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Introduction
The pole shifting theorem claims that in case of controllable systems one can
achieve an arbitrary asymptotic behaviour by a suitably chosen feedback. To
understand this crucial theorem, we must first describe a few basic concepts.

We start by defining first order continuous linear dynamical systems with
constant coefficients and define an apparatus for solving such systems, that is, the
matrix exponential. After that, we define what does it mean for such a system to
be stable. Utilizing the matrix exponential, we derive a criterion for the stability
expressed using the eigenvalues of the coefficient matrix of the system. This
result motivates us to look at the characteristic polynomials of the matrices of
coefficients representing such systems.

Next, we introduce an open-loop and a closed-loop linear control to dynamical
systems and extend the definition of stability onto them. It is also shown that
the closed-loop linear control system, where the control is defined by a feedback
matrix, are essentially linear autonomous systems.

The next step is to establish discrete-time systems as special case of the
continuous-time systems. Then, we derive the notion of controllability for this
type of systems. The section 2.2 is dedicated to showing that the definition of
controllability motivated by discrete-time systems also holds for continuous-time
systems.

In the section 2.3 we show that the characteristic polynomial of the coefficient
matrix of the system can be uniquely split into its controllable and uncontrollable
parts.

Finally, in the third chapter we formulate the pole shifting theorem. It claims,
that by a suitable choice of the feedback matrix, in the closed-loop systems,
we can set the controllable part of the characteristic monic polynomial of the
coefficient matrix representing the system arbitrarily, as long as we maintain its
degree (depending on the level of controllability of the system). Thus, we obtain
a powerful tool for determining the asymptotic behaviour of the system.
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1. Dynamical Systems

1.1 Systems of First Order Differential Equa-
tions

Remark. Let f(t) be a function of time t ∈ R+. We denote its derivative with
respect to t by

ḟ(t) = d

dt
f(t) .

Definition. A system of linear differential equations of order one with
constant coefficients is the system

ẋ1(t) = a1,1x1(t) + . . . + a1,nxn(t)
...

ẋn(t) = an,1x1(t) + . . . + an,nxn(t) .

This system can be written in the matrix form

ẋ(t) = Ax(t) ,

where x(t) = (x1(t), . . . , xn(t))T ∈ Rn, xi : R+ → R, is a state vector ( state
for short) of the system and the matrix A ∈ Rn×n, A = (ai,j) is a matrix of
coefficients of the system. The initial condition of the system is the state
x(0).

This system is also called a linear autonomous system.

We use the matrix form, as it is a very compact way of describing such a
system.

To express the solution of a linear autonomous system in a similarly compact
way, we establish the notion of the matrix exponential.

Definition. Let X be a real square matrix. The exponential of X, denoted by
eX , is the square matrix of the same type defined by the series

eX =
∞∑︂

k=0

1
k!X

k ,

where X0 is defined to be the identity matrix I of the same type as X.

For this definition to make sense, we need to show that the series converges
for any real square matrix. Firstly, we define what it means for a matrix series
to converge. In this text, we define the convergence using the Frobenius norm.

Definition. Frobenius norm is a matrix norm, denoted as ∥·∥F , which for an
arbitrary n × m matrix A is defined as

∥A∥F =
⌜⃓⃓⎷ n∑︂

i=1

m∑︂
j=1

|ai,j|2 .
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Lemma 1. The Frobenius norm satisfies the following statements for any matri-
ces A, B, C ∈ Rn×m, D ∈ Rm×r and any scalar α ∈ R.

1. ∥A + B∥F ≤ ∥A∥F + ∥B∥F ,

2. ∥αA∥F = |α|∥A∥F ,

3. ∥A∥F ≥ 0 with equality occurring if and only if A = On×m ,

4. ∥CD∥F ≤ ∥C∥F ∥D∥F .

Proof. The first three points can be simply shown using the definition of the
Frobenius form and properties of the absolute value.

The fourth point follows from the Cauchy–Schwarz inequality

∥CD∥2
F =

n∑︂
i=1

r∑︂
j=1

|ci · dj|2 ≤
n∑︂

i=1

r∑︂
j=1

∥ci∥2
2∥dj∥2

2 =
n∑︂

i=1
∥ci∥2

2

r∑︂
j=1

∥dj∥2
2 = ∥C∥2

F ∥D∥2
F ,

where ∥·∥2 denotes the Euclidean norm, ci denotes the i-th row vector of the
matrix C and di denotes the i-th column vector of the matrix D.

Lemma 2. The absolute value of any element of a matrix is always less than or
equal to the Frobenius norm of the matrix. In particular, for a matrix
Ak = (a(k)

i,j )n×n, where A ∈ Rn×n, it holds for every position (i, j) that

|a(k)
i,j | ≤ ∥Ak∥F ≤ ∥A∥k

F .

Proof. For an arbitrary element of the matrix X = (xi,j)n×m it holds

|xi,j| ≤
⌜⃓⃓⎷ n∑︂

i=1

m∑︂
j=1

|xi,j|2 = ∥X∥F .

It follows
|a(k)

i,j | ≤ ∥Ak∥F ≤ ∥A∥k
F ,

where the second inequality follows from the repeated use of the fourth point of
Lemma 1.

Corollary 1. Let us have a matrix Ak = (a(k)
i,j )n×n. Then the series ∑︁∞

k=0
bk

k! a
(k)
i,j

converges absolutely for any b ∈ R.

Proof. By Lemma 2, for any N ∈ N, we have

N∑︂
k=0

⃓⃓⃓⃓
⃓bk

k!a
(k)
i,j

⃓⃓⃓⃓
⃓ ≤

N∑︂
k=0

|b|k

k!
⃓⃓⃓
a

(k)
i,j

⃓⃓⃓
≤

N∑︂
k=0

|b|k

k! ∥A∥k
F =

N∑︂
k=0

∥bA∥k
F

k! .

Then
∞∑︂

k=0

⃓⃓⃓⃓
⃓bk

k!a
(k)
i,j

⃓⃓⃓⃓
⃓ = lim

N→∞

N∑︂
k=0

⃓⃓⃓⃓
⃓bk

k!a
(k)
i,j

⃓⃓⃓⃓
⃓ ≤ lim

N→∞

N∑︂
k=0

∥bA∥k
F

k! =
∞∑︂

k=0

∥bA∥k
F

k! = e∥bA∥F .
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Definition. A matrix sequence {Ak}∞
k=0 of n × m matrices is said to converge

to a n × m matrix A, denoted Ak −→ A, if

∀ε ∈ R, ε > 0 ∃n0 ∈ N ∀n ∈ N, n ≥ n0 : ||An − A||F < ε .

Lemma 3. A matrix sequence {Ak = (a(k)
i,j )n×m}∞

k=0 converges to a matrix
A = (ai,j)n×m if and only if it converges elementwise, in other words

∀i ∈ {1, . . . , n} ∀j ∈ {1, . . . , m} : a
(k)
i,j

k→∞−−−→ ai,j .

Proof. Let Ak → A. For any ε ∈ R+ we can find such n0 that ∥An − A∥F < ε for
every n ≥ n0. By Lemma 2, we then have

|a(n)
i,j − ai,j| ≤ ∥An − A∥F < ε .

It follows that {Ak}∞
k=0 converges to A elementwise.

Conversely, let ε be a positive real number. For every position (i, j) we find
such ki,j that

∀k ≥ ki,j : |a(k)
i,j − ai,j| <

ε√
nm

.

We put N0 = max{ki,j}. Now ∀k ∈ N, k ≥ N0 it holds

||Ak − A||F =
⌜⃓⃓⎷ n∑︂

i=1

m∑︂
j=1

|a(k)
i,j − ai,j|2 <

√︄
nm

ε2

nm
= ε .

Claim 1. The matrix exponential is well defined, that is, the matrix series∑︁∞
k=0

1
k!X

k converges for any matrix X.

Proof. Let Xk = (x(k)
i,j )n×n. By Corollary 1 every element of the matrix∑︁∞

k=0
1
k!X

k =
(︂∑︁∞

k=0
1
k!x

(k)
i,j

)︂
n×n

converges absolutely. Therefore, the matrix se-
ries converges elementwise to some matrix Y (we denote this matrix by eX).

Lemma 4. Let {Ak}∞
k=0 be a matrix sequence, where Ak ∈ Rn×m, and let B ∈

Rr×n, C ∈ Rm×s. If ∑︁∞
k=0 Ak converges, then also ∑︁∞

k=0 BAkC converges, and the
following equality holds:

∞∑︂
k=0

BAkC = B

(︄ ∞∑︂
k=0

Ak

)︄
C .

Proof. We know that for any N ∈ N it is true
N∑︂

k=0
BAkC = B

(︄
N∑︂

k=0
Ak

)︄
C .

We want to now show that the left hand side converges to B (∑︁∞
k=0 Ak) C for

N → ∞. Let ε1 ∈ R+ be fixed. Since the series ∑︁∞
k=0 Ak converges, we can find

N0 such that for every N ∈ N, N ≥ N0 it holds⃦⃦⃦⃦
⃦

∞∑︂
k=0

Ak −
N∑︂

l=0
Al

⃦⃦⃦⃦
⃦ < ε1 .
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Then⃦⃦⃦⃦
⃦B

(︄ ∞∑︂
k=0

Ak

)︄
C −

N∑︂
l=0

BAlC

⃦⃦⃦⃦
⃦

F

=
⃦⃦⃦⃦
⃦B

(︄ ∞∑︂
k=0

Ak

)︄
C − B

(︄
N∑︂

l=0
Al

)︄
C

⃦⃦⃦⃦
⃦

F

=

=
⃦⃦⃦⃦
⃦B

(︄ ∞∑︂
k=0

Ak −
N∑︂

l=0
Al

)︄
C

⃦⃦⃦⃦
⃦

F

≤ ∥B∥F

⃦⃦⃦⃦
⃦

∞∑︂
k=0

Ak −
N∑︂

l=0
Al

⃦⃦⃦⃦
⃦

F

∥C∥F < ∥B∥F ∥C∥F ε1 .

This concludes the proof that the series ∑︁∞
k=0 BAkC converges to B (∑︁∞

k=0 Ak) C.

Definition. Let us have a matrix function X(t) : R → Rn×m. Then the derivative
of the function is

d

dt
X(t) =

(︄
d

dt
xi,j(t)

)︄
n×m

=
(︃

ẋi,j(t)
)︃

n×m
.

Lemma 5. For a matrix function A(t) : R → Rn×m and a vector function
v(t) : R → Rm it holds

d

dt
(A(t)v(t)) =

(︄
d

dt
A(t)

)︄
v(t) + A(t) d

dt
v(t)

Proof. Can be simply shown by rewriting the vector A(t)v(t) elementwise.

Lemma 6. Let A, B and X be real n × n matrices. Then

1. if AB = BA, then eAB = BeA,

2. if R is an invertible n × n matrix, then eR−1XR = R−1eXR,

3. d
dt

etX = XetX , for t ∈ R,

4. if AB = BA, then eA+B = eAeB.

Proof. 1. Because of the convergence of the matrix exponential, we can use
Lemma 4 and get

eAB =
∞∑︂

k=0

1
k!A

kB
AB=BA===

∞∑︂
k=0

1
k!BAk = B

∞∑︂
k=0

1
k!A

k = BeA .

2. Following from Lemma 4, we have

eR−1XR =
∞∑︂

k=0

1
k! (R

−1XR)k =
∞∑︂

k=0

1
k!R

−1XkR = R−1
(︄ ∞∑︂

k=0

1
k!X

k

)︄
R = R−1eXR .

3. The elements of the matrix etX = ∑︁∞
k=0

tk

k! X
k = (ei,j(t))n×n are equal to

ei,j(t) =
∞∑︂

k=0

tk

k!a
(k)
i,j ,
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where Xk = (a(k)
i,j )n×n. By Corollary 1 the series ∑︁∞

k=0
tk

k! a
(k)
i,j is absolutely

convergent for every t ∈ R. We can now differentiate the individual elements
(see Pick et al., 2019, Věta 8.2.2).

d

dt
ei,j(t) = d

dt

∞∑︂
k=0

tk

k!a
(k)
i,j =

∞∑︂
k=1

tk−1

(k − 1)!a
(k)
i,j =

∞∑︂
k=0

tk

k!a
(k+1)
i,j .

Using Lemma 4 we get the desired result

d

dt
etX =

(︄
d

dt
ei,j(t)

)︄
n×n

=
(︄ ∞∑︂

k=0

tk

k!a
(k+1)
i,j

)︄
n×n

=
∞∑︂

k=0

tk

k!X
k+1 = X

∞∑︂
k=0

tk

k!X
k = XetX .

4. For the following proof we use Klain (2018, Theorem 5).
Consider the function g(t) = et(A+B)e−tBe−tA. By the first and third points
and by Lemma 5, we have that for any t ∈ R

g′(t) =(A + B)et(A+B)e−tBe−tA + et(A+B)(−B)e−tBe−tA

+ et(A+B)e−tB(−A)e−tA

=(A + B)g(t) − Bg(t) − Ag(t)
=On×n .

This implies, that the matrix g(t) is a constant matrix. For any t ∈ R, it
therefore holds

g(t) = g(0) = e0(A+B)e−0Ae−0B = eOeOeO = In ,

and hence
I = g(t) = et(A+B)e−tBe−tA .

Finally, after right multiplying both sides by etAetB, we obtain

etAetB = et(A+B) .

Lemma 7. For any a ∈ C we have eaI = eaI.

Proof. Follows straight from the definition of the matrix exponential.

eaI =
∞∑︂

k=0

ak

k! Ik =
(︄

δi,j

∞∑︂
k=0

ak

k!

)︄
n×n

= (δi,je
a)n×n = eaI

Now, using the properties in Lemma 6, we can see that ẋ(t) = Ax(t) is solved
by x(t) = etAx(0). The solution is unique which follows from the general theory
of linear differential equations (see Pick et al., 2019, Věta 13.5.1).

Claim 2. The autonomous linear system ẋ(t) = Ax(t) with an initial condition
x(0) is uniquely solved by x(t) = etAx(0).
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1.1.1 Stability of Linear Autonomous Systems
Typically, we require the autonomous system to stabilize itself back into its stable
state after some disturbances.

Definition. The linear autonomous system ẋ(t) = Ax(t) is stable, if for any
initial state x(0) ∈ Rn the state vector x(t) converges to o for t → ∞.

Let A be a real square matrix. Then there is a regular matrix R ∈ Rn×n such
that the matrix

J = R−1AR

is in a Jordan normal form. By substituting x(t) = Ry(t), which is equivalent to
changing the basis of the system, we get

Rẏ(t) = ARy(t)
ẏ(t) = R−1ARy(t)
ẏ(t) = Jy(t) .

Therefore, by Claim 2, the unique solution is

y(t) = etJy(0) .

It is sufficient to determine when y(t) converges to o, because since R is an
invertible matrix, x(t) converges to o if and only if y(t) converges to o.

We know that every Jordan block Jλ,n in the matrix J is of the form
Jλ,n = λIn + Nn, n ∈ N, where Nn = (ni,j)n×n is the nilpotent matrix satisfying
ni,j = δi,j−1. It is also true that (Nn)k

i,j = δi,j−k and (Nn)n = On×n, since every
right multiplication by the matrix N shifts the multiplied matrix’s columns to
the right by one column, that is, it maps matrix (v1, . . . , vn) onto (o, v1, . . . , vn−1).
For example, in case of n = 4 we have

N4 =

⎛⎜⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎟⎠ , (N4)2 =

⎛⎜⎜⎜⎝
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ , (N4)3 =

⎛⎜⎜⎜⎝
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ .

By Lemma 6, for each Jordan block Jλ,n, we have

etJλ,n = et(λIn+Nn) = etλInetNn = eλtetNn .

Let λ = a + ib where a,b ∈ R, then

etJλ,n = eateibtetN .

We know that |eibt| = 1 and that

etN =
∞∑︂

k=0

tk

k!N
k =

n−1∑︂
k=0

tk

k!N
k ,

since (Nn)n = On×n. Therefore, we can see that every element of the matrix etN

is a polynomial in t of degree less than n. It follows that etJλ,n approaches On×n

for t → ∞ if and only if
lim
t→∞

eattn−1 = 0 .

8



This holds for any n ∈ N if and only if a < 0.
Since any block diagonal matrix to the power of any natural number preserves

its block form, we can write

J =

⎛⎜⎜⎜⎜⎝
Jλ1,n1 0 · · · 0

0 Jλ2,n2 · · · 0
... ... . . . ...
0 0 · · · Jλr,nr

⎞⎟⎟⎟⎟⎠ , eJ =

⎛⎜⎜⎜⎜⎝
eJλ1,n1 0 · · · 0

0 eJλ2,n2 · · · 0
... ... . . . ...
0 0 · · · eJλr,nr

⎞⎟⎟⎟⎟⎠ ,

where the zeroes in the matrices represent zero matrices of appropriate sizes.
Therefore, since y(0) is a constant vector, we see that y(t) = etJy(0) converges to
o if (and only if, because of the uniqueness of the solution) all the eigenvalues λi of
the matrix A have negative real parts. As the last step, we calculate x(t) = Ry(t)
and x(0) = Ry(0). Let us formulate this result into a theorem.

Theorem 1. The system ẋ = Ax(t) is stable if and only if all eigenvalues of the
matrix A have negative real parts.

1.2 Linear System With Control
Definition. A continuous dynamical linear system with control u is a
system of linear differential equations of first order with constant coefficients in
the form

ẋ(t) = Ax(t) + Bu(t) ,

where the function x(t) : R+ → Rn is a state vector ( state for short) of the
system, A ∈ Rn×n is a matrix of coefficients of the system, B ∈ Rn×m is a
control matrix of the system and the continuous function u(t) : R+ → Rm is a
control vector of the system. The initial condition of the system is the state
x(0).

We call this system the (A, B) system for short.

In a general case, this is called an open-loop control system because the
control is not dependent on the previous state of the system.

We can imagine such a system as follows. The first summand of the right-
hand side, Ax(t), of the equation ẋ(t) = Ax(t) + Bu(t) can be thought of as
the model of the machine or the event that we want to control and the second
summand, Bu(t), as our control mechanism. The matrix B fulfils the role of a
“control board” and the control vector u(t) is us deciding, which “levers” and
“buttons” we want to push.

Of course, if we want this system to be self-regulating, we cannot input our
own values into u(t), and therefore u(t) has to be calculated from the state of our
system.

Definition. Let us have a linear differential system with the control u(t) defined
as

u(t) = Fx(t) ,

where F ∈ Rm×n is a feedback matrix. This system is then called a closed-
loop control system or a linear feedback control system.

For short, we call this system the (A, B, F ) system.
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Usually, we are given an autonomous system and we need to find a feedback
matrix F such that the resulting system has some desired behavior. The feedback
control system can be expressed as the linear autonomous system

ẋ(t) = Ax(t) + BFx(t) = (A + BF )x(t) .

Definition. The linear feedback system (A, B, F ) is stable, if the linear au-
tonomous system ẋ(t) = (A + BF )x(t) is stable.

By Theorem 1, we now know that an (A, B, F ) system is stable if all eigen-
values of the matrix A + BF have negative real parts. Therefore, we are left
to provide a suitable feedback matrix F ∈ Rn×n. This requirement can also be
expressed through the characteristic polynomial of the matrix A + BF , since
the roots of the characteristic polynomial of a matrix are precisely eigenvalues of
the matrix.

Definition. Let A be a n×n matrix. Then the characteristic polynomial of A,
denoted by χA, is defined as

χA(s) = det(sIn − A) .

Through these observations we got to a conclusion, that we need to find a
feedback matrix F such that the characteristic polynomial of the matrix A + BF
is

χA+BF = (x − λ1)(x − λ2) · · · (x − λn) ,

where all its roots λ1, λ2, . . . , λn ∈ C have negative real parts. This leads to an
important definition.

Definition. Let K be a field and let A ∈ Kn×n, B ∈ Kn×m, n, m ∈ N. We say
that a polynomial χ is assignable for the pair (A, B) if there exists such a
matrix F ∈ Km×n that

χA+BF = χ .

The pole shifting theorem states, that if A and B are “sensible” in a sense that
we discuss in the next section, then an arbitrary monic polynomial χ of degree n
can be assigned to the pair (A, B). It also claims that it is immaterial over what
field A and B are.

1.3 Discrete-time systems
Let us have a continuous dynamical system ẋ(t) = A1x(t), where A1 is a real
square matrix. We discretize the time, that is, instead of using continuous real-
time values of x(t) and ẋ(t), we are interested in these values only at discrete
sampling times 0, δ, 2δ, . . . , kδ, . . . where δ ∈ R+. We denote the states at each
sampling time as

xk = x(kδ) , k ∈ N0 .

The solution of this system is by Theorem 2 precisely x(t) = etA1x(0). For some
fixed k ∈ N we get xk = x(kδ) = ekδA1x(0). Using the fourth point of Lemma 6

10



we obtain

xk+1 = e(k+1)δA1x(0)
= eδA1+kδA1x(0)
= eδA1ekδA1x(0)
= eδA1xk

= Axk

by choosing A = eδA1 . We see that the value of x at the sample time k can be
calculated from its previous value. We now define such a system. The definition
holds for any field K.

Definition. Let K be a field. A discrete dynamical linear system is a system
of equations

xk+1 = Axk, k ∈ N0 ,

where xk ∈ Kn is a state vector ( state for short) of the system and the matrix
A ∈ Kn×n is a matrix of coefficients of the system. The initial condition of
the system is the state x(0).

Similarly, we can define a discrete dynamical linear system with control.

Definition. Let K be a field. A discrete dynamical linear system with
control u is a system of equations

xk+1 = Axk + Buk, k ∈ N0 ,

where xk ∈ Kn is a state vector ( state for short) of the system, A ∈ Kn×n is
a matrix of coefficients, B ∈ Kn×m is a control matrix and uk ∈ Km is a control
vector. The initial condition of the system is the state x0.

We call this system the discrete (A, B) system.

11



2. Controllable pairs
In this chapter we establish the notion of controllability. We first explain this
concept for discrete-time systems and then we show that the requirement for
controllability of continuous-time systems is the same as the one for discrete-time
systems.

2.1 Discrete-time systems
Remark. In this section we assume A, B to be real matrices of types n × n and
n × m respectively.
Definition. Let (A, B) be a discrete system. We say that a state x can be
reached in a time k ∈ N0 if there exists such a sequence of control vectors
u0, u1, . . . , uk−1 that for the initial condition x0 = o we get x = xk.

States that can be reached in time k ∈ N in open-loop control discrete-time
systems can be derived as follows. The initial condition is x0 = o and we can
choose arbitrary u0, u1, . . . , uk−1. Then for k = 1 we have

x1 = Ax0 + Bu0 = Bu0 ∈ ImB .

For k = 2 we get

x2 = Ax1 + Bu1 = ABu0 + Bu1 ∈ Im(AB|B) .

It is clear, that for every k ∈ N it holds

xk ∈ Im(Ak−1B| · · · |AB|B) .

For every k ∈ N it is also true that

Im(B|AB| · · · |AkB) ⊆ Im(B|AB| · · · |Ak+1B) .

By the Cayley–Hamilton theorem we know that χA(A) = On×n. That means,
that An can be expressed as a linear combination of the matrices {I, A, . . . , An−1}
which implies that AnB can be expressed as a linear combination of the matrices
{B, AB, . . . , An−1B}. We now see that

Im(B|AB| · · · |AnB) ⊆ Im(B|AB| · · · |An−1B) .

It follows

Im(B|AB| · · · |An−1B) = Im(B|AB| · · · |An−1B|AnB) .

For an arbitrary k ∈ N, k > n we have

AkB = Ak−nAnB = Ak−n
n−1∑︂
i=0

αiA
iB =

n−1∑︂
i=0

αiA
k−n+iB ∈ Im(B|AB| . . . |Ak−1B) ,

for some α0, . . . , αn−1 ∈ K. Therefore, by induction, all the states we could reach
in any time k ∈ N are already in the space

Im(B|AB| · · · |An−1B) .

We have proved the following claim.
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Claim 3. Let K be a field and let A ∈ Kn×n. For any k ∈ N, k ≥ n it holds

Im(B|AB| · · · |AkB) = Im(B|AB| · · · |An−1B) .

Definition. Let K be a field and let A ∈ Kn×n, B ∈ Kn×m, n, m ∈ N. The
matrix

R(A, B) = (B|AB| · · · |An−1B)
is called the rechability matrix of (A, B). We define the reachable space
R(A, B) of the pair (A, B) as Im(R(A, B)).

Definition. Let K be a field, V ⊆ Kn be a vector space and let A ∈ Km×n. Then
we define the product of the left multiplication of the space V by the matrix A as
the set A · V = AV = {Av|v ∈ V}.

We have seen that by left multiplying R(A, B) by A, we obtain a subspace
which is already included in R(A, B). This leads to an important property of
some subspaces.

Definition. Let V be a vector space, W be its subspace and let f be a mapping
from V to V . We call W an invariant subspace of f if f(W ) ⊆ W . We also
say that W is f-invariant.

If f = fA for some matrix A, we also say that W is A-invariant for short.

Lemma 8. R(A, B) is an A-invariant subspace.

Proof. It follows from the discussion above.

Ideally, we want to be able to get the system into any state by controlling it
with the control u, i.e., choosing an appropriate sequence u0, . . . , un−1. Therefore,
we desire that R(A, B) = Kn. An equivalent condition is dimR(A, B) = n.

Definition. Let K be a field and let A ∈ Kn×n, B ∈ Kn×m, n, m ∈ N. The pair
(A, B) is controllable if dimR(A, B) = n.

2.2 Continuous-time systems
Remark. In this section we assume that A ∈ Rn×n, B ∈ Rn×m.

We now show that the condition for controllability of discrete-time systems
also characterizes controllable continuous-time systems.

Definition. Let us have a vector function v(t) : R → Rn. Then the definite
integral of the function on an interval [a, b], a, b ∈ R is

∫︂ b

a
v(t)dt =

(︄∫︂ b

a
v1(t)dt , . . . ,

∫︂ b

a
vn(t)dt

)︄T

.

We utilize the matrix exponential in solving the inhomogeneous linear system
ẋ(t) = Ax(t) + Bu(t). By left multiplying it by e−tA we get

e−tAẋ(t) − e−tAAx(t) = e−tABu(t)
d

dt
(e−tAx(t)) = e−tABu(t) .
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Note that we used Lemma 5 and the equality e−tAA = Ae−tA, following from the
first point of Lemma 6. After integrating both sides with respect to t on interval
(t0, t1) we obtain

[e−tAx(t)]t1
t0 =

∫︂ t1

t0
e−tABu(t)dt

e−t1Ax(t1) − e−t0Ax(t0) =
∫︂ t1

t0
e−tABu(t)dt

x(t1) = e(t1−t0)Ax(t0) +
∫︂ t1

t0
e(t1−t)ABu(t)dt .

The integral makes sense since u(t) is required to be continuous.
Now it is clear that in the system where x(0) = o, the state in time t ∈ R+ is

equal to
x(t) =

∫︂ t

0
e(t−s)ABu(s)ds . (2.1)

Definition. We say that a state x ∈ Rn can be reached in time t, if there exists
a control u(x) : [0, t] → Rm such that

x =
∫︂ t

0
e(t−s)ABu(s)ds .

The set of all states that can be reached in time t is denoted by Rt. The set
R = ∪t∈R+Rt of all states that can be reached, is called a reachable space.

Definition. An n-dimensional continuous-time linear system is controllable, if
R = Rn.

Theorem 2. The n-dimensional continuous-time linear system is controllable if
and only if dimR(A, B) = n.

Proof. For the proof of the “if” part we use Sontag (1998, Theorem 3).
If controllability fails, then there exists a non-trivial orthogonal complement

S to the reachable space R. For any time t ∈ R+ and any non-trivial vector ρ ∈ S
it holds that ρ∗x(t) = 0. By choosing the control u(s) = B∗e(t−s)A∗

ρ, which is
continuous, on the interval [0, t], we get by the equation (2.1) that

o = ρ∗x(t) =
∫︂ t

0
ρ∗e(t−s)ABB∗e(t−s)A∗

ρds =
∫︂ t

0

⃦⃦⃦
B∗e(t−s)A∗

ρ
⃦⃦⃦2

.

This implies
0 =

⃦⃦⃦
B∗e(t−s)A∗

ρ
⃦⃦⃦2

=
⃦⃦⃦
ρ∗e(t−s)AB

⃦⃦⃦2

and hence
o = ρ∗e(t−s)AB .

By setting s = t, we obtain ρ∗B = o. By differentiating the equation and again
setting s = t we get ρ∗AB = o. Repeating this procedure gets us ρ∗AiB = o for
i ∈ {1, . . . , n − 1}. This implies that the vector ρ is orthogonal to R(A, B) and
therefore dimR(A, B) cannot be equal to n.

The “only if” part of the proof is shown in the following sections.
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2.3 Decomposition theorem
In this section we show that the characteristic polynomial of a matrix represent-
ing a linear autonomous system can be uniquely split into its controllable and
uncontrollable parts.

Lemma 9. Let W be an invariant subspace of a linear mapping f : V → V . Then
there exists a basis C of V such that

[f ]CC =
(︄

F1 F2
0 F3

)︄
,

where F1 is a r × r matrix, r = dimW .

Proof. Let (w1, . . . , wr) be an arbitrary basis of the subspace W . We complete
this sequence into basis C of V with vectors v1, . . . , vn−r where n = dimV , thus
C = (w1, . . . , wr, v1, . . . , vn−r). We know that

[f ]CC = ([f(w1)]C , . . . , [f(wr)]C , [f(v1)]C , . . . , [f(vn−r)]C) .

Since W is an A-invariant subspace, it holds that f(wi) ∈ W and therefore,
because of the choice of the basis C, the matrix [f ]CC is of the desired form.

If (A, B) is not controllable, then there exists a part of the state space that is
not affected by the input. This can be shown using the following theorem.

Theorem 3 (Kalman Decomposition). Let K be a field, (A, B) be a dynamical
system over K and let dimR(A, B) = r ≤ n. Then there exists an invertible n×n
matrix T over K such that the matrices ˜︁A := T −1AT and ˜︁B := T −1B have the
block structures ˜︁A =

(︄
A1 A2
0 A3

)︄
, ˜︁B =

(︄
B1
0

)︄
, (2.2)

where A1 ∈ Kr×r and B1 ∈ Kr×m.

Proof. We know that R(A, B) is an A-invariant subspace (Lemma 8). Using
Lemma 9 on the matrix mapping fA we get a basis C for which it holds that

[fA]CC = [id]KC [fA]KK [id]CK = [id]KC A[id]CK

is in a block upper triangular form. By putting T = [id]CK we get that ˜︁A = [fA]CC
is in the desired form.

Now, let us consider the matrix mapping fB. We have

˜︁B = TB = [id]Kn
C [fB]Km

Kn
= [fB]Km

C = ([fB(e1)]C , . . . , [fB(em)]C) .

Since fB(ei) is the i-th column of the matrix B, and trivially by definition of a
reachable space it holds that Im(B) ⊆ R(A, B), we see that ˜︁B is in the requested
form.

We achieved the new form of matrices A and B by changing the basis of the
state space. We now define the relation between (A, B) and ( ˜︁A, ˜︁B).
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Definition. Let K be a field, let A, ˜︁A ∈ Kn×n and B, ˜︁B ∈ Kn×m. Then (A, B) is
similar to ( ˜︁A, ˜︁B), denoted (A, B) ∼ ( ˜︁A, ˜︁B), if there exists an invertible matrix
T for which it holds that

˜︁A = T −1AT and ˜︁B = T −1B .

Lemma 10. Let A and B be similar matrices, that is, there exists an invertible
matrix R such that A = R−1BR. Then χA = χB.

Proof. We use properties of the matrix determinant:

χA = det(sI − A) = det(sI − R−1BR)
= det(sR−1IR − R−1BR) = det(R−1(sI − B)R)
= (detR)−1det(sI − B)detR = det(sI − B)
= χB .

Lemma 11. If (A, B) ∼ ( ˜︁A, ˜︁B), then the assignable polynomials for the pairs
(A, B) and ( ˜︁A, ˜︁B) are the same.

Proof. Let T be a regular matrix over K such that ˜︁A = T −1AT and ˜︁B = T −1B.
Then for any feedback matrix F we have

T −1(A + BF )T = T −1AT + T −1BFT = ˜︁A + ˜︁B ˜︁F ,

where ˜︁F = FT . It follows from Lemma 10 that

χA+BF = χ˜︁A+˜︁B˜︁F .

Theorem 3 has the following consequence. Let (A, B) be a dynamical system
with the initial condition x(0) = o, and let T be a regular matrix over K as in
Theorem 3. By putting x(t) = Ty(t) we get

T ẏ(t) = ATy(t) + Bu(t) ,

which can be rewriten as

ẏ(t) = T −1ATy(t) + T −1Bu(t) = ˜︁Ay(t) + ˜︁Bu(t) .

This gives us

ẏ1(t) = A1y1(t)+A2y2(t) + B1u(t)
ẏ2(t) = A3y2(t) ,

where y(t) = (y1(t), y2(t))T , y1(t) ∈ Kr and y2(t) ∈ Kn−r. The component y2(t)
cannot be controlled and it is, for the initial condition y(0) = Tx(0) = o, always
equal to o, since it does not depend on the control vector u(t). This observation
provides a proof by contraposition of the “only if” part of Theorem 2.

It is also true that the system (A1, B1) from Theorem 3 is a controllable pair,
which we state as a lemma.
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Lemma 12. The pair (A1, B1) is controllable.

Proof. We know that dimR(A, B) = r. We desire that dimR(A1, B1) = r. We
show that dimR(A, B) = dimR( ˜︁A, ˜︁B) = dimR(A1, B1). First, we have

R( ˜︁A, ˜︁B) = Im( ˜︁An−1 ˜︁B| · · · | ˜︁A ˜︁B| ˜︁B)
= Im((T −1AT )n−1T −1B| · · · |T −1ATT −1B|T −1B)
= Im(T −1An−1B| · · · |T −1AB|T −1B)
= {(T −1An−1B| · · · |T −1AB|T −1B) · v|v ∈ Kn·m}
= {T −1(An−1B| · · · |AB|B) · v|v ∈ Kn·m}
= T −1 · {(An−1B| · · · |AB|B) · v|v ∈ Kn·m}
= T −1 · (Im(An−1B| · · · |AB|B))
= T −1 · (R(A, B)) .

Since T is an invertible matrix we have

dimR( ˜︁A, ˜︁B) = dim(T −1R(A, B)) = dim(R(A, B)) = r .

Now let us focus on the structure of R( ˜︁A, ˜︁B). We know that the last n − r
rows of ˜︁B are equal to o. Also, because of the structure of ˜︁A, for an arbitrary
matrix X ∈ Kr×m we have that

˜︁A(︄
X
0

)︄
=
(︄

A1 A2
0 A3

)︄(︄
X
0

)︄
=
(︄

A1X
0

)︄
,

where, again, the last n−r rows are equal to o. Therefore, for any positive integer
k we have ˜︁Ak ˜︁B =

(︄
Ak

1B1
0

)︄
, Ak

1B1 ∈ Kr×m .

It follows
R( ˜︁A, ˜︁B) =

(︄(︄
An−1

1 B1
0

)︄
· · ·

(︄
A1B1

0

)︄ (︄
B1
0

)︄)︄
.

By the Claim 3 we have that the restriction to the first r coordinates of
R( ˜︁A, ˜︁B) is equal to R(A1, B1). Finally, it follows that

dimR(A1, B1) = dimR( ˜︁A, ˜︁B) = dimR(A, B) = r .

Now we can see that the decomposition described in Theorem 3 decomposes
the matrix A into the “controllable” and the “uncontrollable” parts A1 and A3
respectively.

Corollary 2. Let (A, B) be a dynamical system, and let T be a regular matrix
and ˜︁A = T −1AT as in Theorem 3. Then it holds

χA = χ˜︁A = χA1χA3 = χcχu .

Proof. Follows from Theorem 3 and Lemma 10.
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Definition. The polynomials χc and χu are respectively the controllable and
the uncontrollable parts of the characteristic polynomial χA with respect to
the pair (A, B). In the case where r = 0 we put χc = 1, and in the case where
r = n we put χu = 1.

For this definition to be correct, we need to show that polynomials χA1 and
χA3 are not dependent on the choice of the regular matrix T from Theorem 3.
Since χA3 = χA/χA1 , it is sufficient only to show that χA1 is independent of the
choice.

Claim 4. Let A be a square matrix over a field K. Then the controllable part
χc of its characteristic polynomial is independent of the choice of the basis for
R(A, B).

Proof. Let C = (c1, . . . , cn) and D = (d1, . . . , dn) be two bases for Kn as con-
structed in the proof of Theorem 3. Then we have

[fA]CC =
(︄

A1 A2
0 A3

)︄
, [fA]DD =

(︄
A′

1 A′
2

0 A′
3

)︄
,

as in (2.2). We want to show that χA1 = χA′
1
.

It is true that
[fA]CC = [id]DC [fA]DD[id]CD ,

where
[id]CD = ([c1]D, . . . , [cn]D) .

We know that the vectors c1, . . . , cr form a basis of the subspace R(A, B) and
that the vectors d1, . . . , dr form another basis of the same subspace. Therefore

[id]CD =
(︄

T1 T2
0 T3

)︄
, [id]DC = ([id]CD)−1 =

(︄
T −1

1 X
0 T −1

3

)︄
,

where T1 ∈ Kr×r is a regular matrix, T3 ∈ Kn−r×n−r and T2, X ∈ Kr×n−r. It
follows (︄

A1 A2
0 A3

)︄
=
(︄

T −1
1 X
0 T −1

3

)︄(︄
A′

1 A′
2

0 A′
3

)︄(︄
T1 T2
0 T3

)︄
,

which implies that
A1 = T −1

1 A′
1T1 .

By Lemma 10 it then holds that χA1 = χA′
1
.
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3. The Pole Shifting Theorem
The following chapter is based on the first section of the fifth chapter of Sontag
(1998).

Remark. In this chapter we assume K to be a field and A ∈ Kn×n, b ∈ Kn.

Definition. The controller form associated to the pair (A, b) is the pair

A♭ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1
α1 α2 α3 · · · αn

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , b♭ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where sn − αnsn−1 − . . . − α2s − α1 is the characteristic polynomial of A.

Lemma 13. The characteristic polynomial of A♭ is sn − αnsn−1 − . . . − α2s − α1.

Proof. It can be shown using simple properties of the matrix determinant.

Lemma 14. The pair (A♭, b♭) is controllable.

Proof. Because of the form of the vector b♭, the matrix (A♭)kb♭ is equal to the last
column of (A♭)k, that is

(︂
0 0 · · · 0 1 βk−1 · · · β1

)︂T

for some β1, . . . , βk−1 ∈ K. Therefore R(A♭, b♭) = n.

Lemma 15. Let K be a field and let A1, A2 ∈ Kn×n and b1, b2 ∈ Kn, such that
the pairs (A1, b1), (A2, b2) are controllable. If the characteristic polynomials of A1
and A2 are the same, then the pairs (A1, b1), (A2, b2) are similar.

Proof. Let us have a pair

A† = (A♭)T =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 α1
1 0 · · · 0 α2
0 1 · · · 0 α3
... ... . . . ... ...
0 0 · · · 1 αn

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , b† =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

The characteristic polynomial of the matrix A† is the same as the one of the matrix
A♭ since transposing a matrix preserves its characteristic polynomial. Therefore,
by Cayley-Hamilton theorem and by Lemma 13, it holds that

O = χA†(A) = χA♭(A) = An − αnAn−1 − . . . − α2A − α1In ,

implying
An = αnAn−1 + . . . + α2A + α1In .
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It then follows

R(A, b)A† =
(︂
b Ab . . . An−1b

)︂
A† =

(︂
Ab A2b . . . Anb

)︂
= AR(A, b) .

By the controllability of the pair (A, b), the column space of the matrix R(A, b)
is of dimension n, which means, that the matrix is invertible. Therefore, we can
write

A = R(A, b)A†R(A, b)−1 .

We see that the matrices A and A† are similar. It is also true that

R(A, b)b† = b .

Therefore (A, b) ∼ (A†, b†).
Since the pair (A†, b†) depends only on the characteristic polynomial of the

matrix A, we conclude by transitivity of the matrix similarity, that any two
controllable pairs with the same characteristic polynomials are similar to each
other.

Corollary 3. If the single-input (m = 1) pair (A, b) is controllable, then it is
similar to its controller form.

Proof. Follows from Lemmas 13, 14 and 15.

Theorem 4 (Pole Shifting Theorem). Let K be a field. Let A ∈ Kn×n, B ∈ Kn×m.
The assignable polynomials for the pair (A, B) are precisely of the form

χAB+F = χχu

where χ is an arbitrary monic polynomial of degree r = dimR(A, B) and χu is
the uncontrollable part of the assignable polynomial.

In particular, the pair (A, B) is controllable if and only if every nth degree
monic polynomial can be assigned to it.

Proof. By Theorem 3 and Lemma 11 we can assume that the pair (A, B) is in
the same form as ( ˜︁A, ˜︁B) in (2.2). Let us write F = (F1, F2) ∈ Km×n, where
F1 ∈ Km×r, F2 ∈ Km×(n−r). Then

A + BF =
(︄

A1 A2
0 A3

)︄
+
(︄

B1
0

)︄(︂
F1 F2

)︂
=
(︄

A1 A2
0 A3

)︄
+
(︄

B1F1 B1F2
0 0

)︄

=
(︄

A1 + B1F1 A2 + B1F2
0 A3

)︄

It follows
χA+BF = χA1+B1F1χA3 = χA1+B1F1χu

We see that any assignable polynomial is a multiple of the uncontrollable part
χu.

Conversely, we want to show that the first factor can be made arbitrary by a
suitable choice of F1. This makes sense only for r > 0, otherwise the assignable
polynomial is equal to χu, which cannot be changed by modifying the matrix F .
Assume that we are given a monic polynomial χ. If we find such a matrix F1 that

χA1+B1F1 = χ ,
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then by putting F = (F1, 0) we get the desired characteristic polynomial, that is,
χA+BF = χχu. Since the pair (A1, B1) is controllable as shown in Lemma 12, it
is sufficient only to prove that controllable systems can be assigned an arbitrary
monic polynomial χ of respective degree. Hence, from this point on, we assume
that the pair (A, B) is controllable.

We first prove the theorem for m = 1 and then we generalize this result, thus
concluding the proof.

Let m = 1. By Lemma 11 and Corollary 3 we can consider the pair (A, b) to
be in the controller form. For a vector

f =
(︂
f1 f2 . . . fn

)︂
we have

A + bf =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1
α1 α2 α3 . . . αn

⎞⎟⎟⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
...
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(︂
f1 f2 . . . fn

)︂

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1

α1 + f1 α2 + f2 α3 + f3 . . . αn + fn

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

Following from Lemma 13, one can see that given a monic polynomial

χ = sn − βnsn−1 − . . . − β2s − β1 ,

we can choose
f =

(︂
β1 − α1 β2 − α2 . . . βn − αn

)︂
,

and the equality χA+bf = χ is satisfied. We have shown that for the case where
m = 1, any controllable pair (A, b) can be assigned an arbitrary monic polynomial
of degree n.

For the case where m > 1, we choose any vector v ∈ Km satisfying that
Bv ̸= o and put b = Bv. For any f ∈ K1×n and for any matrix G ∈ Km×n, it
then holds

A + BG + bf = A + BG + Bvf = A + B(G + vf)

and therefore, if we put F = G + vf , we obtain

χA+BG+bf = χA+BF .

This implies that any polynomial that can be assigned to the pair (A + BG, b)
can also be assigned to the pair (A, B). Since we have proved the theorem for a
controllable pair where m = 1, the proof can be concluded by showing that there
exists such a matrix G that the pair (A + BG, b) is controllable.
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Let us have a sequence of linearly independent vectors Bv = x1, . . . , xk, of
length n, where

xi = Axi−1 + Bui−1, i ∈ {2, . . . , k} (3.1)
for some ui−1 ∈ Km, and assume that k is as large as possible. We denote the
span of {x1, . . . , xk} by V . By the maximality of k we have xk+1 ∈ V , which
implies that

Axk + Bu = xk+1 ∈ V (3.2)
for any u ∈ Km. Therefore, in particular for u = o, we get

Axk ∈ V . (3.3)

It follows by (3.2) and (3.3), that for any u ∈ Km it holds

Bu = xk+1 − Axk ∈ V ,

which implies that the column space B = ImB is included in V . Following from
this and the equality (3.1), we have

Axi−1 = xi − Bui−1 ∈ V

for i ∈ {2, . . . , k}. This result together with the equation (3.3) shows that for
any i ∈ {1, . . . , k} it is true that Axi ∈ V . This means, that V is an A-invariant
subspace containing B. Using these two facts one can see that

B ⊆ V
AB ⊆ AV ⊆ V

A2B ⊆ A(AV) ⊆ V
...

An−1B ⊆ V .

Therefore, it holds

R(A, B) = Im(B|AB|A2B| . . . |An−1B) ⊆ V .

By the controllability of the pair (A, B), we obtain

n = dimR(A, B) ≤ dimV = k ≤ dimKn = n .

This implies that k = n, V = Kn.
Let us now define a linear mapping g : V → B ⊆ V by the equation g(xi) = ui

for every i ∈ {1, . . . , n − 1}, where ui is such an element that Axi + Bui = xi+1,
and we define g(xn) arbitrarily. This definition is correct and unique since the
vectors xi form a basis of V (see Barto and Tůma, 2019, Tvrzeńı 6.4). Let G be
the matrix of the linear mapping g with respect to the standard basis. Then for
every i ∈ {1, . . . , n − 1} we have

(A + BG)xi = Axi + BGxi = Axi + Bui = xi+1 .

It follows

R(A + BG, x1) = (x1|(A + BG)x1| · · · |(A + BG)n−1x1) = (x1|x2| · · · |xn) .

Finally, by the linear independence of the the vectors x1, . . . , xn, it holds that
dimR(A + BG, x1) = n. We have shown that the pair R(A + BG, Bv) is control-
lable, and thus the proof is concluded.
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Conclusion
In this thesis, we described and proved notions and relations which were needed
to fully understand the pole shifting theorem. We started with the definition
of continuous linear autonomous systems. We showed that the system is stable
if the eigenvalues of its coefficient matrix have negative real parts. Next, we
derived the rank condition for controllability using discrete-time systems and the
Cayley-Hamilton theorem. After that, we proved that this condition also holds
for continuous-time systems. Then, we proved that the characteristic polynomial
of the coefficient matrix of the system splits uniquely into its controllable and
uncontrollable parts.

Subsequently, we formulated and proved the pole shifting theorem. The theo-
rem states that given a monic polynomial of degree equal to the rank of the reach-
ability matrix, we can always find such a feedback matrix that the characteristic
polynomial of the resulting coefficient matrix is equal to the given polynomial
times the uncontrollable part.

One of the corollaries is that if we work with controllable system, we can,
using the pole shifting theorem, find such a feedback matrix that the system is
stable.
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