
Implicitly constituted boundary conditions,
particularly threshold BC

Boundary conditions

First let us define the tangential zτ and normal component zn of the vector z on the boundary with its
unit outer normal n:

zn = (z · n)n, zτ = z− zn, zn · zτ = 0. (1)

We present four different boundary conditions (BCs). In all cases we suppose that the fluid does not
flow throw the boundary, i.e. vn = 0.

No slip BC Fluid perfectly sticks on the boundary: vτ = 0.

Full slip BC Fluid perfectly slips on the boundary: (Tn)τ = 0.

Partial Navier slip BC Combination of no slip and full slip BC: γ(Tn)τ + vτ = 0 for γ ≥ 0. If γ = 0
we obtain no slip BC, γ =∞ is equivalent to full slip BC.

Threshold BC Fluid perfectly sticks to the boundary. When the tangential stress exceeds a value σ, it
behaves as a Navier slip.

vτ = 0 ⇔ |(Tn)τ | ≤ σ

γ(|(Tn)τ | − σ)
(Tn)τ
|(Tn)τ |

+ vτ = 0 ⇔ |(Tn)τ | > σ.
(2)

This BC is a boundary equivalent of Bingham fluid and it can reduce to first three BCs. Particularly,
if σ =∞ it reduces to no slip BC, σ = 0 gives Navier slip and σ = 0&γ =∞ gives full slip BC.

Analytical solution of Poiseuille Flow for Stokes with threshold BC

We find the analytical solution of Poiseuille Flow for Stokes problem with different threshold BCs at
bottom and the top, see Figure 1. We suppose that fluid velocity is in the form v = (u(y), 0), then the
balance of mass is automatically satisfied and the Cauchy stress tensor T is in the form

T = −pI + 2µsD⇔ T =

(
−p µs

∂u
∂y

µs
∂u
∂y −p

)
and the balance of linear momentum divT = 0 gives

∂p

∂x
= µs

∂2u

∂y2
(3)

∂p

∂y
= 0. (4)

From (4) we know that p = p(x), and so the left-hand-side of (3) is only a function of x and the right-
hand-side is only a function of y. This implies that both sides of the equation have to be equal to a
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Figure 1: Poiseuille flow for Stokes problem with threshold BCs.

constant, let us denote it C. Then p = Cx+C0 and from the boundary conditions p(0) = Kl > 0, p(l) = 0
we get that C = −K and find a general solution for p and u

p = K(l − x) and u =
−K
2µs

y2 + C1y + C2. (5)

The fluid flows from left to the right and it can partially slip to the boundary, this means that u is a
non-negative concave function of y, i.e.

u ≥ 0,
∂u

∂y

∣∣∣
y=0
≥ 0,

∂u

∂y

∣∣∣
y=1
≤ 0,

which gives

C2 ≥ 0, 0 ≤ C1 ≤
K

µs
. (6)

Now, we rewrite the threshold BC for our problem. First we compute the tangential part of the Cauchy
stress tensor (Tn)τ

y = 0 : (Tn)τ = −Txy = −ηC1 ≤ 0⇒ |(Tn)τ | = ηC1

y = 1 : (Tn)τ = Txy = −K + ηC1 ≤ 0⇒ |(Tn)τ | = K − ηC1.

Then the threshold BC is in the form

y = 0 : C2 = u(0) = 0 ⇔ µsC1 ≤ σ1

C2 = u(0) = γ1(µsC1 − σ1) ⇔ µsC1 > σ1

y = 1 :
−K
2µs

+ C1 + C2 = u(1) = 0 ⇔ (K − µsC1) ≤ σ2

−K
2µs

+ C1 + C2 = u(1) = γ2(K − µsC1 − σ2) ⇔ (K − µsC1) > σ2.

The problem reduces into four variants:
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Variant 1

σ1 ≥ µsC1 ⇔ C2 = 0

σ2 ≥ (K − µsC1) ⇔ −K
2µs

+ C1 + C2 = 0.

The solution is

σ1 ≥
K

2
& σ2 ≥

K

2
⇔ u =

−K
2µs

(y2 − y).

Variant 2

σ1 ≥ µsC1 ⇔ C2 = 0

σ2 < (K − µsC1) ⇔ −K
2µs

+ C1 + C2 = γ2(K − µsC1 − σ2).

The solution is

σ2 <
K

2
& σ1 ≥

K
2 + µSγ2(K − σ2)

1 + γ2µS
⇔ u =

−K
2µs

y2 +

K
2µs

+ γ2(K − σ2)

1 + γ2µs
y.

Variant 3

σ1 < µsC1 ⇔ C2 = γ1(µsC1 − σ1)

σ2 ≥ (K − µsC1) ⇔ −K
2µs

+ C1 + C2 = 0.

The solution is

σ1 <
K

2
& σ2 ≥

K
2 + µSγ1(K − σ1)

1 + γ1µS
⇔ u =

−K
2µs

y2 +

K
2µs

+ γ1σ1

1 + γ1µs
y + γ1

K
2 − σ1

1 + γ1µs
.

Variant 4

σ1 < µsC1 ⇔ C2 = γ1(µsC1 − σ1)

σ2 < (K − µsC1) ⇔ −K
2µs

+ C1 + C2 = γ2(K − µsC1 − σ2).

The solution is

σ1, σ2 belong to 4©, see Figure 2 ⇔

u =
−K
2µs

y2 +

K
2µs

+ γ1σ1 + γ2(K − σ2)

1 + µs(γ1 + γ2)
y + γ1

K
2 + γ2µs(K − σ1 − σ2)− σ1

1 + µs(γ1 + γ2)
.

The form of the solution u depends on the choice of σ1 and σ2. Four variants are depicted in Figure 2.
The solution for Variant 1 is no slip on both boundaries, Variant 2 corresponds to noslip at the bottom
and Navier slip at the top, Variant 3 is no slip at the top, and Navier slip at the bottom and Variant 4
are two Navier slips.
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Figure 2: Four variants for σ1, σ2.

Weakly-imposed Dirichlet boundary conditions – Nitsche’s method

We introduce a method that enables us to impose Dirichlet boundary conditions in a weak sense for
arbitrary boundaries. It is called Nitsche’s method [3] and originally it was developed for diffusion-type
problems. We use it for solving steady incompressible Stokes and p-Stokes flow with threshold BCs in
the domain Ω. Its boundary ∂Ω consists of Neumann boundary ΓN and Dirichlet boundary ΓD, i.e.
∂Ω = ΓD ∪ ΓN , ΓN ∩ ΓD = ∅ and we solve the following problem:

divv = 0 in Ω (7a)

div
(
−pI + µs

(
∇v + (∇v)T

))
= 0 in Ω (7b)

v = vD on ΓD (7c)

−pn + µs
(
∇v + (∇v)T

)
n = t on ΓN . (7d)

The standard weak formulation of this problem is: Find (p,v − vD) ∈ L2(Ω)× V (Ω) such that∫
Ω

divv q dx = 0 ∀q ∈ L2(Ω) (8)∫
Ω

(−pI + µs
(
∇v + (∇v)T

)
) · ∇ϕ dx−

∫
ΓN

t ·ϕ = 0 ∀ϕ ∈ V (Ω)2,
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where V (Ω) = {v ∈ C∞(Ω)2,v|ΓD
= 0}W

1,2(Ω)
, so the Dirichlet condition makes a restriction on the space

where the solution lives. A numerical solution of this problem is done by Finite element method that is
based on the weak formulation (8), and the Dirichlet boundary condition is again imposed on the Finite
element subspace.

Such a strong imposing of the boundary condition can cause convergence problems !!!. Further, it
can be difficult to implement the problem with Dirichlet boundary condition for the normal component
of velocity vn and Neumann condition for the tangential component vτ for arbitrary curved boundary.
Further, it is much simpler to implement the threshold boundary in a weak sense using Nitsche’s method.

Nitsche’s method for Stokes problem (7) was written for example in [2]. One way how to derive this
method was done in [1], we show it here.

First, as in standard weak formulation, we multiply (7a) by a test function q ∈ L2(Ω) and integrate it
over Ω. Also, we multiply (7b) by ϕ ∈W 1,2(Ω)2 and integrate the result over Ω, use per partes and split
∂Ω into ΓN and ΓD, we obtain

−
∫

Ω

divv q dx︸ ︷︷ ︸
I1

+

∫
Ω

−pI · ∇ϕ dx+ µs

∫
Ω

(
∇v + (∇v)T

)
) · ∇ϕ dx︸ ︷︷ ︸

I2

−

∫
ΓD

[−pn + µs
(
∇v + (∇v)T

)
n] ·ϕ dS −

∫
ΓN

t ·ϕdS = 0. (9)

Now, we take care of I2. Using(
∇v + (∇v)T

)
) · ∇ϕ = ∇v ·

(
∇ϕ + (∇ϕ)T

)
(10)

we integrate I2 per partes

I2 = −µs
∫

Ω

div
(
∇ϕ + (∇ϕ)T

)
· v dx+ µs

∫
ΓD

(
∇ϕ + (∇ϕ)T

)
n · v dS + µs

∫
ΓN

(
∇ϕ + (∇ϕ)T

)
n · v dS,

on the boundary ΓD we set the Dirichlet boundary condition v = vD and once again integrate the first
term per partes. We obtain

I2 = µs

∫
Ω

(
∇v + (∇v)T

)
) · ∇ϕ dx− µs

∫
ΓD

(
∇ϕ + (∇ϕ)T

)
n · (v − vD) dS. (11)

If we do the same procedure with I1 we obtain

I1 = −
∫

Ω

divv q dx+

∫
ΓD

qn · (v − vD) dS. (12)

By inserting (11) and (12) into (9) gives

−
∫

Ω

divv q dx+

∫
Ω

[
−pI + µs

(
∇v + (∇v)T

)]
· ∇ϕ dx−

∫
ΓD

[
−pI + µs

(
∇v + (∇v)T

)]
n ·ϕ dS

−
∫

ΓD

[
−qI + µs

(
∇ϕ + (∇ϕ)T

)]
n · (v − vD) dS =

∫
ΓN

t ·ϕ dS. (13)
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This weak formulation is consistent with (7), but it is unstable. Nitsche [3] showed that the system
stabilizes if a consistent penalizing term is added

β

h

∫
ΓD

(v − vD) ·ϕ dS.

Parameter β > 0 has to be large enough (depends on the problem that is solved, [2] used β = 10), h is a
characteristic size of the elements. All together we obtained a formulation of incompressible steady Stokes
problem with weakly imposed Dirichlet condition:

∀(q,ϕ) ∈ L2(Ω)×W 1,2(Ω)2

∫
Ω

divv q dx = 0, (14a)∫
Ω

T · ∇ϕ dx−
∫

ΓD

Tn ·ϕ dS −
∫

ΓD

Tq,ϕn · (v − vD) dS +
β

h

∫
ΓD

(v − vD) ·ϕ dS =

∫
ΓN

t ·ϕ dS,

(14b)

where T = −pI + µs(∇v + (∇v)T) is the Cauchy stress tensor and Tq,ϕ = −qI + µs(∇ϕ + (∇ϕ)T) is a
stress tensor composed of the corresponding test functions.

In the derivation of this formulation we used the fact that the Cauchy stress tensor T is a linear
function of ∇v and so it is simply invertible. In case of non-invertible relation, or even fully implicit
relation between T and ∇v, the derivation can not be done in this way.

Ler us suppose that the Cauchy stress tensor T is also unknown and we solve the Stokes problem in
the form:

divv = 0 in Ω (15a)

divT = 0 in Ω (15b)

T = −pI + µs
(
∇v + (∇v)T

)
in Ω (15c)

v = vD on ΓD (15d)

−pn + µs
(
∇v + (∇v)T

)
n = t on ΓN . (15e)

In the standard weak formulation of this problem (15c) is multiplied by matrix test function S and
integrated over Ω. In the Nitsche’s method instead of using the stress tensor composed of the corresponding
test functions Tq,ϕ we can directly use the test function S. Then the generalized Nitche’s method is in
the form

∀(q,ϕ,S) ∈ L2(Ω)×W 1,2(Ω)2 × L2(Ω)2×2

∫
Ω

divv q dx = 0, (16a)∫
Ω

T · ∇ϕdx−
∫

ΓD

Tn ·ϕ dS +
β

h

∫
ΓD

(v − vD) ·ϕ dS =

∫
ΓN

t ·ϕdS, (16b)∫
Ω

[
T−

(
−pI + µs

(
∇v + (∇v)T

))]
· Sdx−

∫
ΓD

Sn · (v − vD) dS = 0. (16c)

The advantage of the formulation (16) is that it can be used even for fully implicit relations for the stress
tensor T, particularly for example for explicit non-linear p-Stokes model or viscoelastic models we are
interested in.
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Application of Nitsche’s method to threshold BC

Let ∂Ω = ΓN ∪ ΓD, on ΓN we have Neumann boundary condition (for example on the inlet). On ΓD we
have implicit boundary condition (weak Dirichlet), specifically threshold boundary condition

v = 0 ⇔ |(Tn)τ | < σ,

|(Tn)τ |v + γ(|(Tn)τ | − σ)(Tn)τ︸ ︷︷ ︸
beq

= 0 ⇔ |(Tn)τ | ≥ σ,

where
zτ = z− (z · n)n.

The weak formulation for Stokes is the following:

∀(q,ϕ,S) ∈ L2(Ω)×W 1,2(Ω)2 × L2(Ω)2×2

∫
Ω

divv q dx = 0,∫
Ω

T · ∇ϕ dx−
∫

ΓD

Tn ·ϕdS +
β

h

∫
ΓD

beq ·ϕ dS =

∫
ΓN

t ·ϕdS,∫
Ω

[
T−

(
−pI + µ

(
∇v + (∇v)T

))]
· Sdx−

∫
ΓD

Sn · beq dS = 0.

Here beq can stand for any implicit boundary condition, we treat it using Nitsche’s method as an weak
Dirchlet condition.

Comparison of a numerical and analytical solution for Poiseuille flow

We use the Nitsche’s method for a numerical simulation of Poiseuille flow with threshold boundary con-
dition, see Figure 1. Parameters l = 4 and K = 1 are used in this computation.

We compare the numerical solution of the problem that was computed in Section with the analytical
solution. In our problem we use µs = 1Pa s, γ1 = γ2 = 1 and compute the problem for 6 × 6 different
(σ1, σ2) ∈ (0.2i, 0.2j),∀i, j = 0, . . . , 5.

Figure 3 shows that the numerical solution corresponds to the analytical given by Figure 1.
In Figure 4 one can see the solution of velocity u and component of Cauchy stress Txy for σ1 = 0.6

and σ2 = 0.2 (Variant 2).
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Figure 3: Graph of solution of velocity vx = 0 for x = 2 for different σ1, σ2.

Figure 4: Solution of velocity vx = u and Txy for σ1 = 0.6, σ2 = 0.2 (Variant 2).

8



Computation in curved domains

We computed the problem also in a curved domain “knee-pipe” (R1 = 1, R2 = 1, straight 1 at inflow
and straight 1 at outflow). We compute the problem both for Stokes and Navier-Stokes problem. The
flow is driven by pressure p = 4 at inflow on the top and free outflow on the right, there is threshold
boundary condition at the walls. The parameters were: µ = 1, β = 10, σ = 0.45 and ρ = 200 in case of
Navier-Stokes.

We use the regularization for the norm in the form

|z|ε =
√
z2 + ε, ε > 0.

In the solution we start with ε = 10−3 and converge with it upto zero. In case of Navier-Stokes we
converge also with ρ from zero to the value 200.

In Figure 5 there is a solution for Stokes problem in the left column and Navier-Stokes in the right
column. It can be seen, that on the left the threshold is not exceeded and so there is a no-slip condition,
on the right it is exceeded and it behaves as a Navier-slip. In case of Navier-Stokes the influence of the
inertia can be observed.
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Figure 5: Solution of the curved flow for the velocity magnitude and pressure. In the left column is the
solution for Stokes problem, in the right column for the Navier-Stokes.
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Other possibilities how to treat implicit boundary conditions

We solved the problem of implicit boundary condition by treating it as a weak Dirichlet BC using Nitsche’s
method. The other possibility can be to solve the implicit relation on the boundary and then this solution
use as a standard Dirichlet condition.

However, there is some ambiguity: How one should treat the standard Navier-slip condition

γ(Tn)τ + vτ = 0, γ ≥ 0.

In case of Navier-slip the solution for vτ can be found very easily and treat this BC as a strong Dirichlet
condition

vτ = −γ(Tn)τ ,

but we can found also a solution for (Tn)τ and use it as a weak Neumann condition by inserting it into
the weak formulation

(Tn)τ = − 1

γ
vτ .

How to solve it? Definition of new unknowns living on the boundary. . .
Solution? somehow have only one type of boundary condition different than using weakly imposed Dirichlet
BC as done here.
Definition of solution in paper by Málek and Buĺıček
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