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Introduction

The pole shifting theorem claims that in case of controllable systems one can
achieve an arbitrary asymptotic behaviour by a suitably chosen feedback. To
understand this crucial theorem, we must first describe a few basic concepts.

We start by defining first order continuous linear dynamical systems with
constant coefficients and define an apparatus for solving such systems, that is, the
matrix exponential. After that, we define what does it mean for such a system to
be stable. Utilizing the matrix exponential, we derive a criterion for the stability
expressed using the eigenvalues of the coefficient matrix of the system. This
result motivates us to look at the characteristic polynomials of the matrices of
coefficients representing such systems.

Next, we introduce an open-loop and a closed-loop linear control to dynamical
systems and extend the definition of stability onto them. It is also shown that
the closed-loop linear control system, where the control is defined by a feedback
matrix, are essentially linear autonomous systems.

The next step is to establish discrete-time systems as special case of the
continuous-time systems. Then, we derive the notion of controllability for this
type of systems. The section is dedicated to showing that the definition of
controllability motivated by discrete-time systems also holds for continuous-time
systems.

In the section [2.3| we show that the characteristic polynomial of the coefficient
matrix of the system can be uniquely split into its controllable and uncontrollable
parts.

Finally, in the third chapter we formulate the pole shifting theorem. It claims,
that by a suitable choice of the feedback matrix, in the closed-loop systems,
we can set the controllable part of the characteristic monic polynomial of the
coefficient matrix representing the system arbitrarily, as long as we maintain its
degree (depending on the level of controllability of the system). Thus, we obtain
a powerful tool for determining the asymptotic behaviour of the system.



1. Dynamical Systems

1.1 Systems of First Order Differential Equa-
tions

Remark. Let f(t) be a function of time t € RT. We denote its derivative with
respect to t by

Foy = 550)

Definition. A system of linear differential equations of order one with
constant coefficients is the system

1(t) = a1121(t) + - .. + a1, (1)

En(t) = anaz1(t) + ...+ anpxn(t) .
This system can be written in the matrix form
i(t) = Az(t)

where z(t) = (z1(t),...,7,(t))7 € R, z;: Rt — R, is a state vector (state
for short) of the system and the matric A € R™", A = (a;;) is a matrix of
coefficients of the system. The initial condition of the system is the state
z(0).

This system is also called a linear autonomous system.

We use the matrix form, as it is a very compact way of describing such a
system.

To express the solution of a linear autonomous system in a similarly compact
way, we establish the notion of the matrix exponential.

Definition. Let X be a real square matriz. The exponential of X, denoted by

eX, is the square matriz of the same type defined by the series

(o0} 1
X _ k
X =3 X",
k=0

where XV is defined to be the identity matriz I of the same type as X.

For this definition to make sense, we need to show that the series converges
for any real square matrix. Firstly, we define what it means for a matrix series
to converge. In this text, we define the convergence using the Frobenius norm.

Definition. Frobenius norm is a matriz norm, denoted as ||-|| , which for an
arbitrary n x m matrix A is defined as

1Al =




Lemma 1. The Frobenius norm satisfies the following statements for any matri-
ces A, B, C e R™™ D e R"™" and any scalar o € R.

1. |[A+ Bllp < |Allp + |Bllp

2. |leAllp = || Al

3. |Al|p > 0 with equality occurring if and only if A= Opxp,
4- CD|lp < IClIIIDl -

Proof. The first three points can be simply shown using the definition of the
Frobenius form and properties of the absolute value.
The fourth point follows from the Cauchy—-Schwarz inequality

n T n T n T

2 2 2 2 2 2 2 2

ICDI =>_ > ler - di” < 323 lleallolldilly = D lleilly Y lldslly = ICIEIDI |
i=1j=1 i=1j=1 i=1 j=1

where |[|-]|o denotes the Euclidean norm, ¢; denotes the i-th row vector of the
matrix C' and d; denotes the i-th column vector of the matrix D. O

Lemma 2. The absolute value of any element of a matrixz is always less than or
equal to the Frobenius norm of the matriz.  In particular, for a matric
A* = (a k))nx,“ where A € R™ ™, it holds for every position (i,j) that

@;,;
k k
a] < | AF| P < A%

Proof. For an arbitrary element of the matrix X = (2; j)nxm it holds

n m
il <D0 w2 = 1 X - -
i=1j=1
It follows
k k
a] < AR F < A%

where the second inequality follows from the repeated use of the fourth point of
Lemma [II ]

Corollary 1. Let us have a matriz A¥ = (ag?)nm Then the series Y ;2 I,’: Z(’?
converges absolutely for any b € R.

Proof. By Lemma [2] for any N € N, we have

Al

b
9 < S g - Z

k=0

z B o

>/l

Then

oobk
Z

k' 7/7]

Z HbA“F Z ||bAHF — clvAllp

m >l <

_N~><>o N~>oo



Definition. A matriz sequence {Ax}52, of n X m matrices is said to converge
to a n x m matrix A, denoted A, — A, if

VeeR,e>0 3ngeN VneNn>ng:||4,—Allr<e.

Lemma 3. A matriz sequence {Ap = (ag;-))nxm},;“;o converges to a matrix
A = (aij)nxm if and only if it converges elementwise, in other words
vie{l,....n} Vie{l,....m}:a" ’H—Oo>am- :

’j

Proof. Let A, — A. For any € € R™ we can find such ng that ||A,, — A|| < ¢ for
every n > ng. By Lemma [2] we then have

lal") — ai;| <A, — Allp < e .

2,

It follows that {Ax}2°, converges to A elementwise.
Conversely, let ¢ be a positive real number. For every position (i, j) we find
such k; ; that

k 9
Yk Z ki,j . ’CLEJ) — Qi j < m .
We put Ny = max{k;;}. Now Vk € N,k > Nj it holds

n o m 82
||Ar — Allr = \IZZME? —a;;]? < \/nm =c.

i=1 j=1 nm
O]

Claim 1. The matriz exponential is well defined, that is, the matriz series
Yo %Xk converges for any matriz X .

Proof. Let X*F = (xl(’?)nxn By Corollary |1| every element of the matrix
Yo %X .= (Zz‘;o %xf?)nm converges absolutely. Therefore, the matrix se-

ries converges elementwise to some matrix Y (we denote this matrix by eX). [

Lemma 4. Let {Ar}2, be a matriz sequence, where A, € R™™ ™, and let B €
R™", C e R™*®. If 3202y A converges, then also Y32, BALC converges, and the
following equality holds:

ZB&CzB(ZAOC.
k=0 k=0
Proof. We know that for any N € N it is true
N N
> BA.C=B (ZAk’> C .
k=0 k=0

We want to now show that the left hand side converges to B (3> _72, Ax) C for
N — oo. Let g1 € RT be fixed. Since the series 5, A* converges, we can find
Ny such that for every N € N, N > Ny it holds

00 N
> A= A
k=0 =0

<éer .
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Then
[e%) N [e%) N
HB (z@ c-y Bac| - HB (Z Ak> C_B (ZAZ> c
k=0 =0 = 1=0
[e%) N N
:‘|B<2Ak—2Al>C S 4,
k=0 =0 =0

This concludes the proof that the series Y72, BA,C converges to B (372, Ax) C.
O

F F

1Cllr < IBllIC] per -

F

F

Definition. Let us have a matriz function X (t): R — R™ ™. Then the derivative
of the function is

CZX@) (ix”(t)>nxm _ (zi,j@))nm .

Lemma 5. For a matriz function A(t): R — R™™ and a vector function
v(t): R — R™ it holds

CZ(A(m@)): (iA(t)) v(t) + A(t >5t (t)

Proof. Can be simply shown by rewriting the vector A(t)v(t) elementwise. [
Lemma 6. Let A, B and X be real n X n matrices. Then

1. if AB = BA, then e*B = Be“,

2. if R is an invertible n x n matriz, then eRTIXR — R-1eXR

3. LetX = XeX, fort € R,

4. if AB = BA, then 418 = e4eB.

Proof. 1. Because of the convergence of the matrix exponential, we can use
Lemma [4 and get

AB BA
B = ZklAk Z BA’“ sz'A’f Be”

2. Following from Lemma [4, we have

: < 1 < 1
et XE Z L (BTXR) Z k'R 'X*R =R~ (Z HX’“) R=R'*R.
k=0 """

3. The elements of the matrix e = S22, %X’“ = (€;,j(t))nxn are equal to

eii(t) =" 1%
k=0 """



where X* = (ag?)nxn. By Corollary (1| the series > 22, %ag? is absolutely

convergent for every ¢t € R. We can now differentiate the individual elements
(see [Pick et al 2019, Véta 8.2.2).

d d tk ) e — 00 tk (k1)

%ez}j(t):%zk' 1, Z ' z] :];)Hai,j

Using Lemma (] we get the desired result

Ootk

d x _(d AN k
Lex — (Lot = (3 =a —Z P e X}j — X = Xe¥
dt@ (dte 7]( )>n><n <k:0 k!ald nxn k' k' ‘

4. For the following proof we use |Klain| (2018, Theorem 5).

Consider the function g(t) = e/A*Be~tBe~t4 By the first and third points
and by Lemma [5], we have that for any ¢t € R

gl(t) :(A + B>€t(A+B)€7tB€7tA + et(AJrB)(_B)eftBeftA
+ et(AJrB)eftB(_A)eftA

=(A+ B)g(t) — Bg(t) — Ag(t)
= -

This implies, that the matrix ¢(¢) is a constant matrix. For any ¢ € R, it
therefore holds

g(t) — g(O) — 60(A+B)e—0Ae—OB — 606060 — In ’

and hence
] = g(t) _ et(AJrB)eftBeftA )

tA tB

Finally, after right multiplying both sides by e , we obtain

otAptB _ oHA+B)

O
Lemma 7. For any a € C we have e* = 1.
Proof. Follows straight from the definition of the matrix exponential.
I 00 k b 00 ak
k=0 nxn
O

Now, using the properties in Lemma 6] we can see that @(t) = Az(t) is solved
by x(t) = ez(0). The solution is unique which follows from the general theory
of linear differential equations (see [Pick et al., 2019, Véta 13.5.1).

Claim 2. The autonomous linear system &(t) = Ax(t) with an initial condition

x(0) is uniquely solved by x(t) = e"x(0).

7



1.1.1 Stability of Linear Autonomous Systems

Typically, we require the autonomous system to stabilize itself back into its stable
state after some disturbances.

Definition. The linear autonomous system i(t) = Axz(t) is stable, if for any
initial state x(0) € R™ the state vector x(t) converges to o for t — oo.

Let A be a real square matrix. Then there is a regular matrix R € R"*" such
that the matrix
J=RT'AR

is in a Jordan normal form. By substituting z(¢) = Ry(t), which is equivalent to
changing the basis of the system, we get

Ry(t) = ARy(t)
y(t) = R ARy(t)
y(t) = Jy(t) .

Therefore, by Claim [2] the unique solution is

y(t) = e"y(0) .

It is sufficient to determine when y(t) converges to o, because since R is an
invertible matrix, z(¢) converges to o if and only if y(¢) converges to o.

We know that every Jordan block J, in the matrix J is of the form
Jan = My + Ny, n € N, where N,, = (n;), ., is the nilpotent matrix satisfying
n;; = 6;;—1. 1t is also true that (Nn)f] = 0; j— and (N,)" = Opxn, since every
right multiplication by the matrix N shifts the multiplied matrix’s columns to
the right by one column, that is, it maps matrix (v1, ..., v,) onto (0,v1,...,v,_1).
For example, in case of n = 4 we have

0100 0010 0 001

0010 > |0 0 01 3 |0 000
Ni=lg oo 1™ =log00 0] ™ =000 0

0000 0000 0000
By Lemma @, for each Jordan block J,,, we have

otn — ptAIn+Nn) _ Ay tNo _ M tNa
Let A = a + ib where a,b € R, then
elIan — patgibt N

We know that |e®| =1 and that

n—1 tk

00 tk
tN _ Uk Uk
=2 N =L N
k=0 k=0
since (N,,)" = Opnxp. Therefore, we can see that every element of the matrix e/
is a polynomial in ¢ of degree less than n. It follows that e!/>» approaches O, x,
for t — oo if and only if

lim et" 1 =0 .
t—o00



This holds for any n € N if and only if a < 0.
Since any block diagonal matrix to the power of any natural number preserves
its block form, we can write

J>\1,n1 0 0 e 0 0
J ng
e AR e
0 0 R . 0 0 coe eDrnr

where the zeroes in the matrices represent zero matrices of appropriate sizes.
Therefore, since y(0) is a constant vector, we see that y(t) = e'/y(0) converges to
0 if (and only if, because of the uniqueness of the solution) all the eigenvalues \; of
the matrix A have negative real parts. As the last step, we calculate z(t) = Ry(¢)
and z(0) = Ry(0). Let us formulate this result into a theorem.

Theorem 1. The system & = Ax(t) is stable if and only if all eigenvalues of the
matriz A have negative real parts.

1.2 Linear System With Control

Definition. A continuous dynamical linear system with control u is a
system of linear differential equations of first order with constant coefficients in
the form

&(t) = Ax(t) + Bu(t) ,

where the function x(t): Rt — R" is a state vector (state for short) of the
system, A € R™" 4s a matrix of coefficients of the system, B € R™™ s a
control matrix of the system and the continuous function u(t): Rt — R™ is a
control vector of the system. The initial condition of the system is the state
z(0).

We call this system the (A, B) system for short.

In a general case, this is called an open-loop control system because the
control is not dependent on the previous state of the system.

We can imagine such a system as follows. The first summand of the right-
hand side, Ax(t), of the equation #(t) = Axz(t) + Bu(t) can be thought of as
the model of the machine or the event that we want to control and the second
summand, Bu(t), as our control mechanism. The matrix B fulfils the role of a
“control board” and the control vector u(t) is us deciding, which “levers” and
“buttons” we want to push.

Of course, if we want this system to be self-regulating, we cannot input our
own values into u(t), and therefore u(t) has to be calculated from the state of our
system.

Definition. Let us have a linear differential system with the control u(t) defined
as
u(t) = F(t) ,

where F' € R™" is a feedback matrix. This system is then called a closed-
loop control system or a linear feedback control system.
For short, we call this system the (A, B, F') system.

9



Usually, we are given an autonomous system and we need to find a feedback
matrix F' such that the resulting system has some desired behavior. The feedback
control system can be expressed as the linear autonomous system

i(t) = Ax(t) + BFz(t) = (A + BF)x(t) .

Definition. The linear feedback system (A, B, F) is stable, if the linear au-
tonomous system &(t) = (A+ BF)x(t) is stable.

By Theorem (1} we now know that an (A, B, F') system is stable if all eigen-
values of the matrix A + BF have negative real parts. Therefore, we are left
to provide a suitable feedback matrix F' € R™*". This requirement can also be
expressed through the characteristic polynomial of the matrix A + BF', since
the roots of the characteristic polynomial of a matrix are precisely eigenvalues of
the matrix.

Definition. Let A be a nxn matriz. Then the characteristic polynomial of A,
denoted by x4, is defined as

xa(s) =det(sl, — A) .

Through these observations we got to a conclusion, that we need to find a
feedback matrix F' such that the characteristic polynomial of the matrix A+ BF
is

Xatpr = (@ = M)(@ = X) - (z = An)

where all its roots Ai, Ao, ..., A, € C have negative real parts. This leads to an
important definition.

Definition. Let K be a field and let A € K™, B € K"™™ n,m € N. We say
that a polynomial x is assignable for the pair (A, B) if there exists such a
matriz F' € K™*" that

XA+BF = X -

The pole shifting theorem states, that if A and B are “sensible” in a sense that
we discuss in the next section, then an arbitrary monic polynomial x of degree n
can be assigned to the pair (A4, B). It also claims that it is immaterial over what
field A and B are.

1.3 Discrete-time systems

Let us have a continuous dynamical system &(t) = Ajx(t), where A; is a real
square matrix. We discretize the time, that is, instead of using continuous real-
time values of x(t) and (), we are interested in these values only at discrete
sampling times 0,6,20,...,kd,... where 6 € RT. We denote the states at each
sampling time as

x, = x(kd) ,k € Ny .

The solution of this system is by Theorem [2| precisely x(t) = e'412(0). For some
fixed k € N we get 7 = x(k§) = e412(0). Using the fourth point of Lemma [f]

10



we obtain
Thy1 = €(k+1)5A1.Q7(0)

z(0)
— €5A1 ek(;Alx(())
=g

= A.Q?k

— 6(5A1+k:(5A1

k

by choosing A = ¢®4t. We see that the value of z at the sample time k can be
calculated from its previous value. We now define such a system. The definition
holds for any field K.

Definition. Let K be a field. A discrete dynamical linear system is a system
of equations
T = Axy, k €Ny,

where xy € K" is a state vector (state for short) of the system and the matriz
A € K™ js ¢ matrix of coefficients of the system. The initial condition of
the system is the state x(0).

Similarly, we can define a discrete dynamical linear system with control.

Definition. Let K be a field. A discrete dynamical linear system with
control u is a system of equations

Thy1 = Afk + Buy, k € Ny s

where x, € K" is a state vector (state for short) of the system, A € K™*™ is
a matriz of coefficients, B € K™™ is a control matriz and u, € K™ is a control
vector. The initial condition of the system is the state xg.

We call this system the discrete (A, B) system.

11



2. Controllable pairs

In this chapter we establish the notion of controllability. We first explain this
concept for discrete-time systems and then we show that the requirement for
controllability of continuous-time systems is the same as the one for discrete-time
systems.

2.1 Discrete-time systems

Remark. In this section we assume A, B to be real matrices of types n X n and
n X m respectively.

Definition. Let (A, B) be a discrete system. We say that a state x can be
reached in a time k € Ny if there exists such a sequence of control vectors
Ug, U1, - - ., Ug_1 that for the initial condition xo = o we get x = xy.

States that can be reached in time k € N in open-loop control discrete-time
systems can be derived as follows. The initial condition is zo = o and we can
choose arbitrary wug, uy,...,ui_1;. Then for k =1 we have

r1 = Axg + Bug = Bug € ImB .
For k = 2 we get
x9 = Az + Buy = ABug + Buy € Im(AB|B) .
It is clear, that for every k& € N it holds
x, € Im(A*'B|..-|AB|B) .
For every k € N it is also true that
Im(B|AB|---|A*B) C Im(B|AB| - -- |A*'B) .

By the Cayley—Hamilton theorem we know that x4(A) = O,x,. That means,
that A" can be expressed as a linear combination of the matrices {I, 4, ..., A"}
which implies that A™B can be expressed as a linear combination of the matrices
{B,AB,...,A""'B}. We now see that

Im(B|AB|---|A"B) C Im(B|AB|---[A""'B) .
It follows
Im(B|AB| - |A" ' B) = Im(B|AB| - -- |[A""' B|A"B) .

For an arbitrary k£ € N, k > n we have

n—1 n—1

A*B=AF"A"B =AM Y i A'B =Y 0; A B € Im(B|AB| .. |A¥'B) |
i=0 i=0

for some ay, ..., a,_1 € K. Therefore, by induction, all the states we could reach

in any time k£ € N are already in the space
Im(B|AB|---|A""'B) .

We have proved the following claim.

12



Claim 3. Let K be a field and let A € K"*™. For any k € N,k > n it holds
Fm(B|AB| -+ |AB) = In(B|AB| - |A"'B)

Definition. Let K be a field and let A € K™", B € K™, n,m € N. The
matrix

R(A, B) = (B|AB|---|A"'B)
is called the rechability matrix of (A, B). We define the reachable space
R(A, B) of the pair (A, B) as Im(R(A, B)).

Definition. Let K be a field, V C K" be a vector space and let A € K™*". Then
we define the product of the left multiplication of the space V by the matriz A as
the set A-V =AY = {Av|v € V}.

We have seen that by left multiplying R(A, B) by A, we obtain a subspace
which is already included in R(A, B). This leads to an important property of
some subspaces.

Definition. Let V' be a vector space, W be its subspace and let f be a mapping
from'V to V. We call W an invariant subspace of f if f(W) C W. We also
say that W is f-invariant.

If f = fa for some matriz A, we also say that W is A-invariant for short.

Lemma 8. R(A, B) is an A-invariant subspace.
Proof. 1t follows from the discussion above. O]

Ideally, we want to be able to get the system into any state by controlling it
with the control u, i.e., choosing an appropriate sequence uy, . .., u,_1. Therefore,
we desire that R(A, B) = K". An equivalent condition is dimR(A, B) = n.

Definition. Let K be a field and let A € K™, B € K™™ n,m € N. The pair
(A, B) is controllable if dimR(A, B) = n.

2.2 Continuous-time systems

Remark. In this section we assume that A € R™*", B € R"*™,

We now show that the condition for controllability of discrete-time systems
also characterizes controllable continuous-time systems.

Definition. Let us have a vector function v(t): R — R™. Then the definite
integral of the function on an interval |a,b], a,b € R is

/ab@(t)dt: (/ab'ul(t)dt, e /abvn(t)dt>T

We utilize the matrix exponential in solving the inhomogeneous linear system
@(t) = Ax(t) + Bu(t). By left multiplying it by e~** we get
e i (t) — e Ax(t) = e Bu(t)
d

£(6_Mx(t)) — e Buf(t) .
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Note that we used Lemma [5| and the equality e 4 A = Ae™*4, following from the
first point of Lemma [6] After integrating both sides with respect to ¢ on interval
(to,t1) we obtain

t1
etz (t)]h = / e~ Bu(t)dt
to

t
e Az () — e 0 (ty) = / 1 e M Bu(t)dt

to

t1
z(ty) = e () + [ e By(t)dt
to
The integral makes sense since u(t) is required to be continuous.
Now it is clear that in the system where 2:(0) = o, the state in time ¢ € RT is
equal to

o(t) = [ " =94 By(s)ds . (2.1)

Definition. We say that a state x € R™ can be reached in time ¢, if there exists
a control u(x): [0,t] — R™ such that

t
T :/ e Bu(s)ds .
0

The set of all states that can be reached in time t is denoted by Rt. The set
R = Uyer+ R of all states that can be reached, is called a reachable space.

Definition. An n-dimensional continuous-time linear system is controllable, if

R =R".

Theorem 2. The n-dimensional continuous-time linear system is controllable if

and only if dimR(A, B) = n.

Proof. For the proof of the “if” part we use [Sontag (1998, Theorem 3).

If controllability fails, then there exists a non-trivial orthogonal complement
S to the reachable space R. For any time ¢ € R* and any non-trivial vector p € S
it holds that p*z(t) = 0. By choosing the control u(s) = B*e"=*)4"p, which is
continuous, on the interval [0,¢], we get by the equation that

t . t . 9
0= p*CL’(t) :/0 p*e(t—s)ABB*e(t—s)A pds = /0 HB*e(t—s)A P’

This implies

0= [Bret g = et

and hence
0= p*e(t*s)AB )

By setting s = ¢, we obtain p*B = o. By differentiating the equation and again
setting s = t we get p*AB = o. Repeating this procedure gets us p*A‘B = o for
i€ {1,...,n—1}. This implies that the vector p is orthogonal to R(A, B) and
therefore dimR (A, B) cannot be equal to n.

The “only if” part of the proof is shown in the following sections.

14



2.3 Decomposition theorem

In this section we show that the characteristic polynomial of a matrix represent-
ing a linear autonomous system can be uniquely split into its controllable and
uncontrollable parts.

Lemma 9. Let W be an invariant subspace of a linear mapping f: V — V. Then
there exists a basis C' of V' such that

ne= (o 7).

where Fy is a v X r matrix, r = dimW .

Proof. Let (wy,...,w,) be an arbitrary basis of the subspace W. We complete
this sequence into basis C' of V' with vectors vy, ...,v,_, where n = dimV', thus
C = (wy,...,wp,v1,...,0,_). We know that

116 = (f(wi)le, - [f(wp)le, [F(v)les - [f (va-r)]e) -

Since W is an A-invariant subspace, it holds that f(w;) € W and therefore,
because of the choice of the basis C, the matrix [f]& is of the desired form. [

If (A, B) is not controllable, then there exists a part of the state space that is
not affected by the input. This can be shown using the following theorem.

Theorem 3 (Kalman Decomposition). Let K be a field, (A, B) be a dynamical
system over K and let dimR(A, B) =r < n. Then there exists an invertible n X n
matriz T over K such that the matrices A := T AT and B := T~'B have the

block structures
T A1 AQ o Bl
(). (), o

where A; € K™ and B, € K™,

Proof. We know that R(A, B) is an A-invariant subspace (Lemma [§). Using
Lemma [9] on the matrix mapping f4 we get a basis C' for which it holds that

[fale = [d]e [falklid]i = [d]¢ Afid)%

is in a block upper triangular form. By putting 7' = [id]% we get that A = [f4]&
is in the desired form.
Now, let us consider the matrix mapping fg. We have

B =TB = [id|g"[fslim = [fele™ = ([fslen)]c. - -, [falem)]e) -

Since fg(e;) is the i-th column of the matrix B, and trivially by definition of a
reachable space it holds that Im(B) C R(A, B), we see that B is in the requested
form. O

We achieved the new form of matrices A and B by changing the basis of the
state space. We now define the relation between (A, B) and (A, B).

15



Definition. Let K be a field, let A, A € K™*" and B, B € K"™*™. Then (A, B) is
similar to (A, B), denoted (A, B) ~ (A, B), if there exists an invertible matriz
T for which it holds that

A=T7'AT and B=T7'B.

Lemma 10. Let A and B be similar matrices, that is, there exists an invertible
matriz R such that A= R™'BR. Then x4 = xB.

Proof. We use properties of the matrix determinant:

Xa = det(sI — A) = det(s] — R"'BR)
=det(sR IR — R"'BR) = det(R"'(sI — B)R)
= (detR) 'det(sI — B)detR = det(sI — B)
= XB -
O

Lemma 11. If (A, B) ~ (A, B), then the assignable polynomials for the pairs
(A, B) and (A, B) are the same.

Proof. Let T be a regular matrix over K such that A = T~ AT and B = T"'B.
Then for any feedback matrix F' we have

T-Y(A+ BF)T =T AT + T"'BFT = A+ BF ,
where ' = FT. It follows from Lemma [10] that
XA+BF = XA4BF -
O

Theorem (3| has the following consequence. Let (A, B) be a dynamical system
with the initial condition z(0) = o, and let T" be a regular matrix over K as in
Theorem [ By putting z(t) = Ty(t) we get

Ty(t) = ATy(t) + Bu(t)
which can be rewriten as

y(t) = T YATy(t) + T ' Bu(t) = Ay(t) + Bu(t) .
This gives us

1 (t) = Ay () +Azy2(t) + Biu(t)
92@) = A3y2(t) )

where y(t) = (y1(t), y2(t))7, y1(t) € K™ and y,(t) € K" . The component yo(t)
cannot be controlled and it is, for the initial condition y(0) = Tz(0) = o, always
equal to o, since it does not depend on the control vector u(t). This observation
provides a proof by contraposition of the “only if” part of Theorem [2]

It is also true that the system (A;, By) from Theorem [3|is a controllable pair,
which we state as a lemma.
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Lemma 12. The pair (Ay, By) is controllable.

Proof. We know that dimR(A, B) = r. We desire that dimR(Ay, B;) = r. We
show that dimR(A, B) = dimR(A, B) = dimR (A, By). First, we have

R(A, B) = Im(A""'B|---|AB|B)
=Im((T'AT)" T 'B|---|T'ATT 'B|T"'B)
=Im(T*A"'B|..-|T"'AB|T"'B)
={(T7'A"'B|---|[T'AB|T'B) - v|v € K*™}
={T"YA"'B|---|AB|B) - v|v € K*™}
=T7'. {(A"'B|---|AB|B) - vjv € K"™}
=T"'. (Im(A"'B|---|AB|B))
=T (R(A,B)) .

Since T is an invertible matrix we have
dimR (4, B) = dim(T"'R(4, B)) = dim(R(A,B)) =7 .

Now let us focus on the structure of R(A, é) We know that the last n —r
rows of B are equal to o. Also, because of the structure of A, for an arbitrary
matrix X € K™™ we have that

A(0)- (0 2 6)- ()

where, again, the last n—r rows are equal to o. Therefore, for any positive integer
k we have

o k
AFB = <A1031> AR e Ko™
o n—1
mes) = (0™ [ (%) (9)

By the Claim [3] we have that the restriction to the first 7 coordinates of
R(A, B) is equal to R(A1, By). Finally, it follows that

It follows

dimR (A, By) = dimR(A, B) = dimR (A4, B) =1 .
O

Now we can see that the decomposition described in Theorem |3| decomposes
the matrix A into the “controllable” and the “uncontrollable” parts A; and As
respectively.

Corollary 2. Let (A, B) be a dynamical system, and let T be a regular matriz
and A =T YAT as in Theorem|3. Then it holds

XA = X7 = XA X435 = XeXu -

Proof. Follows from Theorem [3| and Lemma [T0} O
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Definition. The polynomials x. and x., are respectively the controllable and
the uncontrollable parts of the characteristic polynomial x o with respect to
the pair (A, B). In the case where r = 0 we put x. = 1, and in the case where
r=mn we put x, = 1.

For this definition to be correct, we need to show that polynomials x4, and
X4, are not dependent on the choice of the regular matrix 7" from Theorem [3]
Since x4, = Xa/X4,, it is sufficient only to show that x4, is independent of the
choice.

Claim 4. Let A be a square matriz over a field K. Then the controllable part
Xe of its characteristic polynomial is independent of the choice of the basis for

R(A, B).

Proof. Let C' = (c1,...,¢,) and D = (dy,...,d,) be two bases for K" as con-
structed in the proof of Theorem [3] Then we have

= (3 4 = (g %)

as in (2.2)). We want to show that x4, = xar.
It is true that

[fale = [idE[falDlid]5
where
[id)5, = ([e1] s - - - [enlD) -

We know that the vectors ¢y, ..., ¢, form a basis of the subspace R(A, B) and
that the vectors dy, ..., d, form another basis of the same subspace. Therefore

—1
s = (4 5) == (1)
where T € K™ is a regular matrix, 73 € K" """ and Tp, X € K", It
follows
A A\ (T X AL AN (T T
<0 A3> _< 0 T31> <o Ag) (o T3> ’
which implies that

Ay =T7TAT .
By Lemma [10] it then holds that x4, = xa;. O
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3. The Pole Shifting Theorem

The following chapter is based on the first section of the fifth chapter of Sontag
(1998)).

Remark. In this chapter we assume K to be a field and A € K" b e K".

Definition. The controller form associated to the pair (A,b) is the pair

o 1 0 --- 0 0
o o 1 --- 0 0
A=l ] =
o 0 o --- 1 0
a1 Qg Q3 e O, 1

1

where s" — ,s"" — ... — aps — «y 1S the characteristic polynomial of A.

Lemma 13. The characteristic polynomial of A® is " — c,s™ ' — ... — ass — ;.
Proof. It can be shown using simple properties of the matrix determinant. n

Lemma 14. The pair (A’ ") is controllable.

Proof. Because of the form of the vector b”, the matrix (A”)*b’ is equal to the last
column of (A”)*, that is

T
(0 0 -+ 01 By - 51)
for some By, ..., Br—1 € K. Therefore R(A’,1’) = n. m

Lemma 15. Let K be a field and let Ay, Ay € K™*™ and by, by € K", such that
the pairs (Ay1,b1), (Ag, by) are controllable. If the characteristic polynomials of Ay
and As are the same, then the pairs (Ay,by), (Ag, by) are similar.

Proof. Let us have a pair

0 0 -0 om 1
10 -+ 0 0
00 -~ 1 ap 0

The characteristic polynomial of the matrix AT is the same as the one of the matrix
A® since transposing a matrix preserves its characteristic polynomial. Therefore,
by Cayley-Hamilton theorem and by Lemma [13] it holds that

O =xat(A) = xp(A) = A" —, A" " — .. — A — i, ,

implying
A" = q, A"+ A+ aql, .
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It then follows
R(A DA = (b Ab ... A1) AT = (Ab A% ... A") = AR(AD).

By the controllability of the pair (A,b), the column space of the matrix R(A, b)
is of dimension n, which means, that the matrix is invertible. Therefore, we can
write

A=R(ADAR(A D).

We see that the matrices A and A' are similar. It is also true that
R(A,b)b' =1 .

Therefore (A, b) ~ (AT, bT).

Since the pair (Af,b") depends only on the characteristic polynomial of the
matrix A, we conclude by transitivity of the matrix similarity, that any two
controllable pairs with the same characteristic polynomials are similar to each
other. O

Corollary 3. If the single-input (m = 1) pair (A,b) is controllable, then it is
similar to its controller form.

Proof. Follows from Lemmas and [15] O

Theorem 4 (Pole Shifting Theorem). Let K be a field. Let A € K", B € K"*™.
The assignable polynomials for the pair (A, B) are precisely of the form

XAB+F = XXu

where x is an arbitrary monic polynomial of degree r = dimR(A, B) and x., is
the uncontrollable part of the assignable polynomial.

In particular, the pair (A, B) is controllable if and only if every nth degree
monic polynomial can be assigned to it.

Proof. By Theorem (3 and Lemma [11] we can assume that the pair (A, B) is in
the same form as (A, B) in (2.2). Let us write F = (F}, Fy) € K™ where
Fy € K™ Fy € K™ (=) Then

o Al A2 Bl - Al A2 BlFl BlFQ
A+BF_<0 A3>+<0><F1 F?)‘(o A3>+< 0 0 )

(A +BiFy Ay + B E

- 0 As

It follows
XA+BF = XA1+B1F1 XAs = XA1+B1Fi Xu
We see that any assignable polynomial is a multiple of the uncontrollable part

Xu-

Conversely, we want to show that the first factor can be made arbitrary by a
suitable choice of F;. This makes sense only for r > 0, otherwise the assignable
polynomial is equal to x,, which cannot be changed by modifying the matrix F.
Assume that we are given a monic polynomial y. If we find such a matrix F; that

XA+B1F = X s
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then by putting F' = (F7,0) we get the desired characteristic polynomial, that is,
XA+BF = XXu- Since the pair (A;, By) is controllable as shown in Lemma , it
is sufficient only to prove that controllable systems can be assigned an arbitrary
monic polynomial y of respective degree. Hence, from this point on, we assume
that the pair (A, B) is controllable.

We first prove the theorem for m = 1 and then we generalize this result, thus
concluding the proof.

Let m = 1. By Lemma [11| and Corollary |3| we can consider the pair (A,b) to
be in the controller form. For a vector

f=(H o - t)
we have
0O 1 0 0 0
O 0 1 ... 0 0
A+vf=|: o o o |+ (A B S
0O 0 O 1
a1 Q2 Q3 Oy 1
0 1 0 0

(@)
B —
(@)

0 0 0 1
ap+fi o+ fo ast+fs .. o+ fi

Following from Lemma one can see that given a monic polynomial

X=8"—B.s" = = Pas— B,

we can choose
f:<61_a1 52_052 5n_an>>

and the equality xaysr = x is satisfied. We have shown that for the case where
m = 1, any controllable pair (A, b) can be assigned an arbitrary monic polynomial
of degree n.

For the case where m > 1, we choose any vector v € K™ satisfying that
Bv # o and put b = Bv. For any f € K" and for any matrix G € K™*", it
then holds

A+ BG+bf=A+ BG+ Bvf=A+ B(G+vf)

and therefore, if we put F' = G + v f, we obtain
XA+BG+bf — XA+BF -

This implies that any polynomial that can be assigned to the pair (A + BG,b)
can also be assigned to the pair (A, B). Since we have proved the theorem for a
controllable pair where m = 1, the proof can be concluded by showing that there
exists such a matrix G that the pair (A + BG, b) is controllable.
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Let us have a sequence of linearly independent vectors Bv = x1,...,x, of
length n, where
T; = A.ﬁEi,l + Bui,l, 1€ {2, N k} (31)

for some u;_; € K™, and assume that k is as large as possible. We denote the
span of {x1,...,x;} by V. By the maximality of & we have z;,1 € V, which
implies that

Axrp+ Bu=1x,4, €V (3.2)
for any v € K™. Therefore, in particular for u = o, we get
Az eV . (3.3)

It follows by (3.2) and (3.3)), that for any u € K™ it holds
Bu=uxp1 — Az €V

which implies that the column space B = ImB is included in V. Following from
this and the equality (3.1]), we have

A:L’Z'_l = T; — Bui_l c V

for i € {2,...,k}. This result together with the equation (3.3) shows that for
any i € {1,...,k} it is true that Az; € V. This means, that ) is an A-invariant
subspace containing B. Using these two facts one can see that
BCV
ABC AV CVY
A’BC A(AV) C VY

AIBCVY.
Therefore, it holds
R(A, B) = Im(B|AB|A?B|...|A"'B)C V.
By the controllability of the pair (A, B), we obtain
n=dimR(A, B) <dimV =k < dimK" =n .

This implies that £k =n, V = K".

Let us now define a linear mapping g: V — B C V by the equation g(x;) = u;
for every i € {1,...,n — 1}, where u; is such an element that Az; + Bu; = 41,
and we define g(z,) arbitrarily. This definition is correct and unique since the
vectors z; form a basis of V (see Barto and Tumaj, 2019, Tvrzeni 6.4). Let G be
the matrix of the linear mapping ¢g with respect to the standard basis. Then for
every i € {1,...,n — 1} we have

It follows
R(A+ BG,z1) = (1](A+ BG)xy| -+ (A + BG)"’lxl) = (x1|xa| - -+ |Tp) -

Finally, by the linear independence of the the vectors zy,...,x,, it holds that
dimR(A+ BG, z1) = n. We have shown that the pair R(A + BG, Bv) is control-
lable, and thus the proof is concluded. O
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Conclusion

In this thesis, we described and proved notions and relations which were needed
to fully understand the pole shifting theorem. We started with the definition
of continuous linear autonomous systems. We showed that the system is stable
if the eigenvalues of its coefficient matrix have negative real parts. Next, we
derived the rank condition for controllability using discrete-time systems and the
Cayley-Hamilton theorem. After that, we proved that this condition also holds
for continuous-time systems. Then, we proved that the characteristic polynomial
of the coefficient matrix of the system splits uniquely into its controllable and
uncontrollable parts.

Subsequently, we formulated and proved the pole shifting theorem. The theo-
rem states that given a monic polynomial of degree equal to the rank of the reach-
ability matrix, we can always find such a feedback matrix that the characteristic
polynomial of the resulting coefficient matrix is equal to the given polynomial
times the uncontrollable part.

One of the corollaries is that if we work with controllable system, we can,
using the pole shifting theorem, find such a feedback matrix that the system is
stable.
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