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A class of modules C is decomposable, provided there is a cardinal κ such
that each module in C is a direct sum of < κ-generated modules from C.

Some classic examples

[Kaplansky’58] The class P0 is decomposable.

Uniformly: κ = ℵ1 sufficient for all R, but no uniqueness in general.
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that each module in C is a direct sum of < κ-generated modules from C.

Some classic examples

[Kaplansky’58] The class P0 is decomposable.

Uniformly: κ = ℵ1 sufficient for all R, but no uniqueness in general.

[Faith-Walker’67] The class I0 of all injective modules is

decomposable, iff R is right noetherian.

Here, κ depends R; uniqueness by Krull-Schmidt-Azumaya.
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Decomposition, or blocks put in a row

A class of modules C is decomposable, provided there is a cardinal κ such
that each module in C is a direct sum of < κ-generated modules from C.

Some classic examples

[Kaplansky’58] The class P0 is decomposable.

Uniformly: κ = ℵ1 sufficient for all R, but no uniqueness in general.

[Faith-Walker’67] The class I0 of all injective modules is

decomposable, iff R is right noetherian.

Here, κ depends R; uniqueness by Krull-Schmidt-Azumaya.

[Gruson-Jensen’73], [Huisgen-Zimmermann’79]
Mod-R is decomposable, iff R is right pure-semisimple.

Uniformly: κ = ℵ0 sufficient for all such R;
uniqueness by Krull-Schmidt-Azumaya.
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Deconstruction, or blocks put on top of other blocks

Let C ⊆ Mod-R. A module M is C-filtered (or a transfinite extension
of the modules in C), provided that there exists an increasing sequence
(Mα | α ≤ σ) consisting of submodules of M such that M0 = 0, Mσ = M,

Mα =
⋃

β<α Mβ for each limit ordinal α ≤ σ, and

for each α < σ, Mα+1/Mα is isomorphic to an element of C.
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(Mα | α ≤ σ) consisting of submodules of M such that M0 = 0, Mσ = M,

Mα =
⋃

β<α Mβ for each limit ordinal α ≤ σ, and

for each α < σ, Mα+1/Mα is isomorphic to an element of C.

Notation: M ∈ Filt(C).
A class A is closed under transfinite extensions, if Filt(A) ⊆ A.
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Deconstruction, or blocks put on top of other blocks

Let C ⊆ Mod-R. A module M is C-filtered (or a transfinite extension
of the modules in C), provided that there exists an increasing sequence
(Mα | α ≤ σ) consisting of submodules of M such that M0 = 0, Mσ = M,

Mα =
⋃

β<α Mβ for each limit ordinal α ≤ σ, and

for each α < σ, Mα+1/Mα is isomorphic to an element of C.

Notation: M ∈ Filt(C).
A class A is closed under transfinite extensions, if Filt(A) ⊆ A.

Eklof Lemma

The class ⊥C := KerExt1
R

(−, C) is closed under transfinite extensions for
each class of modules C.

In particular, so are the classes Pn and Fn of all modules of projective and
flat dimension ≤ n, for each n < ω.
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Deconstructible classes and their ubiquity

Definition (Eklof’06)

A class of modules A is deconstructible, provided there is a cardinal κ
such that A ⊆ Filt(A<κ), where A<κ denotes the class of all
< κ-presented modules from A.
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A class of modules A is deconstructible, provided there is a cardinal κ
such that A ⊆ Filt(A<κ), where A<κ denotes the class of all
< κ-presented modules from A.

All decomposable classes are deconstructible, and so is Mod-R for any R.

[Enochs et al.’01]

The classes Pn and Fn are deconstructible for each n < ω.
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Deconstructible classes and their ubiquity

Definition (Eklof’06)

A class of modules A is deconstructible, provided there is a cardinal κ
such that A ⊆ Filt(A<κ), where A<κ denotes the class of all
< κ-presented modules from A.

All decomposable classes are deconstructible, and so is Mod-R for any R.

[Enochs et al.’01]

The classes Pn and Fn are deconstructible for each n < ω.

[Eklof-T.’01], [Šťov́ıček-T.’09]

For each set of modules S, the class ⊥(S⊥) is deconstructible.
Here, S⊥ := KerExt1

R
(S,−).
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Approximations of modules

A class of modules A is precovering if for each module M there is
f ∈ HomR(A, M) with A ∈ A such that each f ′ ∈ HomR(A′, M) with
A′ ∈ A has a factorization through f :

A
f

// M

A′

OO�

�

� f
′

>>}}}}}}}

The map f is called an A–precover of M.
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Approximations of modules

A class of modules A is precovering if for each module M there is
f ∈ HomR(A, M) with A ∈ A such that each f ′ ∈ HomR(A′, M) with
A′ ∈ A has a factorization through f :

A
f

// M

A′

OO�

�

� f
′

>>}}}}}}}

The map f is called an A–precover of M.

[Saoŕın-Šťov́ıček’11], [Enochs’12]

All deconstructible classes closed under transfinite extensions are
precovering.

In particular, so are the classes ⊥(S⊥) for all sets of modules S.
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In general, there may be no block structure

available ...
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In general, there may be no block structure

available ...

A consistency result

[Eklof-Shelah’03] It is independent of ZFC whether the class of all
Whitehead groups (= ⊥{Z}) is precovering (or deconstructible).
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In general, there may be no block structure

available ...

A consistency result

[Eklof-Shelah’03] It is independent of ZFC whether the class of all
Whitehead groups (= ⊥{Z}) is precovering (or deconstructible).

A result in ZFC

A module M is flat Mittag-Leffler provided the functor M ⊗R − is exact,
and for each system of left R-modules (Ni | i ∈ I ), the canonical map
M ⊗R

∏
i∈I

Ni →
∏

i∈I
M ⊗R Ni is monic.
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In general, there may be no block structure

available ...

A consistency result

[Eklof-Shelah’03] It is independent of ZFC whether the class of all
Whitehead groups (= ⊥{Z}) is precovering (or deconstructible).

A result in ZFC

A module M is flat Mittag-Leffler provided the functor M ⊗R − is exact,
and for each system of left R-modules (Ni | i ∈ I ), the canonical map
M ⊗R

∏
i∈I

Ni →
∏

i∈I
M ⊗R Ni is monic.

Assume that R is not right perfect.

[Herbera-T.’12] The class FM of all flat Mittag-Leffler modules is
closed under transfinite extensions, but it is not deconstructible.

[Šaroch-T.’12], [Bazzoni-Šťov́ıček’12] If R is countable, then FM is
not precovering.
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Locally F-free modules
Let R be a ring, and F a class of countably presented modules.
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Locally F-free modules
Let R be a ring, and F a class of countably presented modules.

Definition

A module M is locally F-free, if M possesses a subset S consisting of
countably F-filtered modules, such that

each countable subset of M is contained in an element of S,

0 ∈ S, and S is closed under unions of countable chains.
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0 ∈ S, and S is closed under unions of countable chains.

Let L denote the class of all locally F-free modules.
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Locally F-free modules
Let R be a ring, and F a class of countably presented modules.

Definition

A module M is locally F-free, if M possesses a subset S consisting of
countably F-filtered modules, such that

each countable subset of M is contained in an element of S,

0 ∈ S, and S is closed under unions of countable chains.

Let L denote the class of all locally F-free modules.

Note: If M is countably generated, then M is locally F-free, iff M is
countably F-filtered.
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Locally F-free modules
Let R be a ring, and F a class of countably presented modules.

Definition

A module M is locally F-free, if M possesses a subset S consisting of
countably F-filtered modules, such that

each countable subset of M is contained in an element of S,

0 ∈ S, and S is closed under unions of countable chains.

Let L denote the class of all locally F-free modules.

Note: If M is countably generated, then M is locally F-free, iff M is
countably F-filtered.

Lemma (Slávik-T.)

L is closed under transfinite extensions.

L⊥ ⊆ (lim
−→ω

F)⊥.
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Basic example: FM as a particular instance of L
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Basic example: FM as a particular instance of L

Theorem (Herbera-T.’12)

Let F = be the class of all countably presented projective modules. Then
the notions of a locally F-free module and a flat Mittag-Leffler module
coincide for any ring R.
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Basic example: FM as a particular instance of L

Theorem (Herbera-T.’12)

Let F = be the class of all countably presented projective modules. Then
the notions of a locally F-free module and a flat Mittag-Leffler module
coincide for any ring R.

Example

Let R = Z. An abelian group A is flat Mittag-Leffler, iff all countable
subgroups of A are free.
In particular, the Baer-Specker group Z

κ is flat Mittag-Leffler for each κ,
but not free.
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The non-deconstructibility of L

• F a class of countably presented modules,
• L the class of all locally F-free modules,
• D the class of all direct summands of the modules M that fit into an
exact sequence

0 → F ′ → M → C ′ → 0,

where F ′ is a free module, and C ′ is countably F-filtered.
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• D the class of all direct summands of the modules M that fit into an
exact sequence

0 → F ′ → M → C ′ → 0,

where F ′ is a free module, and C ′ is countably F-filtered.

Theorem (Slávik-T.)

Assume there exists a module N ∈ lim
−→ω

F \ D. Then the class L is not
deconstructible.
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The non-deconstructibility of L

• F a class of countably presented modules,
• L the class of all locally F-free modules,
• D the class of all direct summands of the modules M that fit into an
exact sequence

0 → F ′ → M → C ′ → 0,

where F ′ is a free module, and C ′ is countably F-filtered.

Theorem (Slávik-T.)

Assume there exists a module N ∈ lim
−→ω

F \ D. Then the class L is not
deconstructible.

In particular, the class FM is not deconstructible for each non-right
perfect ring R.
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Infinite dimensional tilting modules

Definition

T is a tilting module provided that

T has finite projective dimension,

Exti
R

(T , T (κ)) = 0 for each cardinal κ, and

there exists an exact sequence 0 → R → T0 → · · · → Tr → 0 such
that r < ω, and for each i < r , Ti ∈ Add(T ), i.e., Ti is a direct
summand of a (possibly infinite) direct sum of copies of T .
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T has finite projective dimension,
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R

(T , T (κ)) = 0 for each cardinal κ, and

there exists an exact sequence 0 → R → T0 → · · · → Tr → 0 such
that r < ω, and for each i < r , Ti ∈ Add(T ), i.e., Ti is a direct
summand of a (possibly infinite) direct sum of copies of T .

BT := {T}⊥∞ =
⋂

1<i
KerExti

R
(T ,−) the right tilting class of T .
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Infinite dimensional tilting modules

Definition

T is a tilting module provided that

T has finite projective dimension,

Exti
R

(T , T (κ)) = 0 for each cardinal κ, and

there exists an exact sequence 0 → R → T0 → · · · → Tr → 0 such
that r < ω, and for each i < r , Ti ∈ Add(T ), i.e., Ti is a direct
summand of a (possibly infinite) direct sum of copies of T .

BT := {T}⊥∞ =
⋂

1<i
KerExti

R
(T ,−) the right tilting class of T .

AT := ⊥BT the left tilting class of T .
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Theorem (A characterization of right tilting classes)

Tilting classes are exactly the classes of finite type, i.e., the classes of the
form S⊥, where S is a set of strongly finitely presented modules of
bounded projective dimension.
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Tilting classes are exactly the classes of finite type, i.e., the classes of the
form S⊥, where S is a set of strongly finitely presented modules of
bounded projective dimension.

Let ST := AT ∩ mod-R and ĀT := lim
−→

S. Then AT is the class of all

direct summands of ST -filtered modules, and AT ⊆ ĀT .

(Congreso de la RSME) Approximations and locally free modules 11 / 16



Theorem (A characterization of right tilting classes)

Tilting classes are exactly the classes of finite type, i.e., the classes of the
form S⊥, where S is a set of strongly finitely presented modules of
bounded projective dimension.

Let ST := AT ∩ mod-R and ĀT := lim
−→

S. Then AT is the class of all

direct summands of ST -filtered modules, and AT ⊆ ĀT .

Definition

The tilting module T is
∑

-pure split provided that ĀT = AT , that is,
the left tilting class of T is closed under direct limits. Equivalently:
Each pure embedding T0 →֒ T1 such that T0, T1 ∈ Add(T ) splits.
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Theorem (A characterization of right tilting classes)

Tilting classes are exactly the classes of finite type, i.e., the classes of the
form S⊥, where S is a set of strongly finitely presented modules of
bounded projective dimension.

Let ST := AT ∩ mod-R and ĀT := lim
−→

S. Then AT is the class of all

direct summands of ST -filtered modules, and AT ⊆ ĀT .

Definition

The tilting module T is
∑

-pure split provided that ĀT = AT , that is,
the left tilting class of T is closed under direct limits. Equivalently:
Each pure embedding T0 →֒ T1 such that T0, T1 ∈ Add(T ) splits.

Example

Let T = R. Then T is a tilting module of projective dimension 0, and
T is

∑
-pure split, iff R is a right perfect ring.
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Locally free modules and tilting
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Locally free modules and tilting

The setting

Let R be a countable ring, and T be a non-
∑

-pure-split tilting module.
Let FT be the class of all countably presented modules in AT , and
LT the class of all locally FT -free modules.
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Locally free modules and tilting

The setting

Let R be a countable ring, and T be a non-
∑

-pure-split tilting module.
Let FT be the class of all countably presented modules in AT , and
LT the class of all locally FT -free modules.

Theorem (Slávik-T.)

Assume that LT ⊆ P1, LT is closed under direct summands, and
M ∈ LT whenever M ⊆ L ∈ LT and L/M ∈ ĀT .
Then the class LT is not precovering.
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Locally free modules and tilting

The setting

Let R be a countable ring, and T be a non-
∑

-pure-split tilting module.
Let FT be the class of all countably presented modules in AT , and
LT the class of all locally FT -free modules.

Theorem (Slávik-T.)

Assume that LT ⊆ P1, LT is closed under direct summands, and
M ∈ LT whenever M ⊆ L ∈ LT and L/M ∈ ĀT .
Then the class LT is not precovering.

Corollary

If R is countable and non-right perfect, then FM is not precovering.
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An different class of examples
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An different class of examples

Let R be an indecomposable hereditary artin algebra of infinite
representation type, with the Auslander-Reiten translation τ .
Then there is a partition of all indecomposable finitely generated modules
into three sets:

q := indecomposable preinjective modules
(i.e., indecomposable injectives and their τ -shifts),

p := indecomposable preprojective modules
(i.e., indecomposable projectives and their τ−-shifts),

t := regular modules (the rest).

�
� . . .

. . . �
�. . .

. . .

p t q
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The Lukas tilting module and the Baer modules
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The Lukas tilting module and the Baer modules

p⊥ is a right tilting class.
M ∈ p⊥ iff M has no non-zero direct summands from p.
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The Lukas tilting module and the Baer modules

p⊥ is a right tilting class.
M ∈ p⊥ iff M has no non-zero direct summands from p.

The tilting module L inducing p⊥ is called the Lukas tilting module.
The left tilting class of L is the class of all Baer modules.
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The Lukas tilting module and the Baer modules

p⊥ is a right tilting class.
M ∈ p⊥ iff M has no non-zero direct summands from p.

The tilting module L inducing p⊥ is called the Lukas tilting module.
The left tilting class of L is the class of all Baer modules.

[Angeleri-Kerner-T.’10]

The class of all Baer modules coincides with Filt(p).

The Lukas tilting module L is countably generated, but has no finite
dimensional direct summands, and it is not

∑
-pure split.
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Non-deconstructibility in the realm of artin algebras
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Non-deconstructibility in the realm of artin algebras

Let FL be the class of all countably presented Baer modules.
The elements of LL are called the locally Baer modules.
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Non-deconstructibility in the realm of artin algebras

Let FL be the class of all countably presented Baer modules.
The elements of LL are called the locally Baer modules.

Theorem (Slávik-T.)

Let R be a countable indecomposable hereditary artin algebra of infinite
representation type. Then the class of all locally Baer modules is not
precovering (and hence not deconstructible).
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A conjecture
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A conjecture

A ring R is right pure-semisimple, iff each class of right R-modules closed
under transfinite extensions and direct summands is deconstructible.

(Congreso de la RSME) Approximations and locally free modules 16 / 16


