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I. Multiplicative bases and their generalizations
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Measuring complexity of multiplication in an algebra
in terms of its linear structure

Let K be a field, R be (an associative unital) K -algebra, and B be a
K -linear space basis of R .

Each r ∈ R is uniquely a K -linear combination of elements of B :
r =

∑
b∈B bkb where kb = 0 for almost all b ∈ B .

supp(r) = {b ∈ B | kb 6= 0} and cs(r) = card (supp(r)).

If 1 ≤ k < ω, then the basis B is k-bounded, if cs(b.b′) ≤ k for all
b, b′ ∈ B . Equivalently, cs(r .r ′) ≤ k .cs(r).cs(r ′) for all r , r ′ ∈ R .

For example, if dimRK = d < ∞, then each K -basis B of R is d-bounded.

A 1-bounded basis is also called a weak multiplicative basis.

B is a bounded basis of R , if B is k-bounded for some 1 ≤ k < ω.
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Multiplicative bases

B is a multiplicative basis of R , if either bb′ = 0 or bb′ ∈ B , for all
b, b′ ∈ B .

B is a strong multiplicative basis of R , if bb′ ∈ B for all b, b′ ∈ B .

strong multiplicative =⇒ multiplicative =⇒ weak multiplicative
=⇒ k-bounded =⇒ l-bounded =⇒ bounded (1 ≤ k ≤ l < ω).

Some cases of coincidence: If K = 2, then weak multiplicative =
multiplicative. If R has no zero divisors, then each multiplicative basis is
strong.

The point

If B is a multiplicative basis of a K -algebra R then the K -algebra structure
of R is completely determined by the multiplicative semigroup (B ∪ {0}, .).
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The ubiquity of multiplicative bases

Polynomial algebras

The multiplicative K -basis consisting of all monic monomials is strong.

Group algebras and their generalizations

Let G be any group. Then G is a strong multiplicative basis of the group
algebra KG . More in general, if M is a monoid then M is a strong
multiplicative basis of the monoid algebra KM.

If S is a semigroup such that the semigroup algebra R = KS is unital,
then S is a strong multiplicative basis of the K -algebra R . Conversely:
if B is a strong multiplicative basis of a (unital) K -algebra R , then R is
isomorphic to the semigroup algebra KB .

A particular feature of semigroup algebras

Ψ :
∑

s∈S sks 7→
∑

s∈S ks is a (unital) K -algebra homomorphism whose
kernel (called the fundamental ideal of KS) has codimension 1.
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More examples

Full matrix algebras

For each 1 ≤ n < ω, the algebra Mn(K ) over a field K has a multiplicative
basis B consisting of the matrix units eij (i , j < n).
If n ≥ 2, then Mn(K ) has no strong multiplicative basis (as Mn(K ) is a
simple ring).

Path algebras of quivers

The standard basis B of KQ is multiplicative. If Q has no oriented cycles,
then KQ has a strong multiplicative basis.

[Gabriel] Any finite dimensional indecomposable basic hereditary algebra
over an algebraically closed field has a multiplicative basis.
[Bautista-Gabriel-Roiter-Salmeron] Any finite dimensional algebra of
finite representation type over any algebraically closed field K has a
multiplicative basis. However, this fails when K is not algebraically closed.
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The case of skew-fields

• {1, i} is a weak multiplicative R-basis of the field C.
• {1, i , j , k} is a weak multiplicative R-basis of the quaternion algebra H.

Do C or H have a multiplicative R-basis?

Lemma

Let K be field and K ( K ′ be a skew-field extension. Then K ′ has no
multiplicative K -basis.

Corollary

If the field K is not algebraically closed than K has a finite field extension
K ( K ′ which is of FRT, but has no multiplicative basis.
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Induced multiplicative bases

Green’s Lemma

Let R be a K -algebra with a multiplicative basis B , and I be an ideal in R .
Let C = {b + I | b /∈ I}.
Then C is a multiplicative K -basis of the algebra R/I , iff I is 2-nomial
w.r.t. B .

I 2-nomial w.r.t. B , if I is generated by (some) elements of the form
b1 − b2 and b, where b, b1, b2 ∈ B .

C is the induced multiplicative basis on R/I .
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From multiplicative to Gröbner bases

The case of polynomials

R = k[x1, ..., xn], B = all monic monomials in R . A well-order > on B is
admissible if 1 ≤ b for all b ∈ B , and if b < b′ and c ∈ B , then bc < b′c .

For each 0 6= f ∈ R , let ℓm(f ) be the >-largest element of B occurring in
f . For a subset S ⊆ R , let in(S) be the initial ideal of S , i.e., the ideal of
R generated by {ℓm(f ) | f ∈ S}.

[Dickson]

Each ideal 0 6= I of R contains a minimal finite subset G ⊆ I such that
in(G ) = in(I ). G is the Gröbner basis of I .

An application [Macaulay]

Let I be an ideal of R , G be its Gröbner basis, and
B ′ = {b ∈ B | b 6= ℓm(g) for all g ∈ G}. Then B ′ + I is a K -basis of R/I .
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From multiplicative to Gröbner bases

General Gröbner bases

A well-order > on a multiplicative basis B of a (non-commutative)
K -algebra R is admissible in case
• for all b1, b2, b3 ∈ B , if b1 > b2 then b1b3 > b2b3 if both b1b3 and
b2b3 are nonzero.
• for all b1, b2, b3 ∈ B , if b1 > b2 then b3b1 > b3b2 if both b3b1 and
b3b2 are nonzero.
• for all b1, b2, b3, b4 ∈ B , if b1 = b2b3b4 then b1 ≥ b3.

The admissible order induces the notion of a leading term (or tip) of each
0 6= r ∈ R . For a subset S ⊆ R , let t(S) be the ideal generated by the tips
of all 0 6= s ∈ S .

Let I be an ideal of R . Then a subset G of I is a Gröbner basis of I in
case t(G ) = t(I ).
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The ubiquity of path algebras

[Green]

Let R be a K -algebra possessing a multiplicative basis with an admissible
well-order. Then R has a Gröbner basis.

For example, the standard basis of a path algebra KQ of a quiver Q with a
finite set of vertices admits an admissible well-order.

[Green]

Let R be a K -algebra with a multiplicative basis B equipped with an
admissible order >.
Then there exists a quiver Q with a finite set of vertices, and an

isomorphism KQ/I
ϕ
∼= R where I is some 2-nomial ideal of the path algebra

KQ equipped with the standard basis S .
Moreover, B = {ϕ(s + I ) | s /∈ I}.
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Normed bases for finite representation type

[Bautista-Gabriel-Roiter-Salmerón]

Let K be an algebraically closed field and R be a finite dimensional
K -algebra. Assume R is of finite representation type. Then R has a
normed multiplicative K -basis B .

B is normed in case B contains a complete set of primitive orthogonal
idempotents of R , as well as a K -basis of each power of the Jacobson
radical of R .

A point of the proof: The standard basis of any path algebra is normed,
so by Green’s Lemma, it suffices to show that R ∼= KQ/I for a quiver Q
and a 2-nomial ideal I of the path algebra KQ, and use the induced basis.

Corollary

Let K be an algebraically closed field. Then for each n ≥ 1, there are only
finitely many K -algebras of finite representation type of dimension n.
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II. Transfinite extensions of simple artinian rings
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Semiartinian regular rings

A ring R is right semiartinian, if R is the last term of the right Loewy
sequence of R , i.e., there are an ordinal σ and a strictly increasing
sequence (Sα | α ≤ σ + 1), such that S0 = 0, Sα+1/Sα = Soc(R/Sα)
for all α ≤ σ, Sα =

⋃
β<α Sβ for all limit ordinals α ≤ σ, and

Sσ+1 = R .

R is (von Neumann) regular, if all (right R-) modules are flat.

R has right primitive factors artinian (has right pfa for short) in case
R/P is right artinian for each right primitive ideal P of R .

Let R be a regular ring.

R is right semiartinian, iff it is left semiartinian, and the right and left
Loewy sequences of R coincide.

R has right pfa, iff it has left pfa, iff all homogenous completely
reducible (left or right) modules are injective.

If R is commutative, then R has pfa.
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Structure of semiartinian regular rings with pfa

Let R be a right semiartinian ring and (Sα | α ≤ σ+1) be the right Loewy
sequence of R with σ ≥ 1. The following conditions are equivalent:

R is regular with pfa.

for each α ≤ σ there are a cardinal λα, positive integers nαβ (β < λα) and
skew-fields Kαβ (β < λα) such that Sα+1/Sα ∼=

⊕
β<λα

Mnαβ
(Kαβ), as

rings without unit. Moreover, λα is infinite iff α < σ.
The pre-image of Mnαβ

(Kαβ) in this isomorphism coincides with the βth
homogenous component of Soc(R/Sα), and it is finitely generated as right
R/Sα-module for all β < λα.

Pαβ := a representative of simple modules in the βth homogenous
component of Sα+1/Sα. Zg(R) := {Pαβ | α ≤ σ, β < λα} is a set of
representatives of all simple modules, and also the Ziegler spectrum of R .
The Cantor-Bendixson rank of Zg(R) is σ.
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Transfinite extensions of simple artinian rings

R/Sσ Mnσ0(Kσ0)⊕ ... ⊕Mnσ,λσ−1
(Kσ,λσ−1)

... ... ... ...
Sα+1/Sα Mnα0(Kα0)⊕ ... ⊕Mnαβ

(Kαβ)⊕ ... β < λα

... ... ... ...
S2/S1 Mn10(K10)⊕ ... ⊕Mn1β (K1β)⊕ ... β < λ1

S1 = Soc(R) Mn00(K00)⊕ ... ⊕Mn0β (K0β)⊕ ... β < λ0

σ + 1 = Loewy length of R (at least 2).

λα = number of homogenous components of the αth layer of R
(α ≤ σ). (Infinite except for α = σ).

nαβ = (finite) dimension of βth homogenous component in αth layer.

Kαβ = endomorphism skew-field of a simple module in βth homogenous
component of the αth layer (α ≤ σ, β < λα).
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The dimension sequence

The sequence DR = {(λα, {(nαβ ,Kαβ) | β < λα}) | α ≤ σ} is an invariant
of R . It is called the dimension sequence of R .

The hereditary case

If the Loewy length σ of R is countable and the αth layer of the socle
sequence of R is countably generated for each 0 < α < σ, then R is
hereditary. So R is always hereditary in case it has Loewy length 2.

The simplest example

The K -algebra of all eventually constant sequences in Kω over a field K .
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Multiplicative bases and selfinjective regular algebras

Examples

The commutative K -algebra R = Kκ is regular and self-injective. If κ is
finite, then R has a strong multiplicative basis, otherwise R has no
bounded basis.

The endomorphism algebra R of a right K -linear space L is regular and
right self-injective. If L is finite-dimensional, then R has a multiplicative
basis, otherwise R has no bounded basis.

Theorem

Let K be a field and R be a K -algebra which is regular and left or right
self-injective, but not completely reducible. Then R has no bounded
multiplicative basis.

A multiplicative basis B of a semiartinian K -algebra R is conormed if B
contains a complete set of orthogonal idempotents of R , as well as a basis
of Sα for each α ≤ σ.
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Commutative semiartinian regular algebras

Let K be a field. We will consider the commutative semiartinian regular
K -algebras R of the following form:

Sσ+1/Sσ ∼= K(λσ) K⊕ . . . ⊕K
. . . . . . . . . . . .

Sα+1/Sα ∼= K(λα) K⊕ . . . ⊕K⊕ . . .
. . . . . . . . . . . .

S2/S1 ∼= K(λ1) K⊕ . . . ⊕K⊕ . . .

S1/S0 = Soc(R) ∼= K(λ0) K⊕ . . . ⊕K⊕ . . .

DR = (λα | α ≤ σ) is the (simplified) dimension sequence of the
K -algebra R .

Upto a K -algebra isomorphism, R is a subalgebra of the K -algebra Kλ0

with Soc(R) = K (λ0).

The simplified dimension sequence D is countable if both the ordinal σ
and all the cardinals λα (α ≤ σ) are countable.
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Algebras of countable type and dimension sequences

Let K be a field. A commutative semiartinian regular K -algebra R of the
form above is called of countable type, if it dimension sequence DR is
countable.

Existence Theorem

If D is a countable dimension sequence, then there exists a K -algebra R of
countable type such that D = DR .

Uniqueness Theorem

Let R and R ′ be K -algebras of countable type. Then R ∼= R ′ as
K -algebras, iff DR = DR′ .

A key point of uniqueness: countable layers are connected, as countable
sets of pairwise orthogonal idempotents lift modulo any ideal of R .
Uniqueness fails even for σ = 1 when λ0 is uncountable, or when all layers

are countable, but the length is ℵ1.
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The construction

The induction step

Let K be a field, κ an infinite cardinal, and R = (Rα | α < κ) a sequence
of K -algebras.

Let P =
∏

α<κ Rα denote the K -algebra product of the algebras in R. Let
I =

⊕
α<κ Rα (so I is an ideal in P).

Let R = R(κ,K ,R) denote the K -subalgebra of P defined by
R = I ⊕ 1P · K .

Assume that each K -algebra Rα (α < κ) is semiartinian and has a
conormed multiplicative basis. Then so does the K -algebra R(κ,K ,R).
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The construction

Definition of the algebras Bα,n

Let K be a field.

(i) B0,1 = K .

(ii) For a non-limit ordinal α = β + 1, we let R = (Rm | m < ℵ0) be the
constant sequence of K -algebras Rm = Bβ,1 for each m < ℵ0. We let
Bα,1 = R(ℵ0,K ,R).

(iii) For each limit ordinal α, we put Rβ = Bβ,1 for each β < α. We let
Bα,1 := R(α,K ,R) where R = (Rβ | β < α).

(iv) For all 1 < n < ω and all ordinals α, we let Bα,n = Bα,1 ⊞ · · ·⊞ Bα,1

(the direct product of n copies of the K -algebra Bα,1).

Example: B1,1 is the K -algebra of all eventually constant sequences in Kℵ0 .

Each of the K -algebras Bα,n (α ≥ 0, 1 ≤ n < ω) has a conormed
multiplicative basis.
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Conormed multiplicative bases

Theorem

Let K be a field and D be a countable dimension sequence of length σ.
Then there exists 1 ≤ n < ω such that D is the dimension sequence of the
K -algebra Bσ,n.

Corollary

All algebras of countable type have conormed multiplicative bases.
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