr - 2)
9y _ Y

(Brr + BSOSO)BTSD =27 ( or

1 v v
§(Brr + BQO(,O)BQOQO —1=27 (8_’;0 — 790) BTL,D'
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Figure 5.10: Full simulation for components of tensor B in Euclidean and polar coordi-
nates for Oldroyd-B model.
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Figure 5.11: Comparison of analytical solution with full simulation using FEM for
Couette flow of Oldroyd-B model, for vy, p, By, Bry, Byy, tr(B), det(B).
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Let us denote 5
v v
U.=-+*~_2 5.128
or r’ ( )

then similarly as in case of Poiseuille flow we denote

V14+47202 -1

0< X =
- 27202

Then the solution of ([5.125)—(5.127)) is

2772 _ _ R2 _
vV1+4+47m2U 17 B — 2- B, _ 2 X' (5.130)
27U e

Brr \/X
By inserting (5.130]) into (5.124]) we obtain

0

with the boundary conditions vy, (r = 1) = 0 and v,(r = 2) = 1. This fully implicit
boundary value problem can not be solved analytically. We solve it numerically with
the material parameters p = ps = G = 7 = 1 in Matlab using BVPsuite (see [25])
that is based on a collocation method. This Matlab code provides the error estimate

of the computed solution, the error was of the order 10714, Thus, we obtain v, and its
derivative with respect to r, from this we compute B;.;., By, By, using (5.130]). Pressure

p is obtained from (|5.123|)

r _ 2
p= E(BW — By,) + / Brr = Bee 0% 4, c, (5.132)
2 0 r

where five-point Newton-Cotes integration formula is used for the integration and con-
stant C'is chosen such that p(r = 1) = 0.

For the full simulation we use finite element method as described in Section The
mesh is depicted in Figure[5.8] The full problem was computed in Cartesian coordinates
with the material parameters p = G = uo = 7 = 1. Pressure p was fixed to be zero for
r = 1. We plot pressure p and velocity magnitude |v| in Figure Both solutions are
symmetric. Further we plot components of tensor B: B, Byy, By, in the left column
of Figure Again, the Cartesian components are not symmetric. We transform the
tensor B from Cartesian to polar coordinates by the transformation . Compo-
nents in polar coordinates By, By, By, are depicted in the right column of Figure
and they are symmetric.

We compare the solution of v, (r), p(r), Byr(r), Bro (1), Bpp(r), tr B(r) and det B(r)
for r € [1, 2] obtained with FEM and collocation method. Red solid line is the solution
of FEM, green dashed line is the solution obtained with collocation method (denoted
by BVP). The graphs are plotted in Figure

The FEM solution corresponds very well with the semi-analytical solution of BVP
(5.131)). There is a little difference near boundaries (r = 1 and r = 2) as can be seen
in case of det(B) that should be identically equal to one. If we compare the results of
Oldroyd-B model and model Quadl we find out that in case of Quadl v, differs much
more from the linear function than v, that is obtained using Oldroyd-B model. The
biggest difference is in the pressure p, in case of Oldroyd-B model p is a convex function
that decreases for r < 1.6, in case of model Quadl pressure p is an increasing function
(if the axisymmetric Couette flow is computed using Navier-Stokes model, pressure p is
also increasing function).

(5.129)

BT"I’:\/X, BHPZTUX:

2
- [GTUX + U] =0, (5.131)
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Figure 5.12: Full simulation for |v| and p for model Quad]l.

5.5 Full simulation of the experiment performed by Narayan
et al. (2012)

In this section we compute the full simulation of the experiment with unaged polymer
modified binder at temperature 35 °C performed by Narayan et al. (2012). In the
previous chapter we described and fitted this experiment with model Quad2 under the
assumptions that the asphalt flows only in the direction of rotation and the velocity v
is in the form

v = (0,wrz/h,0) (5.133)
and neglecting the time derivative of w in the balance of linear momentum. We compute

the simulation with the material parameters given by Table and with the density[Y]
p = 1200 kg/m3: where we replaced ratios G1/ju1 and Gg/us with the relaxation times

Temp [°C| | Gy |kPa] G2 [kPa] 71 [s] 72 [s] wus [kPa s
35 130.4 277 017 1.52 45.3

Table 5.1: Fitted parameters for experiment by Narayan et al. (2012) using model
Quad2.

T1 and T 2.

We solve the full problem using the cylindrical coordinates in the fixed domain (2.
The only assumption that is used is that the solution does not depend on the ¢ coor-
dinate. That is why we can solve the problem in the cross-section ¥, see Figure [5.15]

5Using the assumptions mentioned above the density is not presented in the simplified equations

(4.42)—(4.46) and so it could have not been fitted.
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Figure 5.13: Full simulation for components of tensor B in Euclidean and polar coordi-
nates for model Quadl1.
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Figure 5.14: Comparison of numerical solution of simpler BVP using collocation
method with full simulation using FEM for Couette flow of model Quadl, for
Ve, P, Brr, Bry, Boy, tr(B), det(B).
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A

P

V2

V3 ) 71

Y4 r

Figure 5.15: Cylindrical coordinates, cross-section 3.

The unknowns of model Quad2 are in the form

BI’I‘T7BlT‘<p7 Blrz
p:p(T,Z,t), Vv = (UT,U(P,UZ)(T,Z,t), Bﬁpl(t) = Bl'r‘(paBlcpcpolgDZ (’I“,Z,t),
Blrz; Blapza Blzz
Bery B2rg07 BQTZ
Fopo(t) — Bgnp,BQ%O,BQ(pZ (T,Z,t), (’r‘, Z) eX, te [0, 2]
BQrza B24pz7 B2zz

B

The initial conditions are p(0) = 0,v(0) = 0,B, , (0) =By, (0) =T which means
that the material is at rest and relaxed. The boundary conditions satisfy

Tn =0 on 7y, (5.134)
v =0, =0, v, = wr on 7y, (5.135)
v =0, =0, =0o0n " (5.136)

and the symmetry boundary conditions on 3
vp =0y, =0,T;, =0 on ~s. (5.137)

The Dirichlet conditions on 2, v3 and 74 are taking into account by choosing appro-
priate space and the Neumann conditions on 1 ad 73 are part of the weak formulation.

Under the assumption of axial symmetry, the weak formulation of the equations is
transformed from 3D to 2D in the following way

R h 27 27
/divv quz/ / / rdivv qdcpdzdrz/rdivv(/ qd(p) dZ:/rdivv gdx, (5.138)
Q o Jo Jo b 0 b

where we denoted by ¢ a new 2D test function computed from the old 3D test function ¢

2
i(r.z) = / a(r,0,2) do.
0
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The same procedure is applied to the rest of equations
/ rdivv § d¥ =0, (5.139a)
>z

ot
rT = —rpl +rv (Vv + (VV)T) + G B

Fpy(t)

/pr<al+v.vV>.q dZ+/rT~V€1 ds =0, (5.139b)
= =

+ T'GQBd

Fpa(t)?

(5.139¢)

OBriy ) VB vv)B B v + 1B B¢ Y dX =0, (5.139d
ET ot tv- “pl(t)i( V) Kpy(t) NP1(t)( V) +?1 .Ql - ( . )

Fp1 () 7 Rpq(t)

o | . vB ~(VVv)B,.,, - B vv)"+ LB, . B! Q2 AT =0, (5.139
e rppw — (VV)Bry, ) Foa (VV T w20 DRy (1) 2 dX =0, (5.13%)
where

27 27

27
(Al(rvz) :/(; Q(7’7807Z)d90a Ql(T,Z) = 0 Ql(ﬁ%z)d% QQ(T’Z) = 0 QQ(T7$07Z)dSD (5140)

and all gradients are in the cylindrical coordinates.

Numerical results

We solve the problem using Finite element method that is based on weak formulation
in cylindrical coordinates given by ([5.139a)) — ((5.139¢)). The problem is solved on three
different meshes with 40 x 10, 60 x 15 and 80 x 20 elements.

Pressure p / velocity v / tensors B, , and By are approximated by Pfisc / Q
/ Q2 elements as described in Section . Two different time schemes were used: BE
time scheme and TH time scheme.

The angular velocity w described by changes in jumps. Instead of jumps we
increase w from zero to the desired value 0.5 rad s™!, or decrease to zero smoothly on
the time scale ¢t; = 0.001s. It turns out that the result does not depend on t; if it is
small enough. In fact, in the experiment the asphalt binder did not start/stop rotating
immediately and so this approximation is very realistic.

No adaptive time step was used, it was given apriori, the lowest time step was used
when the rotating started /stopped and was of the order 10~°s, the largest time step
was of the order 1073s (two different sets of time steps were used). We have checked,
that the results are independent of the mesh, time step size and used time scheme.

We present here the result obtained with TH time scheme and the mesh containing
1600 elements (simple mesh consisting of 80 x 20 squares). The number of degrees of
freedoms was 103815 that is approximately 65 DOFs per one element (the set of 16
PDEs had to be solved at once using monolithic solver).

We found out that the assumptions made in deriving ODE system were
correct because it turns that the velocity magnitude in the rz direction was of the order
107 m/s, i.e. 10 magnitudes lower than in the ¢ direction. In the Figure are
the snapshots of the full simulation at times ¢ = 0.025s,0.5s,0.6s, 2.0s. It can be seen
that at the beginning at ¢ = 0.025s when it already rotates with the full speed the
clockwise vortex creates and it remains there upto ¢t = 0.5s when the rotation starts
to stop. After the rotation stops, the velocity in rz direction decreases, and around
t = 0.6s the counter-clockwise vortex creates and with the increasing time the velocity
decreases. The velocity in the ¢ direction almost does not differ from wrz/h.
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We also verified that the torque M and the normal force F on the upper plate
computed in the full simulation by

R
M= [ rT,,dS=2r / 7T, dr, (5.141)
I'uy 0

R
F :/ T..dS = 277/ rT,, dr. (5.142)
Ty 0

is the same as the torque and the normal force obtained in Chapter [4] see Figure [5.16

0.016 - 0.7

ODE fit ODE fit
g FEM ------ FEM ------
0014 | | 06 -
oo12 | / | 05 |-
001 |/ | 04 |
= —
Z 0008 |- Z 03}
s v
0.006 [ \ o2} /T
0.004 [ N\ o1l /
L o}
0 1 1 o ) 0.1 1 1 1 )
0 05 1 1.5 2 0 05 1 15 2
t[s] tis]

Figure 5.16: Comparison ODE and FEM.
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5.6 Computation in the time varying domains

In this section we show the way how the problems in deforming domains are solved.
Since we are using a robust Finite element code with a monolithic non-linear solver
we decided to transform the equations describing the viscoelastic models — Oldroyd-B,
Burgers, Quadl and Quad2 — from Eulerian description where the domain deforms into
a description with a fixed domain. In order to do this we add a new variable deformation
. The mapping ¢ maps fixed domain €2, into the deforming domain €, see Figure

BIS

0y p:x=x+u
F=I+V,u
J =detF ' ]

Figure 5.18: Deformation of the domain.

There are two popular ways how this transformation is made. First, the fixed domain
corresponds to the Lagrangian description where all points in the domain are material
points and u (without the hat above the letter) is the physical deformation. Howev-
er, some problems, that are shown later, are connected with this approach. Second,
the so-called Arbitrary Lagrangian-Eulerian (ALE) formulation where deformation 1 is
arbitrary with the restriction that the deformation is physical on the boundary of the
domain. We present the application of both transformations on the example of model
Quad?2.

5.6.1 Lagrangian formulation

We identify the fixed computational mesh with the reference Lagrangian configuration
Qx which is mapped into the current Eulerian configuration €2, (see Section [1.1]) by

p: X —>zr=X+u (5.143)
The velocity v is defined by
Oy Ju
vi= | = —,
otlx 0t
the deformation gradient F and its Jacobian J are defined as

F:S)‘izuvxu, J=detF. (5.145)
We want to solve the problem on the fixed mesh corresponding to the domain 2x where
all the unknowns live. We use a monolithic approach and solve the problem as one big
coupled system of equations including the equation for the deformation of the mesh
s}
We transform the Eulerian weak formulation into the Lagrangian by substi-
tuting all derivatives with respect to z to derivatives with respect to X. We need to
transform the velocity gradient Vv and the material time derivatives, i.e.

_Ov(p(X,t),t) _ OvOp
B 0X 0z 0X

(5.144)

Vxv (V.v)F = V,v=(Vxv)F! (5.146)
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and the material time derivatives of scalar o

Ja|  da(p(X,t),t)]  Oa

Oa —’ Oa 3@% _8@
ot lx dt x Ot

x+%8t X_ ot

+v- Vo (5.147)
xT
Further, the integrals over €2, are transformed to the integrals over {x by using the
integral substitution theorem. The last tool that is used in the balance of linear mo-
mentum is the Piola identity that states that divy ((det F)F~T) = 0. Let us compute
the div, T term in the weak formulation

/ div, T - qdz = J(VxT)F 1. qdX =
Qs Qx

/ J(VxT)F T+ Tdivy (JET) | qdX = divy(JTF™T) . qdX. (5.148)
Qx —_— Qx
0

Using the weak formulation ([5.52]) the Eulerian description in 2, is transformed into
the Lagrangian description in Qx

/ Jtr (Vxv)F ') gdX =0, (5.149)

/ Jp qax— [ divx (JTF—T) .qdX =0, (5.150)
Qx ot Qx

T = —pl+ps ((Vxv)F ' +F T(Vav)") + GiBY | + GoB]

Fpy(t)

(5.151)

p2(t)’

OBs,, 1 -1 -T T, 1 d
QXJ —5r ~ (VxVF Bx, ) =B, 0 F(Vxv) + B, B ‘QidX =0, (5.152)

Fpi(t) " Fpy(t)
7 (B (vmEs B. F T (Vxv)"+ 1B, B! dX =0. (5.153
Q — (VxV) kppry ~ Brpy o F T (Vxv) t o P By “Q2dX =0. (5.153)
X

We need to add equation to close the system of equations (unknown u is hidden
in F and J).

The above formulation can be used if the changes in the domain are not too big. The
main problem is in virtue of the fact that all points in the domain are material points

and for example vortices in the flow can damage the deformed meshﬂ Such example
can be seen in Figure [5.19]

prx=X+u

}

Figure 5.19: Damaged mesh in case of Lagrangian formulation.

"Here a monolithic approach with a fixed mesh is used, the deformation of the mesh is computed
by (5.143). The damage of the mesh is a consequence of the fact that the consecutive set of linear
equations creates a singular matrix (or at least a matrix with extremely high conditionally number).
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5.6.2 Arbitrary Lagrangian-Eulerian formulation

In view of such difficulties with the purely Lagrangian formulation, we choose to use
the ALE formulation which does not present such difficulties (for more details, see for
example lecture notes [61], or papers [19], [23]). Instead of identifying the mesh with the
Lagrangian domain Qx we identify it with a new domain Q,, (see Figure , where
¢ maps {2, into €, by

p:x —ri=x+1, (5.154)

where 1 is an arbitrary deformation (i.e. the deformation of the mesh). If the time
derivative of &1 was equal to the velocity v then all points would be the material points,
2y = Qx and we would obtain the Lagrange formulation. Instead of this we only
require to have the material points on the boundary 02, inside the domain 2, we just
need to have a unique solution for 0, for simplicity we use a Laplace equation, i.e.

8—11 =v on Jy
ot (5.155)

—A, =0 inside €,.

o>
Il

We define the deformation gradient and its Jacobian by

F=_"=1+V,a, J=detF. (5.156)

Figure 5.20: ALE formulation.

The same procedure as in the Lagrangian case is used to transform (5.52)) from €, to
1. The velocity gradient transforms in the same way as before

_ ov(@xt),t) _ 9vap

Dy 9z Ox (Vav) = V.v=(Vyv) (5.157)

Vv

The transformation of the material time derivative is more difficult, first we compute

dap da(p(x,t),t)]  Oa dadp| _ Oa ou

71 P T \X—ax ot " ot T ar Ve (5.158)
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Using ((5.158)) we obtain
oo Oa ou
Bl TV VT gl T <V_a) Ve
Oa ou <
_ Oa g oa

Using (5.157)), (5.159)), the integral substitution theorem and Piola identity as in the
Lagrangian case we transform the weak formulation (5.52)) to

/ Jtr ((vxv)ﬁ“‘l) gdy =0, (5.1602)

X

= [ov N fait . P— -
/QX Jp {a + (Vyv) <F (v— E))} -qdy — /QX divy (JTF ) -qdyx =0, (5.160b)

T — —pI + ((va)ﬁ*1 n F*T(VXV)T) +GiBY, | +GBL (5.160c)

[ om0 (- 50))
—(VxV)F'By, ) =By,  FTT(V,v)" + TllBNplmBipl(t)} Qi dx =0, (5.160d)

/QX j[a]i;‘f“ +(ViBs, ) (F—l <v - %‘;))
(V) E By, )~ Buy, o BNV %B% Bl (t)} -Qady =0. (5.160¢)

This set of equations is closed with the equation ((5.155)) written in the weak formulation
as

V- Vytdy = 0. (5.161)
QX

5.6.3 Finite element method for ALE formulation

In order to compute problems with deforming domains numerically, a discrete approx-
imation has to be introduced, here the Finite element method is used a described in
Section It is based on the weak formulation consisting of (5.160|) and (5.161)) with
one difference in the balance of linear momentum where the divergence theorem is used

/ Jp a—VJr(VXV) F! vfa—u -qdy = — j’i‘FiT-VquXJr/ (j’i‘l:"*T) n, -qdSy,
Q ot ot Q 20
X X X

(5.162)
where n, is the outer unit normal vector in the domain €2,. The last term in (5.162)
is used for prescribing the Neumann boundary condition. To be precise, we prescribe

(j’i‘f*‘_T) n, as a force acting on the part of boundary 0€2,. This means that we
prescribe a vector that is parallel with the normal vector in the actual configuration
and so we can easily push the material perpendicular to the boundary. For the sake of
simplicity, when we discuss the boundary conditions later in the text instead of writing
the component (jTF_T)ij we will write the component as Tj;.

Time derivatives in are implicitly fully mixed (see for example the trans-
formed convective terms). Since it was not clear to us how for example CR time scheme
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should be implemented, BE time scheme and GL time scheme are used. In space pres-
sure p / velocity v / deformation & / tensors B and B are approximated by
P{*¢ / Qa2 / Qa2 / Q2 / Qo elements.

Using ALE method several problems that differ only in the domain and the boundary
conditions are computed. In all problems the material is at rest at ¢ = 0, the initial
conditions are

Kpy (t) Kpg (1)

p(0)=0, u(0)=0, v(0)=0, (5.163)

B(0) = B"‘p(t) (0) = I for Oldroyd-B model and model Quadl, (5.164)
B;(0) = B2(0) = I for Burgers model, (5.165)

Fopy () (0) = Bnm(t) (0) = I for model Quad?2. (5.166)

The boundary conditions are different in each problem, but all problems have the same
Dirichlet boundary condition given by ([5.155))
ou

Ezvonaﬁ.

5.7 Numerical simulations in the deforming domains

We use the ALE method for simulation of four problems with viscoelastic material in
deforming domains.

The first problem is a square made from a material described by Oldroyd-B model
and model Quadl and this square is pushed in order to rotate. We use this problem to
compare BE time scheme and GL time scheme and we show that GL time scheme is
much better for describing the problems with deforming domains.

The second problem is a block of viscoelastic material that is initially at rest and it is
suddenly compressed with a constant load on a part of the top surface of the block and
after 0.5s the force is released. This problem is computed with all four models: Oldroyd-
B, Burgers, Quadl and Quad2 and we study how the response of the material depends
on chosen material parameters. This problem is also used to show the dependence of
the solution on time step At, mesh size h and perturbation of inner nodes of the mesh.

The third problem is a generalization of the second problem, repeated application of
force at two different locations is considered which is connected to the problem of rutting
that is observed on roadways due to the loading of the roadways by transportation
vehicles. This problem is computed with the model Quad2 using both unrealistic and
also realistic material parameters that were obtained by fitting unaged polymer modified
asphalt binder.

In the fourth problem, we consider a load that is moving on the top surface which
is connected with the problem of rolling of asphalt. The problem is computed with the
model Quad2 using the same material parameters as in the third problem.

5.7.1 Spinning of a square from the viscoelastic material

The first problem with deforming domain that we compute is a problem of a spinning
of a square that is made from viscoelastic material described by model Quadl. In this
problem the square with the side ¢ = 1 m is pushed for 0 < ¢t < 0.2s asymmetrically
with respect to its center, so it starts to rotate, see Figure [5.21] It is pushed with
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Figure 5.21: Spinning of a square made from viscoelastic material.

constant normal stress p, = 3 kPa at four areas. The following material parameters
are used: density p = 1000 kg.m ™3, solvent viscosity pe = 100 Pa s, elastic modulus
G = 1000 Pa, relaxation time 7 = 2.0s.

In case that the square was rigid, it would obtain the angular momentum

t2=0.2 7'2:11/30
Lyigia = 4/ / rpp dr dt = 160Nm s. (5.167)
t1=0  Jri=1/30

Since no external force is applied on the square after the pushing, the balance of angular
momentum says that the angular momentum L has to be preserved.

We use this problem to show the influence of the chosen time scheme on the result.
We compute this problem using two different time schemes as described in Section —
standard backward Euler time scheme (BE) and less usual Glowinski time scheme (GL)
— on one fixed mesh (30 x 30, refined locally near the boundary, 40000 DOFS)El. The
problem is computed with three different time steps At, see Table[5.2] at the beginning
for ¢t < 0.3, when the square starts to rotate, four times smaller current time step At¢
is used, i.e.
1At <03

Af:{Att>03

The time step At for GL time scheme is twice greater than the time step for BE time
scheme because GE time scheme is two times more CPU time consuming. We show
that the first order backward Euler time scheme is not sufficient for these problems.

Time scheme | Time steps At [s]
BE | 0.005 0.01 0.02
GL [ 0.01 0.02 0.04

Table 5.2: Sets of time steps At used for the simulation of rotating square.

We compute the angular momentum of the square in the computational domain €2,

8We computed the problem also on a coarser mesh and found out that the differences caused by
different time schemes are significantly higher than the differences caused by the resolution of the mesh.
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by
L=/ prxvdac=/ J(ry 4+ 1) x vdy, (5.168)
Qg

X

where r, is the position vector in 2,. The volume V" is computed by

V:/ 1dx=/ Jdx (5.169)
Qp Q

X

and the kinetic energy Fj is computed by

Ey = / 1p|v]2dm = / 1jp|v]2d>(. (5.170)
Q, 2 Q, 2
The comparison of angular momentum L, volume V and kinetic energy Fj for two time
schemes each with three different sets of time steps is depicted in Figure [5.23] First we
verified how the angular momentum L is preserved, Figures (ab). We found out that
BE time scheme does not preserve this quantity for any time step At and L decreases
with time ¢, for smaller time step At the descent is lower. The other time scheme
GL is much better, the angular momentum L is almost constant, it slightly increases
with the time ¢, for smaller time step At the increase is smaller. The computed value

L ~ 172 Nms is similar to the value Lyjgiq given by (5.167)).

(a) t = 10s (b) t = 20s

Figure 5.22: Comparison of BE (green) and GL (red) time schemes, both At = 0.01,
BE does not preserve volume.

After watching the movie of the full simulation (which is attached on the DVD) we
found out that the incompressibility is violated, concretely the volume of the material
is decreasing in case where BE time scheme was used, see Figures [5.23cd). The com-
parison of the solution for BE and GL time schemes at ¢ = 10s and ¢ = 20s is depicted
in Figure BE time scheme does not preserve the volume V.

The graph of kinetic energy FEj is depicted in Figure (ef), one can see that in
case of BE time scheme E}, decreases faster with larger time step, this is caused because
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the volume is decreasing, results for GL time scheme are almost the same for all time
steps. Further, it can be seen in Figure (f ) that the amplitude of peak of the kinetic
energy Ej around time ¢t = 0.5s changes significantly less with changing time step At
for GL time scheme. The amplitude of peak of the kinetic energy FEj obtained by BE
time scheme converge with decreasing time step At to the value obtained by GL time
scheme .

1722 -
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172.18 | GL At=0.02
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172.16 |
17214 ||
|
17212 |
= @ ﬁy
£ I
£ E
O ” I
| 172.08 |-
60 |-
172.06 |-
| BEA=002 ——
I BE At=0.01 |
BE At=0.005 172.04
| GLAt=0.04 -
201 GLAt=0.02 ------ 172,02 |-
GL At=0.01
0 1 1 1 ) 172 1 1 1 )
0 5 10 15 20 0 5 10 15 20
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Figure 5.23: Comparison of BE and GL time schemes using (a), (b): angular momentum
L, (c), (d): volume V and (e), (f): kinetic energy Ej, zooms of the graphs are depicted
in the right columns (b), (d) and (f).

Results obtained in this problem lead us to the conclusion that for problems in
deforming domains GL time scheme is much better than BE time scheme and we will
use only GL time scheme. In the next Subsection we show the convergence analysis
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with respect to the time step and the mesh size.

We computed this problem also using Oldroyd-B model with the same material
parameters. We found out that the difference in the solution is very small, similar to
the difference caused by numerical discretization. This is probably caused because the
applied force is not big enough to create high stresses in the material.

5.7.2 Benchmark — pressing of the rectangular piece of viscoelastic
material

In this problem let us consider a rectangular piece of material, see Figure Its
width is 3m, the height is 1mE| The material is put on the ground where it can fully
slip in the z-direction, but it can not move in the y-direction. All other sides of the
rectangle can freely move. We ignore the effect of gravity. At ¢t = 0 the material is at
rest and does not move. Suddenly at time ¢ = 0 the body is pushed at the top by a
constant normal stress T, = —5 kPa. This stress acts till the time ¢ = 0.5s, and then
it suddenly ceases to exist. We observe how the boundary continues to deform after the
applied traction ceases.
The boundary conditions are:

Bottom Dirichlet: v, = 0, Neumann: T, = 0

Top and sides Neumann: Tn = 0, during the pressing T}, = —5 kPa on a part of
the boundary.

Tn =0 ‘ 1m ‘ 1m
VYV VY VYV vy

1m

vy =0,Ty =0

3m

Figure 5.24: Pressing of the rectangular piece of viscoelastic material.

We solve this problem using 4 different models — Oldroyd-B, Burgers, Quadl and
Quad2 model — with the material parameters given by Table In case of the model
with only one relaxation time 7 and one elastic modulus G, these parameter@ are
given in the column corresponding to 71 and G7. Density p = 1000 kg/m? in all cases.
All problems are computed on a fixed mesh 60 x 20 (locally refined near the boundary)
with constant time step At = 0.01 and GL time scheme.

9We use a thick layer of viscoelastic material in order to capture elastic response. Later, we shall
use much thinner domains as an application we have in mind are pavements which are usually modeled
as rate type viscoelastic fluids, which are much wider than thick.

1971 fact, Oldroyd-B model with material parameters 2,7, G is equivalent to Burgers model with
G14+ G2 = G and 11 = 72 = 7 and the same holds for model Quadl and model Quad2. We numerically
verified this equivalence.
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Model ps [Pas| 7 [s] 7 [s] Gi|kPa] G2 |[kPa]
100.0 0.2 — 15.0 —
Oldroyd-B | 100.0 0.8 — 15.0 —
100.0 2.0 — 15.0 —
Burgers 100.0 0.2 2.0 10.0 5.0
100.0 0.2 — 15.0 —
Quadl 100.0 0.8 — 15.0 —
100.0 2.0 — 15.0 —
Quad2 100.0 0.2 2.0 10.0 5.0

Table 5.3: Material parameters used in the simulation of rectangle compression for each
model.

We found out that the differences in the solution between Burgers model and model
Quad2, and between Oldroyd-B model and model Quadl are very small, comparable to
the difference obtained with different mesh size or different time step. Hence, present-
ed results of models Quadl and Quad2 are very similar to the results of the standard
viscoelastic models. However, note that standard linear models are incapable of cap-
turing experimental data in another physical settings (even in the full simulation, see
Subsection and one can not simply state that the models give the same results.

In case of the model Quad2 two relaxation times are 7 = 0.2s and 7 = 2.0s. The
elastic moduli G; and G2 in model Quad2 determine the weights corresponding to
the relaxation times 7 and 7. The more Gy is higher than G5, the more the material
behaves as a material with the relaxation time 7; as the dominant relaxation time. That
is why we also use a model Quadl with relaxation time 7 = 0.8s which is a weighted
average of the previous two in the sense

_ G1T1 + GQTQ
G1 + Gs

We will see that the steady solution of the model Quadl with this averaged relaxation
time and the model Quad2 is almost the same.

We carried out the full simulations for four materials described by non-linear model
Quadl and Quad2 listed in Table[5.3]and we have a fully dynamic movie of the response
of each of these materials from which we have picked five snapshots of the deformation of
the top side (lateral sides are not depicted). Figure depicts how the y-component
of the deformation at the center line depends on time. Vertical lines in the graph
denote the times when the snapshots are captured: 0.53s (minimum for model Quad2),
0.7s, 0.94s (maximum for model Quadl with 7 = 2.0s) and 1.14s (maximum for model
Quad2). The snapshots are depicted in Figure

In [22] we computed this problem also with the standard models with zero Newtonian
viscosity (i.e. Maxwell and Burgers without additional Newtonian dissipation), and we
found out that the materials described with these models behave more elastically and
oscillate more than the models with corresponding non-zero Newtonian viscosity.

Further model Quadl with relaxation time 7 = 2.0s exhibits both elasticity and
damping, and the material with relaxation time 7 = 0.8s exhibits with similar behavior
but with less elasticity (or with more damping). The material having a relaxation time
7 = 0.2s behaves mostly like a fluid, on pressing the top surface there is only one small
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Figure 5.25: Dependency of the deformation u, of the center point at the top surface
with time ¢. Vertical lines: 0.53s, 0.7s, 0.94s, 1.14s.

wave and the material remains deformed. The most interesting response characteristics
are exhibited by the model Quad2 with relaxation times 71 = 0.2s, 70 = 2.0s, in that
the displacement after an initial oscillation remains essentially constant with the value
very close to that of model Quadl with the relaxation time 7 = 0.8s.

All the simulations were carried out upto the time ¢t = 40.0s when even the vis-
coelastic fluid with the greatest elastic response ceases to deform further.

The snapshots in Figure [5.26] show that in the case of model Quadl with 7 = 2.0s
the shape of the surface at its maximum is almost concave compared to the other
materials. Further it can be seen that at time 40.0s when all materials cease to deform,
the deformations of model Quad2 with 7 = 0.2s, 7 = 2.0s and model Quadl with
7 = 0.8s are almost the same (dotted line merges the dot-and-dashed line), that is,
asymptotically in time both these models have the same response, though their transient
response is different.

Convergence and mesh stability analysis

To verify that our simulations are correct we computed this problem with Oldroyd-B
model with 7 = 0.8s on four different meshes (see Table[5.4) and with four different time
steps. All meshes are locally refined near the boundary, in the Table the dimensions
of the mesh before the local refinement are provided. The mesh size h is computed from
the refined elements. Table [5.4] also contains information about the dimension of the
system of linear equations and the solver that was used.

mesh dimension mesh size h 1/h  # DOFs lin. solver
meshl 15x5 0.1 10 6016 umfpack
mesh?2 30 x 10 0.05 20 16991 umfpack
mesh3 60 x 20 0.025 40 52891 umfpack
mesh4 120 x 40 0.0125 80 180491 gmres

Table 5.4: Parameters for the meshes used in converge analysis for the problem of the
compression of rectangle, corresponding number of degrees of freedom and the linear
solver that was used.

We computed the problem with four different constant time steps: 0.05s, 0.02s, 0.01s
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Figure 5.26: Snapshots of the top side at five different times for models Quadl and
Quad2.
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and 0.005s (CPU time on mesh4 with A¢ = 0.0005s was 16 days), GL time scheme was
used. We compared the deformation u, in the middle of the top side and the kinetic
energy of the whole body

1 A1
Bi= [ gelvPdo= [ J5pivPax
T QX

at time ¢t = 0.6s (0.1s after the release of the force) and time ¢ = 20s when the material
with this relaxation time is almost at restl] see Tables [5.5] and

mesh\ timestep 0.05 0.02 0.01 0.005
mesh1 -0.10926  -0.10857 -0.10852 -0.10851
mesh?2 -0.10675 -0.10603 -0.10598 -0.10597
mesh3 -0.10604 -0.10531 -0.10526 -0.10525
mesh4 -0.10573  -0.10498 -0.10493 -0.10492

Table 5.5: Deformation u, at the middle of the top surface at ¢ = 0.6s for all four
meshes and all four time steps with GL time scheme.

mesh\ timestep 0.05 0.02 0.01 0.005
mesh1 97.6757 96.8109 96.6711 96.6358
mesh2 95.4497 94.5366 94.3909 94.3542
mesh3 94.3437 93.4059 93.2570 93.2195
mesh4 93.7926  92.8423 92.6919 92.6540

Table 5.6: Kinetic energy Fj at t = 0.6s for all four meshes and all four time steps with
the GL time scheme.

mesh\timestep 0.05 0.02 0.01 0.005
meshl -0.0452265 -0.0452183 -0.0452161 -0.0452156
mesh2 -0.0443225 -0.0443169 -0.0443155 -0.0443152
mesh3 -0.0441374 -0.0441317 -0.0441305 -0.0441301
mesh4 -0.0440739 -0.0440683 -0.0440671 -0.0440667

Table 5.7: Deformation u, in the middle of the top side at ¢ = 20.0s for all four meshes
and all four time steps with GL time scheme.

Using these data we computed the relative error related to the the value obtained
with the smallest time step At = 0.005s and the densest mesh4. We have plotted the
dependence of the relative error on the mesh size h and the time step At in Figures
5.27| (a) — (f) in log-log scale.

The plots show that the relative error is decreasing with the mesh size h and the
time step At, and the experimental order of convergence with regard to space is between
h and h? and for time of the order between At? and At3, for the densest mesh. In the

"¥Kinetic energy Ej, is not compared at ¢t = 20s because it is numerically equal to zero.
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Figure 5.27: (a), (b): Dependence of the relative error of deformation w, on the mesh
size h and the time step At at t = 0.6s, (c), (d): relative error for Ej, for the mesh size
h and time step At at t = 0.6s, (e), (f):relative error for u, for the mesh size h and the
time step At at t = 20s.
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graphs a combination of discretization errors (space-+time) is depicted. In case of the
coarse mesh the space discretization error is much higher than the time discretization
error and so the relative error decreases very slowly with smaller time step and vice
versa the relative error decreases slower with a smaller mesh size for a long time step.

Mesh stability We compared the result obtained with mesh3 and time step At = 0.01
with the results obtained with the meshes where all inner nodes are randomly perturbed
by 20% of h (mesh3d20) and 25% of h (mesh3d25, see Figure|5.28). The computational

Figure 5.28: Mesh3d25 is mesh3 where all inner nodes are randomly perturbed by 25%
of h (before refinement).

mesh is again the mesh locally refined near the boundary. In Table one can see the
deformation u, at the center of the top surface and kinetic energy Ej at times t = 0.6s
and ¢ = 20s for these meshes. The change of relative error caused by the perturbed mesh

uyat t =06 wuyatt=20 FEpatt=0.6
mesh3 -0.1052579  -0.04413047 93.2570
mesh3d20 -0.1052592  -0.04413016 93.2864
mesh3d25 -0.1052596  -0.04413021 93.2936

Table 5.8: Comparison of the results for perturbed meshes in the problem of rectangle
compression.

is very small, approximately 200 times smaller than the relative error of u, observed in
the convergence analysis for mesh3 and At = 0.01 and approximately 20 times smaller
than the relative error of Ej,.

5.7.3 Rutting in the road

The problem that we study next is connected to the problem of rutting that is observed
on roadways due to the loading of the roadways by heavy transportation vehicles. The
tires of these vehicles constantly go over a small part of the roadway and one can clearly
observe the depression that is made on the roadway.

We assume that the roadway is made from material described by model Quad2,
the material parameters are given in Table Let us consider a rectangular piece of
roadway as given in Figure 5.29] The width is 3m, the height is 0.2m. The vehicles
are assumed to move along the z-direction and the tires of the vehicles apply a load on
the roadway as shown. We have assumed that the tires are 0.25m wide. At the bottom
surface we will assume that the material can fully slip in the z-direction, but it can not
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move in the y-direction. The material can not flow through the lateral sides but it can
fully slip in the y-direction. It can freely move on the top.

Tnh=0 B 1.5m 0.25m 0.5m
‘ ‘ ‘ ‘ vy =0,
0'2m1 ‘ VY A VWY T, =0
vy =0,Tpy =0
3m
Figure 5.29: Problem of rutting in the road.
The material is pushed by constant normal stress T}, = —2 kPa due to the contact

of the tires with the roadway as depicted in Figure [5.29] Let us assume that there are
twenty passes of the vehicles over a particular region and that the tire of vehicle stays in
contact with the roadway at that location for 0.5s. Let us also assume the time interval
between two vehicles approaching the same location is 3.5s. Thus, the body is given
3.5s to relax. Let us suppose that the material is pressed between the times t’f and %,
where t¥ = (4.0k)s and t§ = (0.5 4 4.0k)s for k = 0,...,19.

The boundary conditions are:

Bottom surface Dirichlet: v, = 0, Neumann: T}, = 0
Lateral sides Dirichlet: v, = 0, Neumann: T, = 0
Bottom corners Dirichlet: v, = v, =0

Top surface Neumann: Tn = 0, during the pressing T, = —2 kPa on a part of the
boundary.

The problem is computed on a fixed mesh 90 x 6 (locally refined near the boundary)
with constant time step At = 0.01 and GL time scheme.

0.02
0.01 |- P S —

S S
OW

-0.01 p-

B ) . Point A ——
-0.02 S — Point B

Uy [m]

-0.03 [~
-0.04 -
-0.05 [~

-0.06 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 )
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
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Figure 5.30: The time dependence of the deformation u, at the points A (upper line)
and B (lower line).

The time dependence of the deformation u, of two points A and B on the top surface
(see Figure is depicted in Figure . We observe that the deformation u, is non-
linear with time ¢, for the point B this can be seen clearly (compare with the dotted
linear line), in case of point A the deformation is also non-linear but this can not be
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seen in the presented scale. The non-linear deformation is caused because the non-linear
model was used and it is also the result of the boundary condition at the bottom.

In Figure [5.31] we depict the result of compressing a roadway. For the purpose of
illustration, only the evolution of the deformation of the top surface with time for their
first, the tenth and the twentieth compression is portrayed. Each compression is drawn
in a different color. The beginning of the compression is denoted by a dotted line and
the end by a dashed line and the deformation four seconds after the beginning of the
compression by a solid line. It can be seen that the material is most deformed during
the first compression, and least deformed during the last twentieth compression.

x [m]

0 0.102030405060.70809 1 1.112131415161.71819 2 212223242526272829 3

0.02
0.01
0 i ”
3 ; ‘ 1=t unp L(t f =0. Os
— 001 - 1% impact, t = 0.5s
£ .0.02 |- .. 15" impact, t=4.0s
5 10 impact, t =
~ -0.03 [~ 0“}] impact, t=:
10tk impact, t =
-0.04 20t impact, t =
-0.05 |- 20" impact, t =
t=

2[)‘ h IIIlpdCt
-0.06

Figure 5.31: Time snapshots of the top side depicting the first (red line), the tenth
(blue line) and the twentieth (green line) application of force. Corresponding to these
applications of compressive loads at the top surface the beginning of the application
by a dotted line, the end of the application by a dashed line and the deformation four
seconds after the beginning of the application by a solid line.

The movie of the full simulation is attached on the DVD, the problem was computed
with two sets of material parameters: one set is given by Table where the applied
normal stress is equal to 2 kPa, the other are the real material parameters that we fitted
for unaged polymer modified binder at temperature 35 °C given in Table and the
applied normal stress is ten times higher, i.e. 20 kPa.

5.7.4 Rolling over a viscoelastic material

The last problem is the rolling of the asphalt on the runway. Let us consider the
rectangular piece of material, 3m wide and 0.5m high. Model Quad2 is used with the
material parameters given by Table[5.3] The problem is depicted in the Figure [5.32

0.5m Tn=20

T —)

0.5m

vy = 0,Tpy =0

3m

Figure 5.32: Rolling over a viscoelastic material.
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The material is on the ground where it can fully slip in the z-direction, but it can
not move in the y-direction. All other sides of the rectangle can freely move. At ¢t =0
the material is at rest and does not move. Suddenly at time ¢ = 0 it is pushed at the
top with a constant normal stress Ty, = —5 kPa. The force is applied on the constant
area | = 50cm, which moves with the velocity 40 cm/s from the left to the right and
then back to the left, i.e. the material is rolled forward and back. In the Figure
the location of the area borders is depicted with respect to time ¢. The force is released
at t = 10.4s and the material is let to relax.

Figure 5.33: The location of the area where the force is applied with respect to time.

The boundary conditions are:
Bottom surface Dirichlet: v, = 0, Neumann: 7T, = 0

Top and sides Neumann: Tn = 0, during the pressing Ty, = —5 kPa on the moving
part of the boundary.

The problem is computed on a fixed mesh 60 x 10 (locally refined near boundary as can
be seen in Figure with time constant time step At = 0.01 and GL time scheme.

In the Figure [5.34] there are five snapshots of the whole simulation. It can be seen
how the material is rolled into the sides, the snapshot at ¢ = 6.5s shows how the roller
pushes the material ahead. The last two snapshots show the relaxation of the material
due to the elastic part of response.

The full simulation was done for two set of material parameters. In order to show
the viscoelastic behavior of the model Quad2 we computed the problem with unrealistic
educational parameters given by Table [5.3] where the applied normal stress is equal to
5 kPa. Further, we computed the problem also for real material parameters given by
Table where the applied stress is equal to 50 kPa. The movies of both simulations
are attached on the DVD.
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Pressure (kPa)

P

Figure 5.34: Snapshots of the rolling over a viscoelastic material, real material param-
eters given by Table
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Chapter 6

Conclusions

We have been interested in identifying the models, with the class of rate-type fluids,
that are capable of describing the response of asphalt binders. Although geomaterials
like asphalt binder or asphalt concrete may exhibit several non-Newtonian phenomena,
as listed in Chapter 2, we have concentrated in this study on two of them associated
with viscoelastic properties of the materials: stress relaxation and non-linear creep test.
We considered the results of the classical experimental work by Monismith, Secor on
asphalt concrete and two experiments with asphalt binder. Regarding asphalt binders
the first torsional experiment was performed by Krishnan and Narayan in 2007 with
an interesting output, which is a torque overshoot that is not possible to simulate by
standard linear viscoelastic models like Oldroyd-B or Burgers model. Later, in 2012
Narayan et al. performed a new torsional experiment that showed that the relaxation
time for the normal force and the torque are very different, in fact an order of magnitude
apart, and this suggests that asphalt binders exhibit at least two different relaxation
mechanisms.

In Chapter 3 we showed a new way of deriving thermodynamically compatible vis-
coelastic rate-type fluid models proposed by Rajagopal and Srinivasa (2000). The
derivation is based on two notions — a natural configuration and the principle of maxi-
mum rate of entropy production. Using the concept of natural configuration the whole
deformation is split into purely elastic and purely dissipative part, thus it can be con-
trolled how the elastic response looks like and how the energy in the body dissipates.

In 2000 Rajagopal and Srinivasa derived a non-linear version of Maxwell model,
where the elastic response corresponds to that of incompressible neo-Hookean solid and
the dissipative mechanism takes into account the mutual interaction of the amorphous
phase and macromolecules. We added Newtonian dissipative mechanism to this model
and obtained a non-linear version of Oldroyd-B model. We fitted the torque overshoot
experiment with this model with qualitatively better agreement that the standard mod-
els.

Furthermore, we derived another model where the dissipation was in the form of
power-law like model and we obtained a viscoelastic model containing six material
parameters. When imposing restriction on these parameters the model simplifies to
the original viscoelastic model from Rajagopal and Srinivasa (2000). The agreement
of this model with experiment was very good, however, it contained two times more
material parameters than the original non-linear version of Oldroyd-B model. Our next
task was therefore to develop a simpler model with comparably good behavior as this
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one. On that account we developed a viscoelastic model containing only three material
parameters using a purely quadratic form of dissipation which also exhibits the torque
overshoot.

However, none of these models were capable to describe two different relaxation
mechanisms revealed by the experiment from 2012. We included this phenomenon in
our thermodynamic framework by considering two natural configurations. This new
model fits the second experiment very well having only five material parameters. We
also showed that this model can be linearized to standard Burgers model and after
imposing special parameters restriction it leads to Oldroyd-B model.

Furthermore, we showed that also the standard Oldroyd-B model can be derived
using this thermodynamic approach under the assumption that elastic response corre-
sponds to that of compressible neo-Hookean solid. This seems to be a very interesting
result because it leads to the conclusion that this standard model is thermodynamically
compatible (i.e. it satisfies the second law of thermodynamics), moreover, it reveals
how the elastic response looks like. Similarly, other standard viscoelastic models like
upper convected Maxwell and Burgers model can be derived as well, one should however
view them as the fluids where the elastic response corresponds to that of a compressible
neo-Hookean solid and it dissipates the energy as in the original paper by Rajagopal
and Srinivasa (2000) [57].

In addition to the model development in Chapter 5 we also performed extensive full
simulations of all new viscoelastic models together with the standard ones. For this
purpose we modified an in-house finite element code written by J. Hron in C and we
carried out some benchmark tests in order to confirm that the implementation is correct.
On simple problems like the steady solution of Poiseuille flow in plane geometry and
Couette flow in polar geometry (which can be computed analytically in case of Oldroyd-
B model and semi-analytically in case the new non-linear model) we verified that the full
simulation is correct. Afterwards, we computed the full simulation of the experiment
performed by A. Narayan et al. in 2012 using the new model with the fitted material
parameters and confirmed that the assumptions imposed on reducing the problem are
justified and the whole method of fitting gives the same answer.

Our next task was to compute the problems of viscoelastic flows in deforming do-
mains and to simulate real life problems with asphalt. For this purpose we transformed
the equations from the physical deforming domain to the computational fixed domain
using Arbitrary Lagrangian-Eulerian method. The obtained set of highly non-linear
equations was solved on this fixed mesh using the monolithic solver that treats all un-
knowns simultaneously. The performed set of benchmark problems revealed the need to
replace the standard backward Euler time scheme with better one because the incom-
pressibility was violated (volume of the physical domain was decreasing). We solved
this problem by using a higher order Glowinski time scheme. We used the improved
FEM implementation combined with the ALE formulation for full simulation of rolling
of the asphalt (response to the constant load moving forward and back), the problem
was computed with the real fitted material parameters. We also simulated the impact
of the wheel of landing plane, or the origin of rutting in asphalt.
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Appendix A

Differential operators

A.1 Cartesian coordinates

Cartesian system of coordinates is a system of coordinates where all axes are lines
perpendicular to each other and a point in the three-dimensional space is defined by
the coordinate triplet (see Figure |[A.1])

A= (A, Ay AL).
Let us denote the scalar function by
s = s(x,y, 2),
vector functions with the letters v, w with the components
V= (g, Uy, 02) (2,9, 2), W= (wg,wy,w,)(z,y,2).

The second order tensor T with the components

Ty Txy T,
T=|Ty Ty Ty | (z,y,2).
Ty sz T,,

Now, the components of the differential operators used in continuum mechanics are
written

i +vz% divv = v + % v

Os 0
Vs 2, v-Vs=v,-—+1y 9 o 8y+82’

dy ox Ay
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X
Figure A.1: Cartesian coordinates.

% ov,  Ovg 0T s n 0Ty, n T,

or Oy 0z ox oy 0z
Tv |0 O | g | 0T | Ty Ty |

or Oy 0z oz oy 0z

ov, Ov, Ov, 0T, n o7, n T,

or Oy 0z ox Ay 0z

v - Vw, v VT, v-Viy, v-VI,,

v-Viw=|v.vu, |, vVT=|v.VT, v VT, v VI,
v - Vw, v-VI,, v-VTI,, v-VT,,

In the two-dimensional space the terms corresponding to z components are missing.
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A.2 Cylindrical coordinates

In the cylindrical system of coordinates is the point in three-dimensional space defined
by the coordinate triplet (see Figure [A.2))

A= (AT'7A<,07A2)7

where the coordinate r denotes the distance between the point and the axis z, the
coordinate ¢ denotes the angle between the reference direction on the given plane and
the line from the origin to the projection of the point on the same plane. The coordinate
z is the distance between the point and the given plane perpendicular to the axis z.

Figure A.2: Cylindrical coordinates.

Let us denote the scalar function
s=s(r,p,z2),
vector functions v, w with the components
V = (Vp, V0, 02) (1,0, 2), W= (Wr,we, w;)(r,p,2).

The second order tensor T with the components

Tor Tnp T
T=|To Tpo Tp:| (1,9, 2).
Tzr ngo Tzz

The components of the differential operators used in continuum mechanics are writ-
ten on the following page.
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%

or
r Op or 1 Oy 0z or r g
%

0z

ov, 10v, v, Ovy v,
or r Oy r 0z v Vuw, — ;
ov 10v v, Ov v

Vv=|-2%2 242 21, (v:-V)w= ) eWr

or r dp 5 0z ( ) v Vg .
avz lavz avZ A\ sz

8T r 8%0 82

ow OwWq
Wherev-Vwa:vT a +U<P 8 +’UZ 92 ’ a =119,

O 10T Top—Tpp 0T

or r Op r 0z
divT = 8TT‘P =+ laTQDQD + Trgo + T4p7~ I 8TZ@ 7
or r Oy r 0z

oT.. 10T,. T.. 0T
ar * r Op + r + 0z

Vyp

(¥
v VT, — T‘P(TW +Tor) v VTp =~ (T — Try)

o )
(v-V)T = Vo VT 4 (T = Tpp) V- VT, + -2 E(Tpr + Ty

V- szr - UiTz@ V- VTZQD + iTZT’
r T
oT, T, oT,
where v - V1,53 = v, 8a6 + vy aaﬁ +t v, 826, o =rez
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Appendix B

Symmetric positive definite
matrices

In this chapter we summarize several properties of symmetric positive definite matrices
needed in the thesis.

B.1 Some properties of symmetric positive definite matri-
ces

Lemma B.1.1. Let A be a function (0,T)xQ — R¥¢. Let D stands for any derivative

Sym
(partial time derivative, space gradient, material time derivative). Then it holds

D(det A) = (det A) tr (DA)A™!). (B.1)

Proof. For scalar a let us denote a’ := Da some derivative of a, then

D(det A) Z det(A

where A contains derivatives in the j—th column i.e.

/
alr ... alj aid
/
. azr ... Qo9; ... Q24
J
AU) —
!
aqr .. adj ... Qgd

Further, continue with the expansion with respect to the i—th row

d d
Z det(A Z Z_: 1) det (Ayj) =

d
(det A) >~ aj; (—1)" det (Ay) (det A) ! =
i,7=1 M)

aji

(det A) Z% a;' = (det A)tr (DA)A™"). (B.2)
t,j=1
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Using (B.1)) we obtain
d a1
< In(det A) = tr (AA ) . (B.3)

Lemma B.1.2. Let A be a symmetric positive definite matriz of dimension dxd. Then

1t holds
tr(A) > d (det A)/1, (A1) > d (det (A7),

(B.4)
Proof. As A is symmetric and positive definite, we can do a diagonalization

A = CACT

where C is orthogonal matrix and A = diag(A1, A2, ..., A\g), where A\; > 0 is the i-th
eigenvalue of matrix A, then

det A = det Cdet Adet (CT) = A a... \g, (B.5)
tr(A) = tr(CACY) = tr(A) = A\ + Ao + - - - + g (B.6)
Now, we use inequality of arithmetic and geometric means for Ay, Ao,..., Ag >0
L de A 2 Ve s (B.7)
which together with and gives
tr A > d(det A)Y9. (B.8)

Similarly we can proceed with the inverse of matrix A
Al=cA'ct
where A~! = diag (A\{', 07", ..., A7), then

(det (A71)) = det Cdet (A) " det (CT) = ATIA . ALY, (B.9)
tr(A™) = tr(CATICT) = tr(A™) = A\ P+ 0+ + 0 h (B.10)
Again, using (B.7) we obtain

1/d

tr (A71) > d (det (A7) (B.11)

O]

Lemma B.1.3. Let A be a symmetric positive definite matriz of dimension dxd. Then
1t holds

Af < Audj; Yij=1,...di#]. (B.12)
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Proof. We use the definition of positive definiteness of matrix A

d
Z Aprpx; >0 Vx 75 0.
k=1

Choose x = e; + \ej, where ¢; = (0,...,0,1,0,...,0) (all components zero, i-th com-
ponent equal to one) and A is an arbitrary real number

d
0< > Api(Gi+A6;0) (Gir + Adji) = A+ Mg + A Aji + AAjj) = Ay + 2XAgj + N2 A5
k=1
(B.13)
The right-hand-side of (B.13]) is a quadratic equation for A, which (since A is positive
definite Aj; > 0) describes a convex parabola. We want the inequality (B.13) to hold
for all A, hence the parabola can not cross the real axis and the discriminant

D =447 — 4A;A;; <0 (B.14)
has to be negative. O

Lemma B.1.4. Let A be a symmetric positive definite matriz of dimension dxd. Then
all components of the matriz A are bounded by its trace, i.e.,

|AU| < trA. (B.15)

Proof. The inequality is proved by Lemma

(tr A)? (ZA”> ZA +ZA”A”>ZA +) A% = zd:AZ?j.

i#j i#] i,j=1
Hence

S Z A (trA)? = |A;| < trA.
hj=1
O

Lemma B.1.5 (Trace of inverse matrix). Let A be a positive definite matriz of dimen-
sion d x d. Then it holds

tr A

tr (A7) = Tt A ford =2, (B.16)
tr (Afl) = (tr A; dett_/r\(AQ) , for d=3. (B.17)

Proof. We use Cayley-Hamilton theorem saying that matrix A is a root of its charac-
teristic polynom p(A) = det(AI — A), i.e. p(A) = 0. In two-dimensional space the
characteristic polynom is equal to

p(A) = A2 — tr(A)X + (det A), (B.18)
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using Cayley-Hamilton theorem we have
0=A? —tr(A)A + (det AL (B.19)

Multiplying (B.19) by A~! and taking the trace of the result we get (B.16]).
In three-dimensional space the characteristic polynom is equal to

p(A) = X3 —tr(A)N? + % [(tr A)? — tr (A?)] A+ (det A), (B.20)

using Cayley-Hamilton theorem we obtain

1
0=A3—tr(A)A% + 5 [(tr A)? — tr (A%)] A + (det A)L (B.21)
Multiplying (B.21)) by A~! and taking the trace of the result we get (B.17). O

Lemma B.1.6. Let A be a positive definite matrixz of dimension 2 x 2. Then it holds
1

AAY = 5 (tr A)A — (det A)L (B.22)

Proof. Again, we use Cayley-Hamilton theorem saying that matrix A is a root of its

characteristic polynom p(A) = det(AI — A), i.e. p(A) = 0. In two-dimensional space
the characteristic polynom is equal to

p(A) = A% —tr(A)X + (det A), (B.23)

using Cayley-Hamilton theorem we have

0=A?% —tr(A)A + (det A)T (B.24)

from which we express
AAY = A — %(tr A)A = %(trA)A — (det A)T. (B.25)
O
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Objectivity and material symmetry

Let F,

p(t)
configuration x;, and F is the deformation gradient between the reference configuration
kg and the actual configuration s, see Fig.

maps the infinitesimal line from the natural configuration r;) to the current

F

KRR

Kop(t)

Figure C.1: Mapping between the configurations.

Suppose that Frp 18 gradient of some mapping Xkip(ty (this is not generally true
since natural configuration is only a local notion)

F _ 8XHp(t) (F )}J _ a(XFup(t))i
e aX“pa)’ o 8(X”p(t>>=7
Deformation gradient is defined as
F _ aX“R a(XﬁR)l

KR 8X ) ( IiR)iJ: 8XJ .

For more details concerning observer transformation and material symmetry see the
lecture notes by Z. Martinec [39)].

C.1 Observer transformation

The constitutive relations should be independent of the movement of an observer.
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Definition C.1.1. Second order tensor A is objective or frame indifferent if under the
observer transformation (C.2)) it holds

A* = Q(H)AQT (1), (C.1)
Under the change of coordinates
x"=Q)x+c(t), QAWM =QM'Q(H) =1 (C2)
the deformation gradient Froo transforms as
(X5, )i 0 (X )i
F* — p(t) — i (X i+c; i*i b JORAs = % FH 3
( p(t)) *J 8(an(t) )J a(XK:p(t) )J (Q (X p(t)) ) Q 8XJ Q ( p(t)) J
and thus the gradient Fr, o

transforms as a vector, which implies that Fy, . 1s not an objective tensor. However,
the three columns of F o) are objective Vectors Now we can compute how transforms
the left Cauchy-Green tensor B and right Cauchy-Green tensor C

Fp(t) Kp(t)
* _ T* * T T o
CR p(t) F F“ (t) “P(t) &EFHP@) F” (t)F Fp(t) C”p(t)
I
B =F' F* —QF, QT =QB, QT
Kp(t) Kp(t)™ Kp(t) Fp(t) 'f p(t) p(t)

and so, the right Cauchy-Green tensor C
left Cauchy-Green tensor B
the coordinates.

Similarly as the tensor F,{p( 9 transforms also the deformation gradient F,, trans-

forms under the change of coordinates (C.2))

F., = QF.,. (C.4)
Using ((C.4) we shod how the velocity gradient L and its symmetric part transforms

Kop(t) transforms as an objective scalar and the

Kp(t) transforms as an objective tensor under the change of

L' = FLFL = (QF., +QF.,)FiQ" = QQ" + QF.,F Q" = QQT + QLQ”,
thus L is not an objective tensor. Since
. . . ) T
0-QQT-QQ"+QQ" - QQ"+(QqQ") ,
the symmetric part of velocity gradient D is an objective tensor. Further it can be

shown that material time derivative of objective tensor A is not objective tensorial
quantity, briefly

dA*

- QA QT+Q QT+QAQT7&Q

Using (C.3) and.t 4) we find out how the rate of deformation of the natural con-
figuration L = GG™! (remind that G = F;! F,.) transforms

Fop(t) Kp(t)

Leyw = =G'G"! _Fzz;(lt) ( F Rp(t) +FFop F p(t)) =
Fol Q7 (<(QF.,, +QF., ) + (QF., + QF.,)F.1Q'QF,,, ) =
F_:(t)Q_lQF fp(t) F_p1<t) .ﬁm) +F_pl<t>Q_lQF Kp(t) +F'Zl<t>F RF;;F%M =Ly
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and the rate of deformation L transforms as an

objective scalar

and its symmetric part D

Fp(t) Fp(t)

L, =L ; D (C.5)

Fp(t)? Kp(t) = Hepwy

C.2 Material symmetry

We suppose that the material is homogeneous isotropic and so the constitutive equations
do not depend on the change (translation and rotation) of the natural configuration k.
Suppose we have two natural configurations r,;) and &,y and the relation between the
points in two configurations is the following

X PX, ,+a PPT=P'P=IandP=P(X,,)

Kp(t)

Then with this change, the gradient F changes as

Kp(t)

- OXnpy)i Oy )i O(Prr((Xnyy )1 — ar))

(FH )7,J = — = — =
p(t) B(Xﬁp(t))‘] a(XNp(t))K 8(X"ip(t))*]
—~———Pix = (Fx , )ikPik (C.6)
a(an<t))K r®)
and so
n _ T
F’ip(t) - F”P(t)P :

Note, that the change of natural configuration does not cause any change of the defor-
mation gradient F ,. Then the right Cauchy-Green tensor C and the left Cauchy-

Fp(t)

Green tensor Bﬁp( 5 changes as
~ - _ T T _ T
C”p(t) - Fﬁp(t)F"‘p(t) - PFﬁp(t)F”p(t)P 7 PC“p(t)P ’ (07)
s _F BT TpRT _
B“P(t) o FHF(t)FKp(t) - F“P(t)P PF“p(t)F”m(t) o B“P(t) (08)

and so: For the material symmetry the right Cauchy-Green tensor Cnp(t
a tensor and the left Cauchy-Green tensor B, transforms as a scalar.

Now, again we want to show how changes the rate of deformation of the natural
configuration L under the change of the natural configuration.

) transforms as

Fop(t)

~ _ . 1 g1 . 1 _
Liyo =GGT =Fg <_F“p(t) T FHRF“RFHP(”> N

P

1 . T - - N
PFKT’(” (_(F“p(t>P + F”p(wP )+ FF an(t)P > -

L : ; -1 T T

r <Fﬁp(t) (_FRP(” + F“RFNRF’%(t))> P —-PP.

Since P is not a function of ¢, P = 0 and so the rate of deformation of the natural

configuration L, transforms as a tensor and also its symmetric part D, transforms
as a tensor Ll
~ _ T
D, =PDs,, P . (C.9)
1D,gpm transforms as objective tensor even in case that P depends on time ¢ because PP7 is an

antisymmetric tensor.
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C.3 Application to the choice of internal energy and to the
choice of rate of entropy production

We use derived relations for the transformation of B,{p(t), C,ﬁp(t> and D,{pm to deter-
mine if the choice of constitutive relation for the internal energy and rate of entropy
production satisfies the objectivity and the material symmetry.

Choice of the internal energy e We test two different constitutive relations for the
internal energy:

G
1. with left Cauchy-Green tensor B,.;p(t): e=-¢ey+ % (tr B’%(t) — 3)

Material symmetry — change of natural configuration

G G
27p (tI’ Bmpg(t) - 3) == Z (tr B“pl(t) - 3) .

Objectivity — change of observer

G/ . e
27p (trBHp(t) - 3) = Z (trBRpm - 3) .

G
2. with right Cauchy-Green tensor Cnp(t): e=eg+ % (tr Cnp(t) — 3)

Material symmetry — change of natural configuration

G (tr (Nj,.ip(t) — 3) = g (tr C,{W) — 3) .

2p T2

Objectivity — change of observer

QC; (tr Crpn ~ 3) = 262 (tr Crpry — 3) .

Both constitutive relations for the internal energy satisfy objectivity and material sym-
metry.

Choice of the rate of entropy production £ We test three different constitutive
relations for the rate of entropy production:

1. with left Cauchy-Green tensor B : &=D

Kp(t)

B D

Kp(t) 2 Rp(t) ~ 7 Kp(t)

Material symmetry — change of natural configuration

~ o T T
D%(t)B“p(t) 'D"vmt) - (Dﬂpu)P B“pm) ’ (Dﬂme ) # D%(t)B”p(t) 'D”»pm'

Objectivity — change of observer
an(t)Bnpm 'anm = (Dryy QBrryy) - (Dityy Q) # Doy Breyyy * Doy

2. with right Cauchy-Green tensor C : &=D, . C

Kp(t)* p(t) ~Kp(t)

D

Kp(t)

190



APPENDIX C. OBJECTIVITY AND MATERIAL SYMMETRY

Material symmetry — change of natural configuration

C. D, =D, C. -D

Fp(t) ~Fp(t) T Fp(t) Fp(t) ~Fp(t) " Rp(t)
Objectivity — change of observer
* * * _ .
D"“p(t)C"“pm 'D’fp(t) - D“p(t) C“p(t) D”p(t)'
3. purely quadratic rate of entropy production in terms of Dﬁp(t>: &= D,gp(w ~D,ip(t>

Material symmetry — change of natural configuration

Diyy “ Dipy = Dityyy - Dty -
Objectivity — change of observer
* * _ .
D“P(i) ‘D”‘p(t) - D”P(ﬂ D”p(t)'
The constitutive relation for the rate of entropy production & = D,w t)B,.ip( ~ D"“p(t)

satisfies neither objectivity nor material symmetry. The constitutive relation for the
rate of entropy production & = D,{p(t)C,{p(t) - Dy, ,, and purely quadratic relation in

terms of Dy, satisfy objectivity and material symmetry.
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Appendix D

Weak formulation for viscoelastic
model Quadl

In this chapter we write components of weak formulation for viscoelastic model Quadl
in three situations: components in two-dimensional space using Cartesian corrdinates,
three-dimensional space using cylindrical coordinates and ALE formulation in two-
dimensional space using Cartesian coordinates.

We use the model Quadl in the usual form given by 3.112H

divv =0, (D.1a)
o
p ((,; v vv> — divT, (D.1b)
T = —pI + 2D + GBﬁp(t), (D.1c)
OB, 1
() T _ d
oAV VB, ~LBy -~ B L' =B, Bl . (D.1d)

where 7 = G/ is relaxation time.

D.1 Model Quadl in two-dimensional Cartesian coordinates

Let us assume that all unknowns p, v, B are in the form

Kp(t)
Byy, B

p= (). v = (g, 0,)(x,9). By, = (BZ B) (2.9).
y Dy

The weak formulation is

/ divv ¢ =0, (D.2)
Q

0
Q Q

T = —pl+ 24D +GBj (D.4)
2] P iv.VB. -1IB. -B. LTt lB B¢ Q=0 (D.5)
0 ot Fp(t) Kp(t) Kp(t) 7 P TR '

'In two-dimension setting it is also possible to use alternative form of model Quad1l given by (3.131D)).
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with the test functions

(= ae), a=@ma)en, Q= (T E) @)

The components of the weak formulation of all equations are

%) o
Yo  OUy )\ _
[, G+ ) a=o
b3 0 0 0 0 0
Vg Vg Vg qI Qm
/Qp<at+” ax+“yay>q+/ﬂ gz L, =0
vy vy Ovy / Jqy gy
e RVt R Wt Ty 1, Z0Y — g,
/Q”<at+” gr "y )Wt | Ay Tlwg, =0
(D.4) ) o b
_ 9% @ _ GV | Uy
T D+ 2#2 O + D) (B:c:r: Byy) H2 ( ay + ax) + GB:cy
- Ov,  Ovy ov
Ve Iy B, —p+2us—2 + $(B,, — By
H2<6y+8$)+G Yy P+ N28y+2(yy )
[O3)
0B, 0B, 0B, vy O0vy
x -2 7Bzz 7BI
/Q( ot " or TTay (&r oy y)

1/1 )
L (Ltt- 5 5) Yo

0By 0By 0By vy Ovy  Ovy vy
x - Bzx Bm B
/Q( ot U or gy oz 2 T\ ar Ty )P T gy P
B,

(Bza + Byy)> Qzy = 0.

T
+1
2T

0By, 0By, 0By, vy vy
- -2 =8B, —B
/Q( v x Ty oy ox eray vy

1/1
+ = (2Byy(Byy - Bxcc) + B:%y) >ny =0.

T

D.2 Model Quadl in the cylindrical coordinates
Let us assume that all unknowns p, v, By, are independent of ¢. Then the problem
is solved in the cross-section . The unknowns are in the form

BT‘TWBT‘@aBTZ
p=p(r,z), v=(vp,0p,0v;)(r 2), B,wt) = | Bry, Byy, By: | (1,2), (r,2) € X.
BT‘ZvBCpZ7BZZ
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The weak formulation in the cylindrical coordinates in the cross-section ¥ is
/ rdivv ¢ =0, (D.6)
b

/ pr <?9 +v- VV) / rT-Vq=0, (D.7)
) t )

rT = —rpl + 2rpsD + rGBY (D.8)

Kp(t)?

8B’fp(t VB LB B LT 1 B Bd —0 D 9
ET ot Fp(t) Rp(r) T Fp(n) +; Kp(t) = Fp(t) Q= (D.9)

with the test functions

era Qrgoa Qrz
q= Q(Tv Z)v q= (q’I‘7QL,07qZ)(r7 Z)a Q = Qrnggogoanﬂz (7“, Z)
QTZ) Q<p27 sz
The components of the weak formulation of all equations are
(D.6)
vy ov,
+v.+7 =0.
/E ( or 0z ) 1
09
ov ov v L Jq Jq
/Ep <7’ 81: + m)rai;ﬂ - v?p + 7"1)28;> qr +/E ” qr + 1Ly 8; rTrzai; =0,
vy, ov dq dq
/,o( v 2o 6—+v@vr+rvz > / —2gp+rTr, B +Twa“’:0,
ov, ov, 0q.
=0.
/ P < at " ar T ) / T,

(D.8)

—rp + 2r,u268 +rG(Brr —b)  p2 ( Vo + r%) + rGBry T2 (%Qz + 381)2) +rGB;rs
rT=| p2 (—vw + r% + rGBry —rp + 2u2v; + rG(Byy, — b) T2 88 ® +rGBy. ,

v, Ov, ov Ov,
r ( az; 81; +rGB,. T2 6“’ +rGBy: —rp + QTNQE +rG(B., —b)
1

where b = g(Brr + By, + B..).

(D.9)

OB OBy OByr
/E (r 5 + ro, o + rou, 5. 20,Brp — 2 (rLyyBrr + 1Ly Bry + 7Ly Br)

1
+ ; (gBTT(QBTT — By — B..) + B, + sz> )Qw =0,
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OB, 0B, 0B,
L (T 6t¢ + rur 67"@ + ru, 8ZLP — Vyp (BQPQP — B'{‘T) — TLT‘TBmp — TLT‘PBLPW — Terngz - TLgp'rBTT

r (1
- rL(pamep - TchzBrz + ; (gBT‘(p(QBcptp + 2By — Bzz) + Brchpz) )Q'Np =0,

OB 0B 0B
/z (r ot + ro, o + rv, 9 voByz — 1Ly Br; —1LroBy, —rLy.B., — LBy

r (1
- TLZ(pBT(p —rL..Br. + ; (gBrz(QBzz + 2B — B(pap) + Ban<pz> )Qr'z =0,

B, B B
/ 7’6 £ +ro, 9By +rv, 9By + 20,Brp — 2 (T LprBrp + 7LppByy + 7 Ly: By
= ot or 0z

1
+ ; (gBWP(QB«w - Brr — BZZ) + BE@ + B?M) )Qw& =0,

OB, OB, 0B
/z (7’ N + ro, 8: + ru, 8,: +vpBr: —rLyorBrz: —rLypeBer —TLy.Bs. — L.y Bry
1
—rL.pByy —L.2Bys + - (7
pu

3sz(2Bzz + 2B<p<p - B'r'r) + Brch'rz> )Q«pz = 07

OB 0B 0B..
L (7’ ot + ror or + U 9z -2 (rLerrz + TLzapBApz + TLzszz)

1
+ ; (gBZZ(2BZZ — B — B<P¢) + BEZ + Biz) )QZZ =0,

where

ov, ov,

T—— Uy T

Ly 1vLpy, 7Ly, r é%

v v

rL=|rLy 1Ly 7TLy. | = r—f Uy r—;

rLy rLy, 1L, v, i

r
or 0z

D.3 ALE formulation of model Quadl in two-dimensional
Cartesian coordinates

ALE formulation of the model Quadl is in the local form (in €,) equal to

Jtr ((VXV)F_T) =0,
—Au=0,

- 0 - A 0 s
gt w0 (7 (v ) ) = v (7287),

=-pI+ MQ((VXV)F + F_T(VXV)T) + Gde(t)’

T
. 0B ; n J
® -1 -t -t = x
P[P (5 (v ) ) B, — (P By, By O] = TB B

where (?,; = v on the boundary 0f2,, F =1+ Vu, J = detF. Let assume that all

unknowns p,u,v,B are in the form

Fop(t)

p :p(zn,y), u= (Umauy)(x’y)a V= (’Uﬂﬁavy)(x7y)a
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— B$£U B;By
BHP(t) - (B:Ey Byy (1), y)a (xg y) € QX‘
The weak formulation in the Cartesian coordinates is

/Q jtr((vxv)ﬁfl) ¢=0, (D.10)

X

/Vu-Vt:Q (D.11)
QX

/ jp(%+(vxv) (F*l <vf%‘t‘) ).q+ / JTET.vq- [ TP Tn.q=0, (D.12)
Qy Qy a0y

T =—pl+ p(V,v)F '+ FT(V,v)") + GBY (D.13)

p(t)’

o}

S~
5
Q|7
+
/N
H.j‘>
N
|
¥
N———
N————
<

X Rp(t)

. _ 1
—(V,v)F'B B.,,F1(Vyv)" + ;Bnp(t)sz(t)} Q=0 (D.14)

Rp(t) —

with the test functions

q= Q(x7y)? t= (tz,ty)(.f,y), q= (qz,Qy)(fE;y)7 Q = (gzz gzz) (.Qf,y)

Using the components it can be comupted

- Oouy Ouy
A Oz Ay A ~ Ouy Ouy Oug Ouy
F= J=detF=(14+—| (1 - .
Juy 1%’ ¢ <+32L‘>(+3y oy Ox
ox y
Let us denote
1 % _8%5
ol Fige Figy _ 1 dy Ay
Fiy, Fiyy J| Oy 1 Jug |’
0 0
P 00 psoe - Py Doy 4 Doy
oo ~ 1 (Liw Lay\ | Ox Oy ox Oy
Vv = (Vyv)F™ = i i = | vy .. ovy . Ovy . ovy .
yr  Loyy %Fzm + @Fzym %sz + Tszyy
The components of the weak formulation of all equations are
01
/ J(us+Lyy) g =0.
QX
(on8)

0us Ot D, Ot _
o, 0r Ox oy oy

0,

Ouy Oty | Ouy Oty _
o, Or O oy oy
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(D.12) The equations are written without the boundary term.

~ [ Ov A ou A ou
- me x_igj Lx -2 x
o7 (G e (= ) 0 (= 52

N ¥ NG
/Q J (Tszm i Txszxy) % 1 (Tszyx 4 Twszyy) K _ g,

X

~(Ovy - ou A ou
4 Lyw [0, — =2 L -
foo7 (Gt o (o= ) o (=)o

A/ . 0 2 A 0
/ I (ToyFie + Ty Fiay) S 4 J (TuyFig + Ty Fiyy ) S =0,

O, Ox oy

(D.13)
A G A ~
T —p+ 2/12sz + §(me - Byy) K2 (ny + Ly:):) + GB:vy
= . . . G

M2 (L:Ey + Lyx) + GBmy —p+ 2/«‘2Lyy + E(Byy - me)

(D.14)

~[ OBga . _ % . _ % O0B.. . B Oy . _ % O0B..
/QXJ { o +<F ( at)” ( o )) e *(F ( ot )*F ( o )) dy
1

. . 1

~[ OBzy . _ Ous . _ Ouy \\ 9By . _ Oug . _ Ouy \ ) 9Bay
/Q J{ ot +(FZ” (”I ot ) + Fiy (”y ot )) e +<FZ” (“ﬂ” ot ) T+ Fiyy <”y ot )) "oy

X

- (Z/yzBm + (izz + i/yy) By + i/ZyByy) + %Bwy (Baza + Byy)} Qay =0,

~| OByy . _ Ous , _ Ouy 0By, . _ Oug . _ Ouy OByy
/QX ‘]{ ot +(F o (”z ot ) + Fiay (”y ot )) o T\Fe ey ) TEw (T ) ) Ty
. A 1/1 2
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