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1. C-filtrations

The notion of an extension of a module A by a module B, that is, of a module C
that fits in the short exact sequence 0→ A→ C → B → 0, generalizes the notion
of a direct sum of A and B (which occurs in the particular case when the sequence
above splits). Similarly as direct sums of pairs of modules are extended to finite,
and arbitrary, direct sums of modules, one can iterate the extensions and obtain
finite, and transfinite, extensions of modules from a given class C. In more detail,
we have

Definition 1.1. Let R be a ring, M a module, and C a class of modules.
A chain of submodules, M = (Mα | α ≤ σ), of M is called continuous, provided

that M0 = 0, Mα ⊆ Mα+1 for each α < σ, and Mα =
⋃
β<αMβ for each limit

ordinal α ≤ σ.
A continuous chain M is a C-filtration of M , provided that M = Mσ, and each

of the modules Mα+1/Mα (α < σ) is isomorphic to some element of C.
If M is a C-filtered module, then M is also called a transfinite extension of the

modules in C. A class A is said to be closed under transfinite extensions provided
that A contains all A-filtered modules. Clearly, this implies that A is closed under
extensions and arbitrary direct sums.
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M is called C-filtered, provided that M possesses at least one C-filtration M =
(Mα | α ≤ σ). If σ can be taken finite, then M is called finitely C-filtered.

We will use the notation Filt(C) for the class of all C-filtered modules.

Example 1.2. 1. Let R be any ring and C be a representative set of all countably
generated projective modules. Since each extension by a projective module splits,
C-filtered modules coincide with the modules isomorphic to direct sums of modules
from C. Hence Filt(C) = P0 is the class of all projective modules, by a classic
theorem of Kaplansky [2, 26.2].

2. Let R be any ring and C = simpR be a representative set of all simple
modules. Then the C-filtered modules coincide with the semiartinian modules,
while the finitely C-filtered modules are exactly the modules of finite length. The
latter modules are the subject of the classic Jordan-Hölder theory. (In a sense, the
Hill Lemma and its applications presented below are extensions of this theory to the
infinite setting where no dimensions and indecomposable direct sum decompositions
are available in general.)

3. Let R = Z (the integers) and C = {Zp} (the finite group of a prime order
p). Then Filt(C) is the class of all abelian p-groups. (This might look like an
easy variation of 2., but despite the fact that abelian p-groups are just subgroups
of direct sums of copies of the Prüfer group Zp∞ , and hence their socle-sequence
length is ≤ ω, and the countable ones are characterized by their Ulm-Kaplansky
invariants, the full classification of all abelian p-groups is considered to be hopeless.)

The easy fact that the class P0 of all projective modules from Example 1.2.1
is closed under transfinite extensions is a particular instance of a more important
general phenomenon:

For a class of modules C, we denote by ⊥C the common kernel of all the con-
travariant Ext1 functors induced by the elements of C, that is,

⊥C = Ker Ext1
R(−, C) = {A ∈ Mod–R | Ext1

R(A,C) = 0 for all C ∈ C}.

Similarly,

⊥∞C =
⋂
i≥1

Ker ExtiR(−, C) = {A ∈ Mod–R | ExtiR(A,C) = 0 ∀C ∈ C ∀ i ≥ 1
}
.

For example, P0 = ⊥(Mod–R).

Lemma 1.3. (The Eklof Lemma, [18]) Let C be a class of modules. Then the class
⊥C is closed under transfinite extensions. That is, if M is a ⊥C-filtered module,
then M ∈ ⊥C.

Proof. It suffices to prove the claim for the case when C = {N} for a single
module N .

Let (Mα | α ≤ κ) be a ⊥N -filtration of M . So Ext1
R(M0, N) = 0 and, for each

α < κ, Ext1
R(Mα+1/Mα, N) = 0. We will prove Ext1

R(M,N) = 0.
By induction on α ≤ κ we will prove that Ext1

R(Mα, N) = 0. This is clear for
α = 0.

The exact sequence

0 = Ext1
R(Mα+1/Mα, N)→ Ext1

R(Mα+1, N)→ Ext1
R(Mα, N) = 0

proves the induction step.

Assume α ≤ κ is a limit ordinal. Let 0 → N −→ I
π−→ I/N → 0 be an exact

sequence with I an injective module. In order to prove that Ext1
R(Mα, N) = 0,

we show that the abelian group homomorphism HomR(Mα, π) : HomR(Mα, I) →
HomR(Mα, I/N) is surjective.
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Let ϕ ∈ HomR(Mα, I/N). We now define by induction homomorphisms ψβ ∈
HomR(Mβ , I), β < α, so that ϕ �Mβ = πψβ and ψβ �Mγ = ψγ for all γ < β < α.

First define M−1 = 0 and ψ−1 = 0. If ψβ is already defined, the injectivity of I
yields the existence of η ∈ HomR(Mβ+1, I), such that η � Mβ = ψβ . Put δ = ϕ �
Mβ+1 − πη ∈ HomR(Mβ+1, I/N). Then δ � Mβ = 0. Since Ext1

R(Mβ+1/Mβ , N) =
0, there is ε ∈ HomR(Mβ+1, I), such that ε �Mβ = 0 and πε = δ. Put ψβ+1 = η+ε.
Then ψβ+1 �Mβ = ψβ and πψβ+1 = πη+δ = ϕ �Mβ+1. For a limit ordinal β < α,
put ψβ =

⋃
γ<β ψγ .

Finally, put ψα =
⋃
β<α ψβ . By the construction, πψα = ϕ.

The claim is just the case of α = κ.

One can also take the opposite point of view: given a class of modules closed
under transfinite extensions, D, try to find find its subset C such that D = Filt(C).
This is called the deconstruction of the class D. If D = Filt(C) where C = D<κ
(the latter symbol denotes the class of all < κ-presented modules from D), then
the class D is called < κ-deconstructible.

Notice that here again, we generalize the classic setting where extensions are re-
stricted to the split ones, whence< κ-deconstructibility amounts to< κ-decomposabilty
of modules from D into direct sums of < κ-presented modules from D.

Classes of modules occurring naturally in homological algebra are rarely decom-
posable (essentially, decomposability is available only for projective modules, and
injective modules over right noetherian rings). In contrast, deconstructible classes
are abundant, the deconstructibility yields approximations of modules, and the ap-
proximations make it possible to do relative homological algebra, where projective
and injective modules are replaced by other classes of modules better fitting the par-
ticular settings of interest. Before turning to these facts, we will study C-filtrations
of modules in greater detail.

2. The Hill Lemma

When studying a particular C-filtered module, we often need to replace the orig-
inal C-filtration by another one that better fits the study in case. A remarkable
construction serving this purpose was discovered by Hill [27]. It expands a given
C-filtration, M, of a module M into a large family, H, consisting of C-filtered sub-
modules of M . Moreover, H inherits the key property of M: it forms a complete
distributive sublattice of the modular lattice of all submodules of M :

Theorem 2.1. (Hill Lemma) Let R be a ring, κ an infinite regular cardinal,
and C a set of < κ-presented modules. Let M be a module with a C-filtration
M = (Mα | α ≤ σ). Then there is a family H consisting of submodules of M such
that

(H1) M⊆ H.
(H2) H is closed under arbitrary sums and intersections. H is a complete dis-

tributive sublattice of the modular lattice of all submodules of M .
(H3) Let N,P ∈ H be, such that N ⊆ P . Then the module P/N is C-filtered.
(H4) Let N ∈ H and X be a subset of M of cardinality < κ. Then there is a

P ∈ H, such that N ∪X ⊆ P and P/N is < κ-presented.

The key notion of the proof of Theorem 2.1 is that of a closed subset of the
length, σ, of a C-filtration:

Definition 2.2. Let R be a ring and M = (Mα | α ≤ σ) be a continuous chain of
modules. Consider a family of modules (Aα | α < σ), such that Mα+1 = Mα +Aα
for each α < σ.
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A subset S of the ordinal σ is closed, if every α ∈ S satisfies

Mα ∩Aα ⊆
∑

β∈S,β<α

Aβ .

The height hgt(x) of an element x ∈Mσ is defined as the least ordinal α < σ, such
that x ∈Mα+1. For any subset S of σ, we define

M(S) =
∑
α∈S

Aα.

For each ordinal α ≤ σ, we have α = {β < σ | β < α}, and Mα =
∑
β<αAβ =

M(α). So α is a closed subset of σ.

Before embarking on the proof, we will need to collect properties of closed sub-
sets:

Lemma 2.3. Let S be a closed subset of σ and x ∈M(S). Let S′ = {α ∈ S | α ≤
hgt(x)}. Then x ∈M(S′).

Proof. Let x ∈M(S). Then x = x1 + · · ·+xk, where xi ∈ Aαi for some αi ∈ S,
1 ≤ i ≤ k. W.l.o.g., α1 < · · · < αk, and αk is minimal.

If αk > hgt(x), then xk = x − x1 − · · · − xk−1 ∈ Mαk ∩ Aαk ⊆
∑
α∈S,α<αk Aα,

since S is closed, in contradiction with the minimality of αk.

As an immediate corollary, we have

Corollary 2.4. Let S be a closed subset of σ and x ∈M(S). Then hgt(x) ∈ S.

Proof. If hgt(x) /∈ S then by Lemma 2.3, x ∈ M(S̄) ⊆ Mhgt(x)
where S̄ =

{α ∈ S | α < hgt(x)}. Hence x ∈Mβ+1 for some β < hgt(x), a contradiction.

Lemma 2.5. Let (Si | i ∈ I) be a family of closed subsets of σ. Then

M
(⋂
i∈I

Si
)

=
⋂
i∈I

M(Si) and M(
⋃
i∈I

Si) =
∑
i∈I

M(Si).

Proof. For the first equality, let T =
⋂
i∈I Si. Clearly, M(T ) ⊆

⋂
i∈IM(Si).

Suppose there is an x ∈
⋂
i∈IM(Si), such that x 6∈ M(T ), and choose such an

x of minimal height. Then x = y + z for some y ∈ Ahgt(x)
and z ∈ Mhgt(x)

.

By Corollary 2.4, hgt(x) ∈ Si for all i ∈ I, so hgt(x) ∈ T and y ∈ M(T ). Then
z ∈

⋂
i∈IM(Si), z 6∈M(T ) and hgt(z) < hgt(x), in contradiction to minimality.

The second equality is immediate from Definition 2.2.

The following remark explains the role of the closed subsets of σ:

Remark 2.6. Let M = (Mα | α ≤ σ) be a continuous chain of modules. If N
is a submodule of M = Mσ, then M induces the continuous chain of submodules
N = (N ∩Mα | α ≤ σ) of N .

If, moreover, N = M(S) for a subset S ⊆ σ, then another continuous chain of
submodules of N is given by N ′ = (M(S ∩ α) | α ≤ σ).

Notice that the set S is closed in σ, if and only if the chains N and N ′ coincide.
The only-if part holds, because M(S) ∩Mα = M(S) ∩M(α) = M(S ∩ α) for each
α ≤ σ by Lemma 2.5. Conversely, if α ∈ S, then Mα ∩ Aα ⊆ M(α) ∩M(S) =
M(S ∩ α) =

∑
β∈S,β<αAβ .

Next we prove that intersections and unions of closed subsets are again closed:

Proposition 2.7. Let (Si | i ∈ I) be a family of closed subsets of σ. Then both
the union and the intersection of this family are again closed in σ.
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Proof. As for the union, if β ∈ S =
⋃
i∈I Si, then β ∈ Si for some i ∈ I and

Mβ ∩Aβ ⊆
∑
α∈Si,α<β Aα ⊆

∑
α∈S,α<β Aα.

For the intersection, let β ∈ T =
⋂
i∈I Si. Then Mβ ∩ Aβ ⊆M(Si ∩ β) for each

i ∈ I. Therefore Lemma 2.5 implies that

Mβ ∩Aβ ⊆
⋂
i∈I

M(Si ∩ β) = M(T ∩ β),

which exactly says that T is closed.

By Proposition 2.7, closed subsets form a complete distributive sublattice, C(σ),
of the complete Boolean lattice of all subsets of σ.

Assume that the chainM is strictly increasing, and S, S′ ∈ C(σ). Then S ⊆ S′,
if and only if M(S) ⊆M(S′). The only-if-part is trivial; to prove the if-part, assume
that M(S) ⊆M(S′) and there is an ordinal α in S\S′. Then Aα ⊆M(S∩(α+1)) =
M(S) ∩M(α + 1) ⊆ M(S′) ∩M(α + 1) = M(S′ ∩ (α + 1)) = M(S′ ∩ α) ⊆ Mα,
whence Mα+1 = Mα, a contradiction.

Let M = Mσ, and let L(M) denote the lattice of all submodules of M . We can
summarize the above as

Corollary 2.8. Assume that the chain M is strictly increasing. Then the map
θ : S 7→M(S) is a complete lattice isomorphism of the complete distributive lattice
C(σ) onto a sublattice of the complete modular lattice L(M).

Even ifM is not strictly increasing, being a homomorphic image of a distributive
lattice, the image of θ is still a distributive sublattice of L(M). This image yields
the desired family of submodules H, extending the given continuous chain M:

Proof of the Hill Lemma. We start by fixing a family of < κ-generated modules
(Aα | α < σ), such that for each α < σ:

Mα+1 = Mα +Aα,

as in Definition 2.2. Such family exists because Mα+1/Mα is < κ-generated for
each α < σ. We claim that

H = {M(S) | S a closed subset of σ}
has properties (H1)-(H4).

Property (H1) is clear, since each ordinal α ≤ σ is a closed subset of σ.
The first claim in (H2) follows by Proposition 2.7 and Lemma 2.5, the second

by Corollary 2.8, because H is the image of θ.
In order to prove property (H3), we will show that in the given setting, there

exist an ordinal τ ≤ σ and a continuous chain (Fγ | γ ≤ τ) of elements of H, such
that Q = (Fγ/N | γ ≤ τ) is a C-filtration of P/N , and for each γ < τ there is a
β < σ with Fγ+1/Fγ isomorphic to Mβ+1/Mβ .

First, we have N = M(S) and P = M(T ) for some closed subsets S, T . Since
S ∪ T is closed, we can w.l.o.g. assume that S ⊆ T . For each β ≤ σ, put

Fβ = N +
∑

α∈T\S,α<β

Aα = M(S ∪ (T ∩ β)) and F̄β = Fβ/N.

Clearly (F̄β | β ≤ σ) is a filtration of P/N , such that F̄β+1 = F̄β + (Aβ +N)/N for
β ∈ T \ S and F̄β+1 = F̄β otherwise. Let β ∈ T \ S. Then

F̄β+1/F̄β ∼= Fβ+1/Fβ ∼= Aβ/(Fβ ∩Aβ),

and

Fβ ∩Aβ ⊇
( ∑
α∈T,α<β

Aα

)
∩Aβ = Mβ ∩Aβ ,
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where the latter equality holds because β ∈ T and T is closed in σ.
However, if x ∈ Fβ ∩ Aβ , then hgt(x) ≤ β, so x ∈ M(T ′) by Lemma 2.3, where

T ′ = {α ∈ S∪ (T ∩β) | α ≤ β}. By Proposition 2.7, we get x ∈Mβ , because β 6∈ S.
Hence Fβ ∩ Aβ = Mβ ∩ Aβ and F̄β+1/F̄β ∼= Aβ/(Mβ ∩Aβ) ∼= Mβ+1/Mβ . The
desired C-filtration Q of P/N is obtained from (F̄β | β ≤ σ) by removing possible
repetitions, and (H3) follows. Denote by τ ′ the ordinal type of the well-ordered set
(T \ S,<). Notice that the length τ of the filtration can be taken as 1 + τ ′ (the
ordinal sum, hence τ = τ ′ for τ ′ infinite).

For property (H4) we first prove that every subset X of σ of cardinality < κ is
contained in a closed subset of σ of cardinality < κ. We will prove this by induction
on the least β ≤ σ such that X ⊆ β. Since κ is an infinite regular cardinal, in the
induction step, we can even assume that X is a one-element subset of β and apply
Proposition 2.7. So we are left to prove that every β < σ is contained in a closed
subset of cardinality < κ. For β < κ, we just take S = β + 1. Otherwise, the short
exact sequence

0→Mβ ∩Aβ → Aβ →Mβ+1/Mβ → 0

shows that Mβ ∩ Aβ is < κ-generated. Thus Mβ ∩ Aβ ⊆
∑
α∈S0

Aα for a subset
S0 ⊆ β of cardinality < κ. Moreover, we can assume that S0 is closed in σ by
inductive premise, and put S = S0 ∪ {β}. To show that S is closed, it suffices to
check the definition only for β. But Mβ ∩Aβ ⊆M(S0) =

∑
α∈S,α<β Aα.

Finally, let N = M(S), where S is closed in σ, and let X be a subset of M of
cardinality < κ. Then X ⊆

∑
α∈T Aα for a subset T of σ of cardinality < κ. By

the preceding paragraph, we can assume that T is closed in σ. Let P = M(S ∪ T ).
Then P/N is C-filtered by property (H3), and the filtration can be chosen indexed
by 1+ the ordinal type of T \ S, which is certainly less than κ. In particular, P/N
is < κ-presented.

Remark 2.9. If we assume the stronger assumption that each module in C pos-
sesses a projective resolution consisting of < κ-generated modules, then the same
is true of the module P/N in (H4) (see e.g. [26, Corollary 7.2]).

3. Some consequences of the Hill Lemma

Here is our first application of the Hill Lemma, on replacing the original filtration
by a different one:

Corollary 3.1. Let R be a ring, κ an infinite regular cardinal, and C a set of
< κ-presented modules. Let D be the class of all modules possessing a C-filtration
of length < κ (so Filt(D) = Filt(C)).

Let M be a D-filtered module with gen(M) = λ ≥ κ. Let {mβ | β < λ} be a set
of R-generators of M .

Then there exists a D-filtrationM′ = (M ′β | β ≤ λ) of M such that gen(M ′β) < λ

and mβ ∈M ′β+1 for each β < λ.

Proof. Since Filt(D) = Filt(C), w.l.o.g., M has a C-filtration M. Consider the
corresponding Hill family H as in Theorem 2.1.

The desired D-filtration of M will be selected from H by induction as follows:
M ′0 = 0; if M ′β ∈ H is defined and mβ ∈ M ′β , then we put M ′β+1 = M ′β . If

mβ /∈M ′β , we use property (H4) to find a module M ′β+1 ∈ H such that M ′β ⊆M ′β+1,

mβ ∈ M ′β+1 and M ′β+1/M
′
β is < κ-presented. By property (H3), M ′β+1/M

′
β has a

C-filtration of length < κ, so M ′β+1/M
′
β ∈ D.
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If β ≤ λ is a limit ordinal, we let M ′β =
⋃
γ<βM

′
γ , which is a module from F by

property (H2). Since mβ ∈M ′λ for each β < λ, M ′λ = M .
Finally, for each β < λ, M ′β has a D-filtration of length ≤ β, so gen(M ′β) < λ.

Our second application concerns C-socle sequences of modules.
It is well-known that if R is a right semiartinian ring, then all modules are

semiartinian, and each module has a socle sequence. There is obviously no bound
on the lengths of transfinite composition series of modules, but the length of the
socle sequence of any module M (called the Loewy length of M) is bounded, the
bound being the Loewy length of R.

Semiartinian modules coincide with the C-filtered modules for C = simpR. Thus
a question arises of whether these well-known facts can be extended to arbitrary
C-filtered modules. We are going to present a positive answer: if each module in C
is < κ-presented, then each C-filtered module has a C-socle sequence of length ≤ κ.
The result, known under the slogan of ‘shortening filtrations’, goes back to Enochs
[23]. The proof here, via the Hill Lemma, is due to Šťovııček [40].

We start with the definition of a C-socle sequence of a module.

Definition 3.2. Let R be a ring, M be a module, and C be a class of modules.
A continuous chain N = (Nβ | β ≤ τ) of submodules of M is called a C-socle
sequence of M , provided that Nτ = M , and Nβ+1/Nβ is isomorphic to a direct
sum of elements of C for each β < τ . The ordinal τ is called the length of the
C-socle sequence N .

It is easy to see that a module M possesses a C-socle sequence, if and only if M is
C-filtered. In fact, each C-filtration of M is also its C-socle sequence. So unlike socle
sequences, the C-socle sequences are not unique in general. But the key property is
the same: C-socle sequences are shorter than C-filtrations in general; moreover, if C
consists of modules of bounded presentation, then each C-filtered module possesses
a C-socle sequence of bounded length. Such C-socle sequence can be extracted from
the family H constructed in the Hill Lemma:

Theorem 3.3. Let R be a ring, κ be an infinite regular cardinal, and C be a class of
< κ-presented modules. Let M be C-filtered module. Then M has a C-socle sequence
of length ≤ κ.

Proof. Let M = (Mα | α ≤ σ) be a C-filtration of M , and (Aα | α < σ) a
family of < κ-generated submodules of M , such that Mα+1 = Mα + Aα for each
α < σ. Let H = {M(S) | S a closed subset of σ} be the family of submodules of
M from Theorem 2.1.

Let α < σ. By (the proof of) property (H4) in Theorem 2.1, the set A = {S |
S is a closed subset of σ&α ∈ S& |S| < κ} is not empty. Let Sα = (α + 1) ∩⋂
S∈A S. By Lemma 2.7, Sα is the least element of A, and α is the greatest element

of Sα.
Putting sup(∅) = 0, we define the C-socle level function ` : σ → κ by induction

on α < σ by the formula `(α) = sup{`(γ)+1 | α 6= γ ∈ Sα}. Notice that `(γ) < `(α)
whenever α 6= γ ∈ Sα. (Also, `(α) = 0 is equivalent to Sα = {α}, which implies
Mα+1 = Mα ⊕Aα.)

For each β ≤ κ, let Tβ = {γ < σ | `(γ) < β} and Nβ = M(Tβ). We will prove
that N = (Nβ | β ≤ κ) is a C-socle sequence of M .

First, we claim that Tβ is closed, hence Nβ ∈ H, for each β ≤ κ. This will follow
once we prove that Tβ =

⋃
γ<σ,`(γ)<β Sγ . However, if γ ∈ Tβ then `(γ) < β, and

clearly γ ∈ Sγ . Conversely, assume that α ∈ Sγ for some γ < σ, `(γ) < β. If α = γ,
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then α ∈ Tβ . Otherwise α < γ, so `(α) + 1 ≤ `(γ) < β and α ∈ Tβ , and the claim
is proved.

Clearly N is a continuous chain of submodules of M , and M = Nκ. It remains
to show that for each β < κ, Nβ+1/Nβ =

⊕
γ∈Tβ+1\Tβ M̄γ , where M̄γ is isomorphic

to some element of C for each γ ∈ Tβ+1 \ Tβ .
Let γ ∈ Tβ+1 \ Tβ . Then `(γ) = β, and we define M̄γ = (M(Tβ) + Aγ)/M(Tβ).

Then

M̄γ = M(Tβ ∪ Sγ)/M(Tβ) ∼= M(Sγ)/(M(Sγ) ∩M(Tβ)) = M(Sγ)/M(Sγ ∩ Tβ) =

= M(Sγ)/M(Sγ ∩ γ) ∼= Aγ/(Aγ ∩M(Sγ ∩ γ)) = Aγ/(Aγ ∩Mγ) ∼= Mγ+1/Mγ ,

because Sγ is closed, and γ is the largest element of Sγ . However, Mγ+1/Mγ is
isomorphic to an element of C as M is a C-filtration of M .

Clearly, Nβ+1/Nβ =
∑
γ∈Tβ+1\Tβ M̄γ .

So it remains to prove that M̄γ ∩
∑
γ 6=δ∈Tβ+1\Tβ M̄δ = 0, or equivalently,

(M(Tβ) +Aγ) ∩ (M(Tβ) +
∑

γ 6=δ∈Tβ+1\Tβ

Aδ) = M(Tβ).

We have M(Tβ) + Aγ = M(Tβ ∪ Sγ), and M(Tβ) +
∑
γ 6=δ∈Tβ+1\Tβ Aδ = M(Tβ ∪⋃

γ 6=δ∈Tβ+1
Sδ). Moreover,

M(Tβ ∪ Sγ) ∩ M(Tβ ∪
⋃

γ 6=δ∈Tβ+1

Sδ) = M(Tβ ∪ (Sγ ∩
⋃

γ 6=δ∈Tβ+1

Sδ)) = M(Tβ),

because by the definition of the function `, Sγ ∩ Sδ ⊆ Tβ for all γ 6= δ ∈ Tβ+1.

4. Approximations

Throughout this section we assume that R is a ring, M is a (right R-) module
and C a class of modules closed under isomorphic images and direct summands.

Definition 4.1. A map f ∈ HomR(M,C) with C ∈ C is a C-preenvelope of M ,
provided that the map HomR(f, C ′) : HomR(C,C ′) → HomR(M,C ′) is surjective
for each C ′ ∈ C. That is, for each homomorphism f ′ : M → C ′ there is a homo-
morphism g : C → C ′, such that f ′ = gf :

M
f //

f ′ !!

C

g

��
C ′.

(Note that we require the existence, but not the uniqueness, of the map g.)
The C-preenvelope f is a C-envelope of M . provided that f is left minimal, that is,
provided f = gf implies g is an automorphism for each g ∈ EndR(C).

Example 4.2. The embedding M ↪→ E(M) is easily seen to be the I0-envelope
of a module M . Here, I0 denotes the class of all injective modules, and E(M) the
injective hull of M .

Clearly a C-envelope of M is unique in the following sense: if f : M → C and
f ′ : M → C ′ are C-envelopes of M , then there is an isomorphism g : C → C ′, such
that f ′ = gf .

In general a module M may have many non-isomorphic C-preenvelopes, but no
C-envelope. Nevertheless, if the C-envelope exists, its minimality implies that it is
isomorphic to a direct summand in each C-preenvelope of M :
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Lemma 4.3. Let f : M → C be a C-envelope and f ′ : M → C ′ a C-preenvelope of
a module M . Then

(a) there exists a decomposition C ′ = D⊕D′, where Im f ′ ⊆ D and f ′ : M → D
is a C-envelope of M ;

(b) f ′ is a C-envelope of M , if and only if C ′ has no proper direct summands
containing Im f ′.

Proof. (a) By definition there are homomorphisms g : C → C ′ and g′ : C ′ → C,
such that f ′ = gf and g′g is an automorphism of C. So g is a split monomorphism,
D = Im g ∼= C is a direct summand in C ′ containing Im f ′. It follows that f ′ :
M → D is a C-envelope of M .
(b) by part (a).

Definition 4.4. A class C ⊆ Mod–R is a preenveloping class, (enveloping class)
provided that each module has a C-preenvelope (C-envelope).

For example, the class I0 of all injective modules from Example 4.2 is an en-
veloping class of modules.

Now we briefly discuss the dual concepts:

Definition 4.5. A map f ∈ HomR(C,M) with C ∈ C is a C-precover of M ,
provided that the abelian group homomorphism HomR(C ′, f) : HomR(C ′, C) →
HomR(C ′,M) is surjective for each C ′ ∈ C.
A C-precover f ∈ HomR(C,M) of M is called a C-cover of M , provided that f is
right minimal, that is, provided fg = f implies that g is an automorphism for each
g ∈ EndR(C).
C ⊆ Mod–R is a precovering class, (covering class) provided that each module has
a C-precover (C-cover).

Remark 4.6. A C-preenvelope f : M → C is also called a left C-approximation of
M , because all morphisms from M to the elements of C are left multiples of f by
morphisms from C to the elements of C. Then a C-envelope is called a minimal left
C-approximation.

Similarly, C-precovers and C-precovers are sometimes referred to as right C-
approximations and minimal right C-approximations, respectively.

If Mod–R is replaced by its subcategory mod–R in the definitions above, then
preenveloping and precovering classes are called covariantly finite and contravari-
antly finite.

Example 4.7. Each module M has a P0-precover (where P0 denotes the class of
all projective modules), since each module is a homomorphic image of a projective
module. Moreover, M has a P0-cover, if and only if M has a projective cover in
the sense of Bass (that is, there is an epimorphism f : P → M with P projective
and Ker(f) a small submodule of P ). So P0 is always a precovering class, and it is
a covering class, if and only if R is a right perfect ring.

C-covers may not exist in general, but if they exist, they are unique up to isomor-
phism. As in Lemma 4.3, we get

Lemma 4.8. Let f : C → M be the C-cover of M . Let f ′ : C ′ → M be any
C-precover of M . Then

(a) there is a decomposition C ′ = D ⊕D′, where D ⊆ Ker f ′ and f ′ � D′ is a
C-cover of M .

(b) f ′ is a C-cover of M , if and only if C ′ has no non-zero direct summands
contained in Ker f ′.
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Proof. Dual to the proof of Lemma 4.3.

The following lemma is known as the Wakamatsu Lemma (see [44]). It shows
that under rather weak assumptions on the class C, C-envelopes and C-covers are
special in the sense of the following definition:

Definition 4.9. Let C ⊆ Mod–R. We define

C⊥ = Ker Ext1
R(C,−) =

{
N ∈ Mod–R | Ext1

R(C,N) = 0 for all C ∈ C
}
.

Similarly,

C⊥∞ =
⋂
i≥1

Ker ExtiR(C,−) =
{
N ∈ Mod–R | ExtiR(C,N) = 0 ∀C ∈ C ∀ i ≥ 1

}
.

For C = {C}, we write for short C⊥, C⊥∞ , ⊥C, and ⊥∞C in place of {C}⊥, {C}⊥∞ ,
⊥{C}, and ⊥∞{C}, respectively.
Let M ∈ Mod–R. A C-preenvelope f : M → C of M is called special, provided that
f is injective and Coker f ∈ ⊥C. In other words, a special C-preenvelope f of M is
a morphism that fits into a short exact sequence

0→M
f−→ C −→ D → 0

with C ∈ C and D ∈ ⊥C. Indeed, such f is always a C-preenvelope, since for
each C ′ ∈ C, Ext1

R(D,C ′) = 0 implies that the abelian group homomorphism
HomR(f, C ′) : HomR(C,C ′)→ HomR(M,C ′) is surjective.
Dually, a C-precover g : C → M of M is called special, if g is surjective and
Ker g ∈ C⊥. Again, a special C-precover g of M is just a map that fits into a short
exact sequence

0→ B −→ C
g−→M → 0

where C ∈ C and B ∈ C⊥.
If C is a class of modules such that each module M has a special C-preenvelope
(special C-precover), then C is called special preenveloping (special precovering).

Lemma 4.10. (Wakamatsu Lemma) Let M ∈ Mod–R and C ⊆ Mod–R be a class
closed under extensions.

(a) Let f : M → C be a C-envelope of M and D = Coker f . Then D ∈ ⊥C.
In particular, each monic C-envelope of M is special.

(b) Let g : C →M be a C-cover of M and E = Ker g. Then E ∈ C⊥.
In particular, each surjective C-cover of M is special.

Proof. (a) Let K = Ker f and π : M → M/K be the canonical projection.
Then f = f̄π for a unique monomorphism f̄ ∈ HomR(M/K,C), and there is an
exact sequence

0→M/K
f̄−→ C

g−→ D → 0.

In order to prove that D ∈ ⊥C, we take an arbitrary extension

0→ C ′ −→ X
h−→ D → 0

with C ′ ∈ C. We will prove that h splits. First consider the pullback of g and h:
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0 0y y
C ′ C ′y y

0 −−−−→ M/K
α−−−−→ P

β−−−−→ X −−−−→ 0∥∥∥ γ

y h

y
0 −−−−→ M/K

f̄−−−−→ C
g−−−−→ D −−−−→ 0y y

0 0.
Since C,C ′ ∈ C, also P ∈ C by assumption. Since f is a C-preenvelope of M ,

there exists a homomorphism δ : C → P such that απ = δf . Then f = γαπ = γδf ,
so γδ is an automorphism of C because f is left minimal.

Define i ∈ HomR(D,X) by i(g(c)) = βδ(γδ)−1(c) for each c ∈ C. This is
possible, since Ker g = Im f̄ and βδ(γδ)−1 � Im f̄ = 0, because for each m ∈M ,

δ(γδ)−1f̄π(m) = δ(γδ)−1f(m) = δ(γδ)−1γδf(m) = απ(m) ∈ Kerβ.

Moreover, hig = hβδ(γδ)−1 = gγδ(γδ)−1 = g, so hi = idD, and h splits.
(b) is dual to (a).

Remark 4.11. The C-envelope f of a module M must be monic, provided that
I0 ⊆ C. This is because M ↪→ E(M) factorizes through f . Similarly, P0 ⊆ C
implies that any C-cover of M is surjective.

Also notice that the Wakamatsu Lemma holds when Mod–R is replaced by the
category of all finitely presented modules, mod–R. Indeed, then all the modules in
the proof of Lemma 4.10, with the possible exception of K, are finitely presented.

5. Cotorsion pairs

Besides the Wakamatsu Lemma, there is another reason for investigating special
preenvelopes and precovers, namely the existence of an explicit duality between
them arising from the notion of a cotorsion pair:

Definition 5.1. Let A,B ⊆ Mod–R. The pair (A,B) is called a cotorsion pair if
A = ⊥B and B = A⊥.

Let C be a class of modules. Then C ⊆ ⊥(C⊥) as well as C ⊆ (⊥C)⊥. Moreover,
GC = (⊥(C⊥), C⊥) and CC = (⊥C, (⊥C)⊥) are easily seen to be cotorsion pairs, called
the cotorsion pairs generated and cogenerated, respectively, by the class C.

A cotorsion pair (A,B) is hereditary in case ExtiR(A,B) = 0 for all i ≥ 1, A ∈ A
and B ∈ B (see Lemma 11.3 below for a characterization of heredity in terms of
the closure properties of the classes A and B).

The class A ∩ B is called the kernel of the cotorsion pair (A,B).

For any ring R, the cotorsion pairs of right R-modules are partially ordered
by inclusion of their first components. In fact, they form a complete lattice LExt

(whose support, however, is not a set but a proper class, e.g. for any non-right
perfect ring).
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The largest element of LExt is GMod–R = (Mod–R, I0), while the least is
CMod–R = (P0,Mod–R). These are the trivial cotorsion pairs.

Note that (
⋂
α<κAα, (

⋂
α<κAα)⊥) is the infimum of a sequence of cotorsion pairs

{(Aα,Bα) | α < κ} in LExt, while (⊥((
⋃
α<κAα)⊥),

⋂
α<κ Bα) is its supremum.

Cotorsion pairs are analogues of the classical (non-hereditary) torsion pairs,
where Hom (= Ext0 ) is replaced by Ext1. Similarly, one can define F -pairs for any
additive bifunctor F on Mod–R.

Now we present several important examples of cotorsion pairs:

Example 5.2. For any ring R and any n ≥ 0, there are cotorsion pairs (Pn,P⊥n ),
(Fn,F⊥n ), and (⊥In, In) where Pn, Fn, and In denotes the class of all modules of
projective (flat, injective) dimension ≤ n, respectively.

If R is an integral domain, then there is a cotorsion pair (T F , T F⊥) where T F
is the class of all torsion-free modules.

We now record an immediate corollary of Lemma 4.10:

Corollary 5.3. Let R be a ring and (A,B) be a cotorsion pair. If A is covering,
then A is special precovering, and if B is enveloping, then B is special preenveloping.

The key property of cotorsion pairs is their relation to module approximations.
This fact – discovered by Salce [36] – says that the mutually dual categorical notions
of a special precover and a special preenvelope are tied up by the homological tie of
a cotorsion pair. In a sense, this fact is a remedy for the non-existence of a duality
involving the category of all modules over a ring.

Lemma 5.4. (Salce Lemma) Let R be a ring and C = (A,B) be a cotorsion pair
of modules. Then the following are equivalent:

(a) Each module has a special A-precover.
(b) Each module has a special B-preenvelope.

In this case, the cotorsion pair C is called complete.

Proof. (a) implies (b): let M ∈ Mod–R. There is an exact sequence

0→M −→ I
π−→ F → 0,

where I is injective. By assumption, there is a special A-precover ρ of F

0→ B −→ A
ρ−→ F → 0.

Consider the pullback of π and ρ:

0 0y y
M My y

0 −−−−→ B −−−−→ P −−−−→ I −−−−→ 0∥∥∥ γ

y π

y
0 −−−−→ B −−−−→ A

ρ−−−−→ F −−−−→ 0y y
0 0.

Since B, I ∈ B, also P ∈ B. So the left-hand vertical exact sequence is a special
B-preenvelope of M .
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(b) implies (a): by a dual argument.

Remark 5.5. Complete cotorsion pairs (A,B) make it possible to develop relative
homological algebra, with projective resolutions replaced by resolutions by modules
from the class A, and injective coresolutions by coresolutions by modules from B.
For more on relative homological algebra, we refer to [24, Chapter 8].

Further on, complete cotorsion pairs in the category Mod–R are the main sources
of Quillen model category structures on chain complexes of modules that make it
possible to express the derived category D(R) as the homotopy category associated
to the particular model structure. In fact, this approach extends much further,
e.g., to Grothendieck categories (such as categories of quasi-coherent sheaves on
schemes), and even to particular exact categories. We refer to the recent monograph
[25] for more details.

6. The abundance of complete cotorsion pairs

The following theorem, showing that complete cotorsion pairs are abundant, was
originally proved in [20]. Similar arguments have been used in homotopy theory
since Quillen’s fundamental work [35] under the name of small object argument.
The proof presented here is a more categorical modification of the original one,
coming from [1]:

Theorem 6.1. (Completeness of cotorsion pairs generated by sets) Let S be a set
of modules.

(a) Let M be a module. Then there is a short exact sequence

0→M ↪→ P → N → 0,

where P ∈ S⊥ and N is S-filtered.
In particular, M ↪→ P is a special S⊥-preenvelope of M .

(b) The cotorsion pair (⊥(S⊥),S⊥) is complete.

Proof. (a) Put X =
⊕

S∈S S. Then X⊥ = S⊥. So w.l.o.g., we assume that S
consists of a single module S.

Let 0→ K
µ−→ F −→ S → 0 be a short exact sequence with F a free module. Let

λ be an infinite regular cardinal, such that K is < λ-generated.
By induction we define an increasing chain (Pα | α < λ) as follows:

First let P0 = M . For α < λ, choose the index set Iα = HomR(K,Pα). We define
µα as the direct sum of |Iα| copies of the homomorphism µ, i.e.

µα := µ(Iα) ∈ HomR(K(Iα), F (Iα)).

Then µα is a monomorphism, and Cokerµα is isomorphic to a direct sum of
copies of S. Let ϕα ∈ HomR(K(Iα), Pα) be the canonical morphism. Note that
for each η ∈ Iα there are canonical embeddings νη ∈ HomR(K,K(Iα)) and ν′η ∈
HomR(F, F (Iα)), such that η = ϕανη and ν′ηµ = µανη.

Now Pα+1 is defined via the pushout of µα and ϕα:

0 −−−−→ K(Iα) µα−−−−→ F (Iα) −−−−→ S(Iα) −−−−→ 0

ϕα

y ψα

y ∥∥∥
0 −−−−→ Pα

⊆−−−−→ Pα+1 −−−−→ S(Iα) −−−−→ 0.

If α ≤ λ is a limit ordinal, we put Pα =
⋃
β<α Pβ , so the chain is continuous.

Put P =
⋃
α<λ Pα.
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We will prove that ν : M ↪→ P is a special S⊥-preenvelope of M .
First we prove that P ∈ S⊥. Since F is projective, we are left to show that any
ϕ ∈ HomR(K,P ) factorizes through µ:

Since K is < λ-generated, there are an index α < λ and η ∈ Iα, such that ϕ(k) =
η(k) for all k ∈ K. The pushout square gives ψαµα = σαϕα, where σα denotes the
inclusion of Pα into Pα+1. Altogether we have ψαν

′
ηµ = ψαµανη = σαϕανη = σαη.

It follows that ϕ = ψ′µ, where ψ′ ∈ HomR(F, P ) is defined by ψ′(f) = ψαν
′
η(f) for

all f ∈ F . This proves that P ∈ S⊥.
It remains to prove that N = P/M ∈ ⊥(S⊥). By construction, N is the union

of the continuous chain (Nα | α < λ), where Nα = Pα/M .
Since Pα+1/Pα is isomorphic to a direct sum of copies of S by the pushout

construction, so is Nα+1/Nα ∼= Pα+1/Pα. Since S ∈ ⊥(S⊥), also Nα+1/Nα ∈
⊥(S⊥), whence N ∈ ⊥(S⊥) by the Eklof Lemma.

(b) follows by part (a) (cf. Lemma 5.4).

Remark 6.2. Theorem 6.1 will be our main tool for proving completeness of co-
torsion pairs in ZFC. However, the question of whether a particular cotorsion pair
is complete may depend on the extension of ZFC that we work in.

For example, consider the cotorsion pair C in Mod–Z cogenerated by Z. Its
left hand class is the class of all Whitehead groups. So under Gödel’s Axiom of
Constructibility (V = L), C is trivial (see e.g. [18, 4.1(i)]), and hence complete.
However, Eklof and Shelah [19] have shown that it is also consistent with ZFC +
GCH that the class of all Whitehed groups is not precovering, and whence C is not
complete.

In contrast, Cox [17] has recently proved that under the (large cardinal) hypoth-
esis of Vopěnka’s Principle (VP), all cotorsion pairs over any right hereditary ring
(such as Z) are cogenerated by a set. Moreover, VP is relatively consistent with
V = L, which in turn implies that each cotorsion pair cogenerated by a set is also
generated by a set (see e.g. [26, 11.4]). It follows that VP and V = L imply that
each cotorsion pair over a right hereditary ring is complete.

Any cotorsion pair generated by a set of modules S is also generated by the
single module M =

⊕
S∈S S. So the following corollary of Theorem 6.1 provides a

characterization of the (complete) cotorsion pairs generated by sets of modules:

Corollary 6.3. Let M be a module. Denote by CM the class of all modules C, such
that there is an exact sequence 0 → F −→ C −→ G → 0, where F is free and G is
{M}-filtered. Let C = (A,B) be a cotorsion pair. The following are equivalent

(a) C is generated by M (that is, B = M⊥).
(b) A consists of all direct summands of elements of CM (and for each A ∈ A,

there are C ∈ CM and B ∈ KC, such that A⊕B ∼= C).

Proof. (a) implies (b): by assumption, B = M⊥. Take A ∈ A, and let 0 →
N

µ−→ F −→ A→ 0 be a short exact sequence with F free. By Theorem 6.1 (a), there
is a special B-preenvelope, ν : N ↪→ B of N , such that G = B/N is {M}-filtered.
Let (Gα | α ≤ λ) be an {M}-filtration of G. Consider the pushout of µ and ν:
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0 0y y
0 −−−−→ N

µ−−−−→ F −−−−→ A −−−−→ 0

ν

y y ∥∥∥
0 −−−−→ B −−−−→ C −−−−→ A −−−−→ 0y π

y
G Gy y
0 0.

The second column gives C ∈ CM . The second row splits since B ∈ B and A ∈ A,
so A⊕B ∼= C. Finally, since F,G ∈ A, we have C ∈ A, so B ∈ KC.

(b) implies (a): by the Eklof Lemma, M⊥ = A⊥ = B.

Corollary 6.4. Let S be a set of modules containing R. Then the class ⊥(S⊥)
consists of all direct summands of S-filtered modules.

Proof. By Corollary 6.3 and the Eklof Lemma.

In general, we cannot omit the term “direct summands” in Corollary 6.4. For
example, if S = {R}, then ⊥(S⊥) = P0 is the class of all projective modules, while
S-filtered modules coincide with the free modules.

However, there is a way of getting rid of the direct summands on the account
of enlarging the set S. In the particular case of S = {R}, this is the point of the
celebrated Kaplansky theorem [2, 26.2], saying that each projective module is a
direct sum of countably generated projective modules.

In general, let κ be a regular uncountable cardinal and S a set of < κ-presented
modules. Let A = ⊥(S⊥) (so A is a special precovering class by Theorem 6.1).
Then A = Filt(A<κ), where A<κ denotes the class of all < κ-presented modules
from A. This generalization of Kaplansky’s theorem follows from our next lemma
which is yet another consequence of the Hill Lemma:

Lemma 6.5. Let κ be an uncountable regular cardinal and C be a class of < κ-
presented modules. Denote by A the class of all direct summands of C-filtered
modules. Then every module in A is A<κ-filtered.

Proof. Let K ∈ A, so there is a C-filtered module M , such that M = K ⊕ L
for some L ⊆ M . Denote by πK : M → K and πL : M → L the corresponding
projections. Let H be the family of submodules of M as in Theorem 2.1. We
proceed in two steps:

Step I: By induction, we construct a continuous chain, (Nα | α ≤ τ), of submodules
of M , such that Nτ = M , and for each α < τ ,

(a) Nα ∈ H,
(b) Nα = πK(Nα) + πL(Nα), and
(c) the module Nα+1/Nα is < κ-presented.

First N0 = 0, and Nβ =
⋃
α<β Nα for all limit ordinals β ≤ τ . Suppose we have

Nα $ M . In order to construct Nα+1, we take x ∈ M \ Nα; by property (H4),
there is Q0 ∈ H, such that Nα ∪ {x} ⊆ Q0 and Q0/Nα is < κ-presented. Let
X0 be a subset of Q0 of cardinality < κ, such that the set {x + Nα | x ∈ X0}
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generates Q0/Nα. Put Z0 = πK(Q0) ⊕ πL(Q0). Clearly Q0/Nα ⊆ Z0/Nα. Since
πK(Nα), πL(Nα) ⊆ Nα, the module Z0/Nα is generated by the set

{x+Nα | x ∈ πK(X0) ∪ πL(X0)}.
Thus we can find Q1 ∈ H, such that Z0 ⊆ Q1 and Q1/Nα is < κ-presented.
Similarly, we infer that Z1/Nα is < κ-generated for Z1 = πK(Q1)⊕πL(Q1), and we
find Q2 ∈ H such that Z1 ⊆ Q2 and Q2/Nα is < κ-presented. In this way we obtain
a chain Q0 ⊆ Q1 ⊆ . . . , such that for all i < ω: Qi ∈ H, Qi/Nα is < κ-presented,
and πK(Qi) + πL(Qi) ⊆ Qi+1. It is easy to see that Nα+1 =

⋃
i<ω Qi satisfies the

properties (a)-(c).

Step II: by condition (b), we have

πK(Nα+1) +Nα = πK(Nα+1)⊕ πL(Nα)

and similarly for L. Hence

(πK(Nα+1) +Nα) ∩ (πL(Nα+1) +Nα)

= (πK(Nα+1)⊕ πL(Nα)) ∩ (πL(Nα+1)⊕ πK(Nα))

=
(
πK(Nα+1) ∩ (πL(Nα+1)⊕ πK(Nα))

)
⊕ πL(Nα)

= πK(Nα)⊕ πL(Nα) = Nα

and thus

Nα+1/Nα = (πK(Nα+1) +Nα)/Nα ⊕ (πL(Nα+1) +Nα)/Nα.

By condition (a), Nα+1/Nα is C-filtered. Since

(πK(Nα+1) +Nα)/Nα ∼= πK(Nα+1)/πK(Nα),

πK(Nα+1)/πK(Nα) is isomorphic to a direct summand of a C-filtered module,
whence πK(Nα+1)/πK(Nα) ∈ A. Since the class of all < κ-presented modules is
closed under direct summands, (c) yields that πK(Nα+1)/πK(Nα) is < κ-presented.
So (πK(Nα) | α ≤ τ) is the desired A<κ-filtration of K = πK(Nτ ).

Theorem 6.6. (Kaplansky theorem for cotorsion pairs) Let R be a ring, κ a
regular uncountable cardinal and C = (A,B) a cotorsion pair of modules. Then the
following conditions are equivalent:

(a) C is generated by a class C consisting of < κ-presented modules.
(b) Every module in A is A<κ-filtered.

Proof. (a) =⇒ (b). W.l.o.g., C is a set and R ∈ C. By Corollary 6.4, A
consists of all direct summands of C-filtered modules. So statement (b) follows by
Lemma 6.5.

(b) =⇒ (a). By the Eklof Lemma 1.3, every A-filtered module is contained in
A. Thus (b) implies that A = Filt(A<κ), whence C is generated by the class A<κ.

Remark 6.7. Even in the particular case of projective modules, it is not possible
to extend Theorem 6.6 to the case of κ = ℵ0. Namely, there exist rings R which
admit countably generated projective modules that are not direct sums of finitely
generated projective ones.

For a concrete example, consider the commutative ring R consisting of all contin-
uous real-valued functions on [0, 1] and its ideal P consisting of all functions f ∈ R
vanishing on some interval [0, ε(f)], where ε(f) ∈ (0, 1). Then P is countably gen-
erated and projective, but it is not a direct sum of finitely generated projective
modules.
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By the above, all cotorsion pairs (A,B) generated by sets of modules are com-
plete; moreover, the special precovering class A is of the form A = Filt(S) for a
subset S ⊆ A. In fact all classes of the form Filt(S) for a set of modules S are
special precovering in the following weaker sense (not requiring the precover to be
surjective):

Theorem 6.8. Let S be any set of modules. Then the class C = Filt(S) is pre-
covering. Moreover, for each module M there exists a C-precover f ∈ HomR(C,M)
such that Ker f ∈ C⊥.

Proof. Let M ∈ Mod–R. Let N =
∑
C∈C,g∈HomR(C,M) Im g (this is the trace of

C in M).
First, we will prove that the module N has a special C-precover in the sense of

Definition 4.9: We have a short exact sequence 0 → K
µ→ L → N → 0 where L is

a direct sum of copies of modules from C, hence also L ∈ C. By Theorem 6.1(i),

there is also a short exact sequence 0 → K
ν→ P → Q → 0 such that P ∈ S⊥ and

Q ∈ C. Consider the pushout of µ and ν:

0 0y y
0 −−−−→ K

µ−−−−→ L −−−−→ N −−−−→ 0

ν

y y ∥∥∥
0 −−−−→ P −−−−→ C

f−−−−→ N −−−−→ 0y y
Q Qy y
0 0.

Since L,Q ∈ C, also C ∈ C. Moreover, P = Ker f ∈ S⊥ = C⊥ by the Eklof
Lemma, so f is a special C-precover of N .

Consider the embedding τ : N → M . Each homomorphism g from an element
of C to M actually maps into N , that is, it factorizes through τ , and hence through
τf , because f is a C-precover of N . Thus τf is a C-precover of M . Finally, τ is
monic, so Ker τf = Ker f ∈ C⊥.

That C = Filt(S) is a precovering class for any set of modules S was first proved
in [23] and [37]. The short proof above, providing for the additional special property
of the precover, is due to Estrada, and appears, e.g., in [16].

Moreover, [16] contains a short proof of another result from [37], namely that
the class C is also preenveloping provided that C is closed under direct products:

Proposition 6.9. Let S be any set of modules. Assume that the class C = Filt(S)
is closed under direct products. Then C is preenveloping.

Proof. Let N be a module and κ be a regular uncountable cardinal such that
each module in S is < κ-presented and κ > genN + |R|. Let T be a represen-
tative set of the class of all < κ-presented modules in C, and F be the set of all
homomorphisms of the form f ∈ HomR(N,Tf ) where Tf ∈ T .

Let C =
∏
f∈F Tf , and let h ∈ HomR(N,C) be defined by f = πfh where

πf ∈ HomR(C, Tf ) is the canonical projection for each f ∈ F . Notice that C ∈ C
by our assumption on the class C.
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We will prove that h is a C-precover of N . Let g ∈ HomR(N,M) for some
M ∈ C. Let M be any S-filtration of M , and consider the corresponding family
H from Theorem 2.1. Since genN < κ, there is a subsetet X ⊆ M of cardinality
< κ such that Im g ⊆ 〈X〉. By conditions (H3) and (H4) of Theorem 2.1, Im g ⊆ P
for a < κ-presented S-filtered submodule P of M . So there are an f ∈ F and
an isomorphism τ ∈ HomR(P, Tf ) such that f = τg. Thus g = τ−1f = τ−1πfh,
proving that g factorizes through h.

7. Modules of bounded homological dimensions

In this section, we will see that Theorem 6.1 applies to many cotorsion pairs
arising in classical homological algebra. Hence it yields numerous generalizations
of the notions of projective (pre-)covers and injective envelopes.

We start with the cotorsion pairs (⊥In, In) for n < ω, where In denotes the
class of all modules of injective dimension ≤ n. Their completeness is a simple
consequence of Theorem 6.1 that follows from the Baer Criterion for injectivity [2,
18.3]:

Theorem 7.1. Let R be a ring and n < ω. Then (⊥In, In) is a complete hereditary
cotorsion pair. In particular, every module has a special In-preenvelope.

Proof. Let M be a module. Let

R : 0→M → I0 → I1 → · · · → In−1 → In → . . .

be an injective coresolution of M . Let Cn be the n-th cosyzygy of M in R. Then
M ∈ In, if and only if Cn is injective.

By the Baer Criterion, the latter is equivalent to Ext1
R(R/I,Cn) = 0, and hence

– by dimension shifting – to Extn+1
R (R/I,M) = 0, for all right ideals I of R. Denote

by SI the n-th syzygy (in a projective resolution) of the cyclic module R/I. Then
Extn+1

R (R/I,M) = 0, if and only if Ext1
R(SI ,M) = 0. So In = (

⊕
I⊆R SI)

⊥, and

the assertion follows by Theorem 6.1(b).
The cotorsion pair is hereditary since the class In is cosyzygy closed.

Remark 7.2. 1. Of course, there is more to say for n = 0: the class I0 is well
known to be an enveloping class (as we will see in the next section, also this fact
actually follows from a more general result concerning cotorsion pairs). Another
case worth mentioning is for n = 1: since 1st syzygies of cyclic modules are just
the right ideals of R, and the class A1 = ⊥I1 is closed under submodules, we infer
that A1 is the class of all ‘ideally filtered’ modules, that is, A1 = Filt(J ) where J
is the class of all right ideals of the ring R.

2. The proof of Theorem 7.1 is based on the existence of a test module for
injectivity, that is, on the Baer Criterion. In the dual case, the existence of test
modules for projectivity depends on the structure of the base ring.

If R is a right perfect ring, then a test module M for projectivity does exist, for
example, one can take M = the direct product of all simple modules, cf. [26, 8.8].
Thus for each n < ω, the cotorsion pair (Pn,P⊥n ) is cogenerated by a set.

However, if R is not right perfect, then it is consistent with ZFC + GCH that
there are no test modules for projectivity.

Nevertheless, a result dual to Theorem 7.1 is true for any ring. Before proving
this fact, we will need some auxiliary facts.

The first one is called the Eilenberg’s trick:
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Lemma 7.3. Let P be a projective module. Then there exists a free module G such
that G ∼= P ⊕G.

Moreover, κ is an infinite cardinal such that gen(P ) ≤ κ, then gen(F ) ≤ κ, too.

Proof. Since P is projective, there exists a free module F such that gen(F ) =
gen(P ), and its direct sum decomposition F = A ⊕ B, such that P ∼= A. Let
G = F (ω). Then

G = (A⊕B)⊕ (A⊕B)⊕ · · · = A⊕ (B ⊕A)⊕ (B ⊕A)⊕ · · · = A⊕G ∼= P ⊕G.

Definition 7.4. Let R be a ring. Let κ be a cardinal. Then R is right κ-noetherian,
provided that each right ideal I of R is ≤ κ-generated.
The least infinite cardinal κ, such that R is right κ-noetherian is the right dimension
of R, denoted by dim(R).

Lemma 7.5. Let R be a ring and κ be a cardinal, such that κ ≥ dim(R). Then
any submodule of a ≤ κ-generated module is ≤ κ-generated.

Proof. First all submodules of cyclic modules are ≤ dim(R)-generated, since
they are epimorphic images of right ideals. Further, any ≤ κ-generated module M
is a union of a continuous chain, (Mα | α ≤ κ), of submodules, such that all the
factors Mα+1/Mα are cyclic. If K ⊆M , then (K ∩Mα+1)/(K ∩Mα) embeds into
Mα+1/Mα for each α < κ, and the assertion follows.

Now, we can prove Lemma 7.6:

Lemma 7.6. Let n < ω, R be a ring, κ = dim(R), and M ∈ Pn, where Pn denotes
the class of all modules of projective dimension ≤ n. Then M is P≤κn -filtered.

Proof. Let λ = max{κ, ρ}, where ρ is the minimal number of generators of
the module M . Since λ ≥ dim(R) and M is ≤ λ-generated, applying Lemma 7.5
repeatedly, and then Lemma 7.3, we obtain a free resolution of M ,

R : 0→ R(An) fn→ R(An−1) → · · · → R(A1) f1→ R(A0) f0→M → 0,

such that |Ai| ≤ λ for each i ≤ n.
Let (mα | α < λ) be a set of R-generators of M . By induction on α, we will

construct a P<κn -filtration (Mα | α < λ) of M together with free resolutions Rα of
Mα, which are restrictions of R:

Rα : 0→ Fα,n
fn�Fα,n→ Fα,n−1 → · · · → Fα,1

f1�Fα,1→ Fα0
f0�Fα,0→ Mα → 0,

so that mα ∈ Mα+1, Fα,i = R(Aα,i) for some Aα,i ⊆ Ai, Aα,i ⊆ Aα+1,i, and
|Aα+1,i \Aα,i| ≤ κ, for all α < λ and i ≤ n.

First M0 = 0 and A0,i = ∅ for all i ≤ n. Assume Mα and Rα are defined. If
Mα 6= M , let γ < λ be the least index, such thatmγ /∈Mα. Clearly, there is a subset

B0 ⊆ A0 of cardinality ≤ κ (in fact, a finite one), such that mγ ⊆ f0(R(Aα,0∪B0)).
Since

Ker(f0 � R(Aα,0)) = Ker(f0 � R(Aα,0∪B0)) ∩R(Aα,0),

we have

Ker(f0 � R(Aα,0∪B0))/Ker(f0 � R(Aα,0))

∼= (R(Aα,0) + Ker(f0 � R(Aα,0∪B0)))/R(Aα,0).

The latter module is a submodule in R(Aα,0∪B0)/R(Aα,0) ∼= R(B0). So the exactness
of Rα at Fα,0, of R at R(A0) and Lemma 7.5 yield the existence of a subset B1 ⊆ A1

of cardinality ≤ κ, such that Ker(f0 � R(Aα,0∪B0)) ⊆ f1(R(Aα,1∪B1)). Similarly,
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there is a subset B2 ⊆ A2 of cardinality ≤ κ, such that Ker(f1 � R(Aα,1∪B1)) ⊆
f2(R(Aα,2∪B2)), etc. Finally, there is a subset Bn ⊆ An of cardinality ≤ κ, such
that Ker(fn−1 � R(Aα,n−1∪Bn−1)) ⊆ fn(R(Aα,n∪Bn)).

Now there is a subset Bn−1 ⊆ B′n−1 ⊆ An−1 of cardinality ≤ κ, such that

fn(R(Aα,n∪Bn)) ⊆ R(Aα,n−1∪B′n−1), etc. Finally, there is a subset B0 ⊆ B′0 ⊆ A0 of

cardinality ≤ κ, such that f1(R(Aα,1∪B′1)) ⊆ R(Aα,0∪B′0).
Continuing this back and forth procedure in R, we obtain, for each i ≤ n, a

countable chain Bi ⊆ B′i ⊆ Bi′′ ⊆ . . . consisting of subsets of Ai of cardinality ≤ κ.
Let Ci = Bi ∪B′i ∪Bi′′ ∪ . . . . Then Ci has cardinality ≤ κ, and the sequence

Rα+1 : 0→ Fα+1,n
fn�Fα+1,n→ Fα+1,n−1

. . .→ Fα+1,1
f1�Fα+1,1→ Fα+1,0

f0�Fα+1,0→ Mα+1 → 0,

where Fα+1,i = R(Aα+1,i) and Aα+1,i = Aα,i ∪ Ci, is exact, and {mγ} ∪ Mα ⊆
N . (The backward procedure takes care of kernels being inside images, while the
forward one of the resulting sequence being a complex.)

Note that Rα is an exact subcomplex of the exact complex Rα+1, so the factor
complex Rα+1/Rα is exact. This shows that Mα+1/Mα ∈ P≤κn .

For a limit ordinal α < λ, we define Aα,i =
⋃
β<αAβ,i and Mα =

⋃
β<αMβ .

Then the corresponding restriction of R is a free resolution of Mα.

Now we easily derive

Theorem 7.7. Let R be a ring and n < ω.

(a) Then Cn = (Pn,P⊥n ) is a complete hereditary cotorsion pair. In particular,
every module has a special Pn-precover.

(b) If R is right ℵ0-noetherian, then Cn is generated by (a representative set
of) the class P≤ωn .

Proof. Let κ = dim(R). By the Eklof Lemma (Filt(P≤κn ))⊥ = (P≤κn )⊥, so by
Lemma 7.6, P⊥n = (P≤κn )⊥. Clearly, P≤κn has a representative set of elements. By
Corollary 6.3(b) and the Eklof Lemma, we get ⊥(P⊥n ) = Pn, so Cn is a complete
cotorsion pair. Cn is hereditary because the class Pn is syzygy closed.

Remark 7.8. Let R be a ring, κ ≥ dim(R), and n < ω. Let C be any class of
≤ κ-presented modules, and D0 = Filt(C). If Dn denotes the class of all modules
of D0-resolution dimension ≤ n, then each module M ∈ Dn is D≤κn -filtered.

The proof of this fact is similar to the proof of Lemma 7.6 in the sense that
it makes use of a back and forth procedure in a D0-resolution of a module of D0-
resolution dimension ≤ n. The extra difficulty rests in employing the Hill Lemma
to make the ‘vertical’ C-filtrations of the terms of the resolution in various degrees
compatible with the ‘horizontal’ maps forming the D0-resolution. For more details,
we refer to [38].

Lemma 7.6 is just the particular case for κ = dim(R), C = P≤ω0 and D0 = P0;
the D0-resolution dimension then coincides with the projective dimension.

8. Purity, and the deconstruction of flat modules

First, we recall basics on purity in module categories (for more details, see [26,
Section 2.1]):
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Definition 8.1. A submodule A of a module B is a pure submodule (A ⊆∗ B for
short), if for each finitely presented module F , the functor Hom(F,−) preserves the
exactness of the short exact sequence 0 → A → B → B/A → 0. The embedding
A ⊆∗ B is then called a pure embedding, and the sequence 0→ A −→ B −→ B/A→ 0
a pure-exact sequence. An epimorphism π : B → C is a pure epimorphism provided
that Kerπ ⊆∗ B.

Clearly, any split embedding is pure. Moreover, the following characterization
holds true:

Lemma 8.2. Let A ⊆ B be modules. Denote by E the short exact sequence

0→ A
⊆−→ B

π−→ B/A→ 0

in Mod–R. Then the following are equivalent:

(a) A ⊆∗ B;
(b) for all 0 < m < ω, 0 < n < ω and all systems of R-linear equations (S) in

the variables xj (j < n) with ai ∈ A (i < m), rji ∈ R (i < m, j < n)

(S)
∑
j<n

xj .rji = ai (i < m)

the following holds:
(S) has a solution in A, whenever (S) has a solution in B;

(c) E is a direct limit of a direct system of split short exact sequences;
(d) the sequence 0 → A ⊗R F → B ⊗R F → B/A ⊗R F → 0 is exact for any

left R-module F .

Proof. We will only prove the equivalence of (a) and (b). Notice that each
finitely presented module F is isomorphic to Rn/G for some n < ω and some
G ⊆ Rn generated by the elements ri =

∑
j<n 1j .rji (i < m, rij ∈ R), where

(1j | j < n) is the canonical basis of Rn. Denote by ρ the canonical projection of
Rn onto Rn/G. Then, for each R-homomorphism f ∈ HomR(Rn/G,B/A), we have
fρ(1j) = πb′j for some b′j ∈ B (j < n) with π(

∑
j<n b

′
j .rji) = 0 for each i < m. The

exactness of E then gives

(1)
∑
j<n

b′j .rji = a′i for some a′i ∈ A.

Assume (a). Consider a system (S) as in (b) and define F = Rn/G as above.
If (bj | j < n) are solutions of (S) in B, we can define f ∈ HomR(F,B/A) by
fρ(1j) = πbj (this is possible, because π � A = 0). Then (a) yields g ∈ HomR(F,B),
such that πg = f . Define cj = bj − gρ(1j) (j < n). Then π(cj) = 0, so cj ∈ A, and
also

∑
j<n cj .rji = ai for all i < m.

Assume (b). Let F = Rn/G be a finitely presented module and consider f ∈
HomR(F,B/A). The equality (1) above and (b) yield the existence of cj ∈ A
(j < n) with

∑
j<n cj .rji = a′i (i < m). Hence we can define g ∈ HomR(F,B) by

gρ(1j) = b′j − cj . Then πgρ(1j) = π(b′j) = fρ(1j), so πg = f , and (a) holds.

We will also need the following elementary properties of purity in Mod–R:

Lemma 8.3. Let λ ≥ |R|+ ℵ0.

(a) Let M be a module and X a subset of M with |X| ≤ λ. Then there is a
pure submodule N ⊆∗ M , such that X ⊆ N and |N | ≤ λ.

(b) Assume C ⊆ B ⊆ A, C ⊆∗ A and B/C ⊆∗ A/C. Then B ⊆∗ A.
(c) If A ⊆∗ B and B ⊆∗ C, then A ⊆∗ C.
(d) Assume A0 ⊆ · · · ⊆ Aα ⊆ Aα+1 ⊆ · · · is a chain of pure submodules of M .

Then
⋃
αAα is a pure submodule of M .
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Proof. (a) We apply the characterization (b) from Lemma 8.2 to define N =⋃
i<ω Ni, where N0 is the submodule generated by X, and Ni+1 is the submodule

generated by solutions in M of all the R-linear equations with right-hand side in
Ni. Since λ ≥ |R|+ℵ0 and |X| ≤ λ, we can assume that |Ni+1| ≤ λ, and (a) easily
follows.

(b) follows directly from Definition 8.1, since the canonical projection πB : A→
A/B is a composition of two canonical projections which are pure epimorphisms
by assumption: πB = πB/CπC .

(c) and (d) follow by Lemma 8.2 (b).

The submodule N constructed in part (a) is called the purification of the subset
X in M .

Recall that a module M is flat, iff Tor1
R(M,F ) = 0 for each left R-module F .

Let F0 denote the class of all flat modules. By the Ext-Tor relations, F0 = ⊥D,
where D is the class of all duals of all left R-modules (i.e., D = {HomZ(F,Q/Z) |
F ∈ R–Mod}).

So there is a cotorsion pair (F0, C) in Mod–R. The modules in the class C are
called cotorsion.

We now recall a relation between purity and flatness:

Lemma 8.4. Let R be a ring. Let E be the short exact sequence

0→ A
⊆−→ B −→ C → 0

in Mod–R. Assume B is a flat module.
Then E is pure, iff C is a flat module. In this case, also A is flat.

Proof. Assume E is pure-exact. Let F ∈ R–Mod. Applying − ⊗R F to E we
obtain a long exact sequence

· · · → 0 = Tor1
R(B,F )→ Tor1

R(C,F )→ A⊗R F → B ⊗R F → C ⊗R F → 0.

Condition (d) of Lemma 8.2 says that the map A ⊗R F → B ⊗R F is monic, so
Tor1

R(C,F ) = 0. Thus, C is flat. Moreover, the long exact sequence for Tor gives
0 = Tor2

R(C,F )→ Tor1
R(A,F )→ Tor1

R(B,F ) = 0, hence also A is a flat module.
Conversely, if C is flat, then for each F ∈ R–Mod we have the short exact

sequence Tor1
R(C,F ) = 0 → A ⊗R F → B ⊗R F → C ⊗R F → 0, whence E is

pure-exact by condition (d) of Lemma 8.2.

Now, we can show that the class F0 of all flat modules is deconstructible:

Lemma 8.5. Let λ ≥ |R|+ ℵ0. Let M be a flat module. Then M is F≤λ0 -filtered.

Proof. By induction, we will construct a F≤λ0 -filtration (Mα | α ≤ σ) of M
which will also be a chain of pure (and hence flat) submodules of M , as follows:
M0 = 0. Assume Mα ⊆∗ M is defined and there exists x ∈M \Mα. By Lemma

8.4, M/Mα is flat. By Lemma 8.3(a), there is a submodule Mα (Mα+1 ⊆M such
that x+Mα ∈Mα+1/Mα, |Mα+1/Mα| ≤ λ, and Mα+1/Mα ⊆∗ M/Mα. By Lemma
8.3(b), Mα+1 ⊆∗ M .

If α is a limit ordinal, we let Mα =
⋃
β<αMβ . Then Mα ⊆∗ M by Lemma

8.3(d).
Since the chain constructed above is strictly increasing, there is a σ such that

Mσ = M , whence (Mα | α ≤ σ) is a F≤λ0 -filtration of M .

Theorem 8.6. For any ring R, (F0, C) is a complete cotorsion pair in Mod–R.

Proof. This follows by Lemma 8.5 and Theorem 6.1.
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Remark 8.7. For n ≥ 0, denote by Fn the class of all modules of flat dimension
≤ n. Then (Fn,F⊥n ) is a cotorsion pair, and it is complete by Remark 8.8 concerning
modules of finite resolution dimensions.

9. Minimal approximations, FCC, and the Enochs problem

We have already seen in Section 7 that all cotorsion pairs generated by a set
are complete. In particular, so are the cotorsion pairs (⊥In, In), (Pn,P⊥n ) and
(Fn,F⊥n ) for each n ≥ 0.

In some cases, minimal approximations exist, that is, the cotorsion pairs are
perfect in the sense of the following definition:

Definition 9.1. Let R be a ring and C = (A,B) be a cotorsion pair.

(i) C is called perfect, provided that A is a covering class and B is an enveloping
class.

(ii) C is called closed, provided that A = lim−→A, that is, the class A is closed
under forming direct limits in Mod–R.

The term perfect comes from the classical result of Bass characterizing right
perfect rings by the property that the cotorsion pair (P0,Mod–R) is perfect.

By the Wakamatsu Lemma, any perfect cotorsion pair is complete. The con-
verse fails in general: for example, the pair (P0,Mod–R) is complete for any (not
necessarily right perfect) ring.

In order to prove the existence of minimal approximations, we will use the fol-
lowing remarkable result by Enochs [22] (see also [45, §2.2]):

Theorem 9.2. Let R be a ring and M be a module. Let C be a class of modules
closed under direct limits.

(a) Assume moreover that C is closed under extensions, and that M has a monic
C⊥-preenvelope ν with Coker ν ∈ C. Then M has a C⊥-envelope.

(b) Assume that M has a C-precover. Then M has a C-cover.

Before proving this theorem, we list some of its its immediate corollaries:

Corollary 9.3. Let R be a ring and C = (A,B) be a complete cotorsion pair. If C
is closed, then C is perfect.

Proof. This is immediate from Theorem 9.2 for C = A.

Corollary 9.3 and Theorem 8.6 yield the following celebrated result from [13]:

Corollary 9.4 (The Flat Cover Conjecture (FCC)). Let R be a ring and C0 =
(F0, C) be the cotorsion pair generated by the class of all flat modules. Then C0 is
perfect.

Similarly, all the cotorsion pairs Cn = (Fn, (Fn)⊥) (n ≥ 0) are perfect (see
Remark 8.7).

Proof. In order to prove part (a) of Theorem 9.2, we introduce more notation:

We will call an exact sequence 0 → M −→ F −→ C → 0 with C ∈ C an Ext-
generator, provided that for each exact sequence 0 → M −→ F ′ −→ C ′ → 0 with
C ′ ∈ C there exist f ∈ HomR(F ′, F ) and g ∈ HomR(C ′, C), such that the diagram
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0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0∥∥∥ f

y g

y
0 −−−−→ M −−−−→ F −−−−→ C −−−−→ 0

is commutative. By assumption, there exists an Ext-generator with the middle
term F ∈ C⊥. The proof of part (a) is divided into three steps/auxiliary lemmas:

Lemma 9.5. Assume 0 → M −→ F −→ C → 0 is an Ext-generator. Then there
exist an Ext-generator 0→M −→ F ′ −→ C ′ → 0 and a commutative diagram

0 −−−−→ M −−−−→ F −−−−→ C −−−−→ 0∥∥∥ f

y g

y
0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0,

such that Ker(f) = Ker(f ′f) in any commutative diagram whose rows are Ext-
generators:

0 −−−−→ M −−−−→ F −−−−→ C −−−−→ 0∥∥∥ f

y g

y
0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0∥∥∥ f ′

y g′
y

0 −−−−→ M −−−−→ F ′′ −−−−→ C ′′ −−−−→ 0.

Proof. Assume that the assertion does not hold. By induction, we will construct
a direct system of Ext-generators indexed by ordinals as follows:
First let the second row be the same as the first one, that is, put F ′ = F0 = F ,
C ′ = C0 = C, f = idF and g = idC . Then there exist F1 = F ′′, C1 = C ′′, f10 = f ′

and g10 = g′, such that the diagram above commutes, its rows are Ext-generators
and Ker f10 ) Ker f = 0.

Assume that the Ext-generator 0 → M −→ Fα −→ Cα → 0 is defined together
with fαβ ∈ HomR(Fβ , Fα) and gαβ ∈ HomR(Cβ , Cα) for all β ≤ α. Then there
exist Fα+1, Cα+1 ∈ C, fα+1,α and gα+1,α, such that the diagram

0 −−−−→ M −−−−→ Fα −−−−→ Cα −−−−→ 0∥∥∥ fα+1,α

y gα+1,α

y
0 −−−−→ M −−−−→ Fα+1 −−−−→ Cα+1 −−−−→ 0

commutes, its rows are Ext-generators and Ker fα+1,0 ) Ker fα0, where fα+1,β =
fα+1,αfαβ and gα+1,β = gα+1,αgαβ for all β ≤ α.

If α is a limit ordinal, put Fα = lim−→β<α
Fβ and Cα = lim−→β<α

Cβ . Consider

the direct limit 0 → M −→ Fα −→ Cα → 0 of the Ext-generators 0 → M −→
Fβ −→ Cβ → 0, (β < α). Since C is closed under direct limits, we have Cα ∈ C.
Since 0 → M −→ Fβ −→ Cβ → 0 is an Ext-generator for (some) β < α, also
0→M −→ Fα −→ Cα → 0 is an Ext-generator.

Put fαβ = lim−→β≤β′<α fβ
′β and gαβ = lim−→β≤β′<α gβ

′β for all β < α. Then

Ker(fα0) ⊇ Ker(fβ0), and hence Ker(fα0) ) Ker(fβ0), for each β < α.
By induction, for each ordinal α we obtain a strictly increasing chain (Ker fβ0 |

β < α), consisting of submodules of F , a contradiction.
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Lemma 9.6. Assume 0 → M −→ F −→ C → 0 is an Ext-generator. Then there
exist an Ext-generator 0→M −→ F ′ −→ C ′ → 0 and a commutative diagram

0 −−−−→ M −−−−→ F −−−−→ C −−−−→ 0∥∥∥ f

y g

y
0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0,

such that Ker(f ′) = 0 in any commutative diagram whose rows are Ext-generators:

0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0∥∥∥ f ′
y g′

y
0 −−−−→ M −−−−→ F ′′ −−−−→ C ′′ −−−−→ 0.

Proof. By induction on n < ω, we infer from Lemma 9.5 that there is a count-
able direct system D of Ext-generators 0 → M −→ Fn −→ Cn → 0 with homomor-
phisms fn+1,n ∈ HomR(Fn, Fn+1), gn+1,n ∈ HomR(Cn, Cn+1), such that the 0-th
term of D is the given Ext-generator 0→M −→ F −→ C → 0,

0 −−−−→ M −−−−→ Fn −−−−→ Cn −−−−→ 0∥∥∥ fn+1,n

y gn+1,n

y
0 −−−−→ M −−−−→ Fn+1 −−−−→ Cn+1 −−−−→ 0

is commutative, and for each commutative diagram whose rows are Ext-generators

0 −−−−→ M −−−−→ Fn+1 −−−−→ Cn+1 −−−−→ 0∥∥∥ f̄

y ḡ

y
0 −−−−→ M −−−−→ F̄ −−−−→ C̄ −−−−→ 0

we have Ker(fn+1,n) = Ker(f̄fn+1,n).
Consider the direct limit 0 → M −→ F ′ −→ C ′ → 0 of D, so F ′ = lim−→n<ω

Fn
and C ′ = lim−→n<ω

Cn. Since C is closed under direct limits, we have C ′ ∈ C, and

0→M −→ F ′ −→ C ′ → 0 is an Ext-generator.
This Ext-generator has the required injectivity property. Indeed, let fn : Fn →

F ′ and gn : Cn → C ′ (n < ω) denote the canonical maps. Then for f = f0 and
g = g0, the first diagram in 9.6 is commutative. If f ′(x) = 0 for some 0 6= x ∈ F ′
in the second diagram, then there exist n < ω and xn ∈ Fn such that x = fn(xn)
and f ′fn+1fn+1,n(xn) = 0. By the inductive construction, fn+1,n(xn) = 0, whence
x = fn(xn) = fn+1fn+1,n(xn) = 0, a contradiction.

Lemma 9.7. Let 0 → M
ν−→ F ′

π−→ C ′ → 0 be the Ext-generator constructed in
Lemma 9.6. Then ν : M → F ′ is a C⊥-envelope of M .

Proof. First we prove that in each commutative diagram

0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0∥∥∥ f ′
y g′

y
0 −−−−→ M −−−−→ F ′ −−−−→ C ′ −−−−→ 0

f ′ is an automorphism.
Assume this is not true. By induction we construct a direct system of Ext-gen-

erators, 0 → M −→ Fα −→ Cα → 0, indexed by ordinals, with injective, but not
surjective, homomorphisms fαβ ∈ HomR(Fβ , Fα) (β < α). In view of Lemma 9.6,
we take

0→M −→ Fα −→ Cα → 0 = 0→M
ν−→ F ′

π−→ C ′ → 0
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in case α = 0 or α non-limit and Fα = lim−→Fβ and Cα = lim−→Cβ , if α is a limit

ordinal. Then for each non-limit ordinal α (Im fαβ | β non-limit, β < α) is a
strictly increasing sequence of submodules of F ′, a contradiction.

It remains to prove that F ′ ∈ C⊥. Consider an exact sequence 0→ F ′
µ−→ X −→

C → 0, where C ∈ C. We will prove that this sequence splits.
Consider the pushout of π and µ:

0 0y y
0 −−−−→ M

ν−−−−→ F ′
π−−−−→ C ′ −−−−→ 0∥∥∥ µ

y y
0 −−−−→ M −−−−→ X −−−−→ P −−−−→ 0y y

C Cy y
0 0.

Since C is closed under extensions, we have P ∈ C. Since 0→ M
ν−→ F ′

π−→ C ′ → 0
is an Ext-generator, we also have a commutative diagram

0 −−−−→ M −−−−→ X −−−−→ P −−−−→ 0∥∥∥ µ′
y y

0 −−−−→ M
ν−−−−→ F ′

π−−−−→ C ′ −−−−→ 0.

By the first part of the proof, µ′µ is an automorphism of F ′. It follows that

0→ F ′
µ−→ X −→ C → 0 splits.

This finishes the proof of part (a) of Theorem 9.2.

The proof of part (b) is analogous, so we just state the analogues of the three
lemmas above for the dual settings, and only sketch their proofs:

Lemma 9.8. For any u ∈ HomR(E,M) with E ∈ C, there exist a C-precover of
M , v ∈ HomR(F,M), and f ∈ HomR(E,F ) such that

(i) vf = u.
(ii) If w ∈ HomR(G,M) is any C-precover of M , and g ∈ HomR(F,G) satisfies

wg = v, then Ker (gf) = Ker (f).

E
u−−−−→ M

f

y ∥∥∥
F

v−−−−→ M

g

y ∥∥∥
G

w−−−−→ M

Proof. If the claim does not hold, we can proceed by transfinite induction so
that the kernels of the compositions of the left vertical maps form a strictly in-
creasing continuous chain of submodules of E indexed by ordinals (in limit steps,
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we just take direct limits, which is possible because C is closed under direct limits).
This is a contradiction, since each such chain must have cardinality ≤ |E|.

Lemma 9.9. There exists a C-precover u ∈ HomR(E,M) such that, if v ∈ HomR(F,M)
is any C-precover of M and f ∈ HomR(E,F ) is such that vf = u, then f is injec-
tive.

E
u−−−−→ M

f

y ∥∥∥
F

v−−−−→ M

Proof. Starting with any C-precover of M , we can iteratively use Lemma 9.8
and build a chain of C-precovers un ∈ HomR(En,M) and gn ∈ HomR(En, En+1)
with un = un+1gn (n < ω). Then u = lim−→n<ω

un ∈ HomR(lim−→n<ω
En,M) will be

the desired C-precover of M .

Lemma 9.10. The C-precover u of M constructed in Lemma 9.9 is a C-cover.

E
u−−−−→ M

f

y ∥∥∥
E

u−−−−→ M

Proof. Assume there exists f ∈ EndE such that fu = u and f is not an
isomorphism. Then f is monic by Lemma 9.9. By transfinite induction on α, we
can construct a strictly increasing chain of length α whose non-limit terms are
copies of E (in successors of limit steps, we factorize the direct limit of the chain,
which is a module in C by assumption, via u using the fact that u is a C-precover).
This leads to a contradiction, since each such chain has cardinality ≤ |E|.

This finishes the proof of part (b) of Theorem 9.2.

Theorem 9.2(b) remains true in an arbitrary Grothendieck category. Moreover,
the following result was proved in [21]:

Theorem 9.11. C is a covering class, whenever C is a class of objects in a
Grothendieck category, such that C is closed under coproducts and directed colimits
and there is a set of objects S ⊆ C, such that each object of C is a directed colimit
of objects from S.

Assuming the large cardinal principle VP (Vopěnka’s Principle), any class of
objects closed under coproducts and directed colimits is covering.

Remark 9.12. We are mainly interested in approximations by classes occurring in
(not necessarily closed) cotorsion pairs, so we deal a priori with classes of modules
closed under extensions. However, Theorems 9.2(b) and 9.11 apply also to non-
extension closed classes of modules, such as the class of all Γ-separated modules
over Dedekind-like rings studied by Klingler and Levy in [30]. For more details on
this application of approximation theory, see [31].

We finish this section by listing basic closure properties of covering and envelop-
ing classes:

Lemma 9.13. Let R be a ring and C be a class of modules closed under isomor-
phisms. Let C ∈ C and D ⊕ E = C.
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(a) Assume that D has a C-cover. Then D ∈ C.
So if C is covering, then C is closed under direct summands.

(b) Assume that D has a C-envelope. Then D ∈ C.
So if C is enveloping, then C is closed under direct summands.

Proof. We will only prove the claim of (a), the proof of (b) is dual.
Assume there exists a C-cover of D, f ′ ∈ HomR(C ′, D). Let ν ∈ HomR(D,C)

be the split inclusion of D into C and π ∈ HomR(C,D) the split projection onto D
corresponding to the decomposition C = D ⊕ E. Then πν = idD.

By the precovering property of f ′, there exists g ∈ HomR(C,C ′) such that
π = f ′g. In particular, f ′ is surjective.

Let h = νf ′. Then f ′gh = πνf ′ = f ′. Since f ′ is a C-cover, gh is an automor-
phism of C ′. In particular, h is a monomorphism, and so is f ′.

Thus f ′ is an isomorphism, and D ∈ C.

Lemma 9.14. Let R be a ring and C be a class of modules closed under isomor-
phisms and direct summands.

(a) Assume that C is precovering. Then C is closed under direct sums.
(b) Assume that C is preenveloping. Then C is closed under direct products.

Proof. We will only prove the claim of (b), the proof of (a) is dual.
Assume C is preenveloping and let (Ei | i ∈ I) be a family of modules in C. Let

f : P → C be a C-preenvelope of the module P =
∏
i∈I Ei. Denote by πi : P → Ei

the canonical projection (i ∈ I).
Then there exist homomorphisms gi : C → Ei such that gif = πi for each i ∈ I.

Define a homomorphism g : C → P by πig(c) = gi(c) for all c ∈ C and i ∈ I. Then
gf(x) = (gi(f(x)) | i ∈ I) = x for all x ∈ P . Thus P is isomorphic to a direct
summand in C, and P ∈ C by our assumption on the class C. �

Corollary 9.15. Let R be a ring and C be a class of modules closed under isomor-
phisms.

(a) Assume that C is covering. Then C is closed under direct summands and
direct sums.

(b) Assume that C is enveloping. Then C is closed under direct summands and
direct products.

Whether covering classes with additional properties have to take a particular
form may depend on extra set-theoretic assumptions. For example, in [12], it was
proved that the statement “each covering class of modules closed under homomor-
phic images coincides with the class of all modules generated by a suitable single
module” is equivalent to a large cardinal principle known as Vopěnka’s Principle.

The question whether the converse of Corollary 9.3 holds true is a major open
problem of the approximation theory, due to Enochs:

Problem 9.16. 1. Is any perfect cotorsion pair closed?

A positive answer is known for various particular cases, notably for the case of
tilting cotorsion pairs, and more in general, of the cotorsion pairs (A,B) such that
the class B is closed under direct limits, see [4, Corollary 5.5] (and also [11, Sect.
7]). A still more general result has recently been proven in [9], providing a positive
answer for all cotorsion pairs generated by a class of ≤ ℵn-presented modules for a
fixed n < ω.

2. (The Enochs Problem) Is any covering class of modules C closed under direct
limits?
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For C = AddM (= the class of all direct summands of arbitrary direct sums of
copies of a module M), a positive answer has been obtained in [41] for two cases: (1)
when there exists an n < ω such that M is a direct sum of ≤ ℵn-generated modules,
and (2) for an arbitrary module M , but under the extra set-theoretic assumption
of the existence of a proper class of cardinals κ such that each stationary set in κ+

contains a non-reflecting stationary subset. The latter is known to hold, e.g., under
Gödel’s Axiom of Constructibility.

In the case when C = Filt(S) for a set of modules S, consistency of a positive
answer has recently been proven in [9].

10. Tilting modules

Our next goal is to study relations between the approximation theory and tilting.
We start by introducing the infinitely generated version of the classic notion of

a tilting module, and of the associated tilting classes, going back to [15] and [3].
We will also briefly sketch their role in generalizing the classical Morita theory of
equivalences.

Definition 10.1. Let R be a ring. A module T is tilting, provided that

(T1) T has finite projective dimension (i.e., T ∈ P),
(T2) ExtiR(T, T (κ)) = 0 for all 1 ≤ i < ω and all cardinals κ, and
(T3) There are r ≥ 0 and a long exact sequence 0 → R → T0 → · · · → Tr → 0,

where Ti ∈ Add(T ) for all i ≤ r.
If n < ω and T is tilting of projective dimension ≤ n, then T is called n-tilting.
The class T⊥∞ is called the (right) n-tilting class induced by T . Clearly,

(⊥(T⊥∞), T⊥∞)

is a hereditary cotorsion pair, called the n-tilting cotorsion pair induced by T . The
class ⊥(T⊥∞) is the left n-tilting class induced by T .
If T and T ′ are tilting modules, then T is said to be equivalent to T ′, provided that
the induced tilting classes coincide, that is, T⊥∞ = (T ′)⊥∞ .
We will call a module M is strongly finitely presented (strongly countably presented),
in case M has a projective resolution consisting of finitely (countably) generated
modules. A strongly finitely presented tilting module T is called classical. A tilting
module T is called good, if T satisfies the stronger condition (T3′) obtained from
(T3) by replacing the class Add(T ) with add(T ). This condition is not particularly
restrictive, because each tilting module is equivalent to a good tilting module (see
Remark 11.7 below).

It is easy to see that 0-tilting modules are nothing else than the (not necessarily
finitely generated) projective generators. Hence classical 0-tilting modules coincide
with the progenerators.

Progenerators play a key role in the Morita theory of equivalence. This theory
extends to an arbitrary n ≥ 0: for any classical tilting module T and any i ≤
n = proj dimT there is a tilting category equivalence [32] between the categories⋂
j 6=i Ker ExtjR(T,−) and

⋂
j 6=i Ker TorSj (−, T ) (where S = End(TR)):

(2)
⋂
j 6=i

Ker ExtjR(T,−)
ExtiR(T,−)

�
TorSi (−,T )

⋂
j 6=i

Ker TorSj (−, T ) .

Notice that for n = 0, the tilting category equivalence is just the Morita equivalence
between Mod–R and Mod–S.
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Remark 10.2. One can proceed and view the tilting equivalence as an instance of
an equivalence between the (triangulated) bounded derived categories Db(mod–R)
and Db(mod–S) of the rings R and S, respectively, [34]. Further, one can extend the
equivalence (2) to the case when T is a good tilting module; however, the right hand
classes then have to be restricted to the class F = {X ∈ D(S) | HomD(S)(E , X) = 0}
where E is the kernel of the total left derived functor L(−⊗S T ). Again, this is just
an instance of the equivalence of triangulated categories

D(R)
L(−⊗ST )

�
R(HomR(T,−))

E⊥,

where D(R) is the (unbounded) derived category of the ring R and R(HomR(T,−))
is the total right derived functor of HomR(T,−). We refer to [8] for more details,
and to [33] and [28] for further recent generalizations involving contramodules.

For n ≥ 1, there is a rich supply of non-projective finitely generated n-tilting
modules over artin algebras (cf. [5, Chap. VI]), but the situation is completely
different for commutative rings. The following was first observed in the particular
case of 1-tilting modules in [14].

Lemma 10.3. Let R be a commutative ring and T be a strongly finitely presented
module.

(a) Assume that 1 ≤ n = proj dimT <∞. Then ExtnR(T, T ) 6= 0.
(b) If T is classical tilting, then T is projective.

Proof. (a) By assumption, there exists a projective resolution R of T consisting
of finitely generated modules. Let M = Ω(n−1)(T ) be the (n− 1)th syzygy of T in
R. Then M is a finitely presented module of projective dimension 1, so there is a
maximal ideal m of R, such that proj dimR(m)M(m) = 1. Moreover, M(m) is the
(n−1)th syzygy of T(m) in Rm, where Rm is the free resolution of the R(m)-module
T(m) obtained by applying the localisation functor −⊗R R(m) to R.

Assume ExtnR(T, T ) = 0. Then Ext1
R(M,T ) ∼= ExtnR(T, T ) = 0, so localising,

we obtain Ext1
R(m)

(M(m), T(m)) = 0. Since 0 6= T(m) is finitely generated, T(m)

contains a maximal R(m)-submodule, and because M(m) has projective dimension

1, also Ext1
R(m)

(M(m), R(m)/m(m)) = 0.

Since R(m) is a local ring, the finitely presented R(m)-module M(m) has a pro-
jective (= free) cover F whose kernel K is finitely generated. As F/K ∼= M(m) has
projective dimension 1, certainly K 6= 0. Then K contains a maximal submodule L,
so K/L ∼= R(m)/m(m) since R(m) is local. By the above Ext1

R(m)
(M(m),K/L) = 0,

whence the projection π : K → K/L can be extended to σ ∈ HomR(m)
(F,K/L).

Then Ker σ is a maximal submodule of F , so K ⊆ Rad(F ) ⊆ Ker σ, and π = σ �
K = 0, a contradiction.

(b) By part (a).

In order to introduce interesting examples of tilting modules and their appli-
cations, we will concentrate on the setting of Iwanaga-Gorenstein rings (which
generalizes n-Gorenstein rings from classic commutative algebra).

Example 10.4. Let R be an Iwanaga-Gorenstein ring, that is, a left and right
noetherian ring with finite injective dimension on either side. Then the left and
the right injective dimensions of R coincide with some n < ω, and R is called
n-Iwanaga-Gorenstein.

If R is n-Iwanaga-Gorenstein, then all (left or right) R-modules of finite injective
(projective, flat) dimension have injective (projective, flat) dimension ≤ n, so in
Mod–R, we have P = Pn = I = In = Fn (for more detail, see [24, §9.1]).
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0-Iwanaga-Gorenstein rings are also called QF-rings, and they include all group
algebras of finite groups over arbitrary fields. Also, each Dedekind domain is easily
seen to be a 1-Iwanaga-Gorenstein ring.

We will stop at the 1-dimensional commutative case for a moment:

Example 10.5 (Bass tilting modules). 1-Gor Let R be a commutative 1-Iwanaga-
Gorenstein ring (that is, a commutative noetherian ring with inj dimR ≤ 1). Let
P0 and P1 denote the sets of all prime ideals of height 0 and 1, respectively. By a
classical result of Bass, the minimal injective coresolution of R has the form

0→ R→ G
π→
⊕
p∈P1

E(R/p)→ 0,

where G =
⊕

q∈P0
E(R/q).

Consider a subset P ⊆ P1. Put RP = π−1(
⊕

p∈P E(R/p)) and TP = RP ⊕⊕
p∈P E(R/p). We will show that TP is a 1-tilting module (called the Bass tilting

module).
First we have RP /R ∼=

⊕
p∈P E(R/p) and G/RP ∼=

⊕
p∈P1\P E(R/p). Since

both RP and RP /R have injective (equivalently, projective) dimension ≤ 1, so does
TP . As HomR(E(R/p), G/RP ) = 0, we see that Ext1

R(E(R/p), RP ) = 0 for all

p ∈ P , and similarly Ext1
R(E(R/p), R

(κ)
P ) = 0 for all p ∈ P and κ > 0.

Finally, the exact sequence 0→ R −→ RP −→
⊕

p∈P E(R/p)→ 0 yields condition

(T3) for TP , and also the equality Ext1
R(RP , R

(κ)
P ) = 0 for each cardinal κ, and

thus condition (T2) for TP .
The 1-tilting class induced by TP is {M | Ext1

R(E(R/p),M) = 0 for all p ∈ P}.
This class equals {M | Ext1

R(R/p,M) = 0 for all p ∈ P}, in case R is hereditary
(in particular, when R is a Dedekind domain).

Remark 10.6. In fact, each tilting module over a commutative 1-Iwanaga-Gorenstein
ring is equivalent to a Bass tilting module TP for a unique subset P ⊆ P1, so tilting
modules are parametrized by the subsets of P1, cf. [43].

We will finish this section by a simple example of an infinitely generated n-tilting
module over an n-Iwanaga-Gorenstein ring which will come in handy later on, for
studying finitistic dimensions of Iwanaga-Gorenstein rings.

Example 10.7. Let n ≥ 0 and R be an n-Iwanaga-Gorenstein ring. Let 0→ R→
I0 → · · · → In → 0 be the minimal injective coresolution of R.

Then T =
⊕

i≤n Ii is an n-tilting module: Indeed, since T is injective, T has

projective dimension ≤ n, so condition (T1) of Definition 10.1 is satisfied. Since R is
noetherian, T (κ) is also injective, so (T2) holds. The minimal injective coresolution
above yields condition (T3).

11. Tilting and approximations

We start with recalling several definitions:

Definition 11.1. Let R be a ring, C be a class of modules and M ∈ Mod–R.

(i) M is called C-resolved, if there is a C-resolution of M , that is, a long exact
sequence · · · → Cn → · · · → C0 →M → 0, such that Cn ∈ C for all n < ω.

Assume M is C-resolved. If M has a C-resolution, such that Ci = 0 for
all i ≥ n+ 1, then the least such n (among all such C-resolutions) is called
the C-resolution dimension of M . Otherwise M is said to have C-resolution
dimension ∞.
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(ii) Dually, M is called C-coresolved, if there is a C-coresolution of M , that is,
a long exact sequence 0 → M → C0 → · · · → Cn → . . . , such that Cn ∈ C
for all n ≤ ω.

Assume M is C-coresolved. If M has a C-coresolution, such that Ci = 0
for all i ≥ n + 1, then the least such n (among all such C-coresolutions)
is called the C-coresolution dimension of M . Otherwise M is said to have
C-coresolution dimension ∞.

Clearly, any module M is P0-resolved, and the P0-resolution dimension of M
is exactly its projective dimension. Similarly, any module is I0-coresolved, the
I0-coresolution dimension being the injective dimension.

Definition 11.2. Let R be a ring and C be a class of modules.

(i) C is resolving, provided that C is closed under extensions, P0 ⊆ C and
A ∈ C, whenever 0 → A −→ B −→ C → 0 is a short exact sequence, such
that B,C ∈ C.

(ii) C is coresolving, provided that C is closed under extensions, I0 ⊆ C and
C ∈ C, whenever 0 → A −→ B −→ C → 0 is a short exact sequence, such
that A,B ∈ C.

Hereditary cotorsion pairs connect resolving and coresolving classes of modules:

Lemma 11.3. Let R be a ring and C = (A,B) be a cotorsion pair. Then the
following assertions are equivalent:

(a) A is resolving;
(b) B is coresolving;
(c) The cotorsion pair C is hereditary.

Proof. (a) implies (c) and (b): let 0 → C −→ P −→ A → 0 be an exact se-
quence with A ∈ A and P ∈ P0. By the premise, C ∈ A. Let B ∈ B. Apply-
ing HomR(−, B), we get the exact sequence 0 = Ext1

R(C,B) → Ext2
R(A,B) →

Ext2
R(P,B) = 0. By induction we get (c).

In order to prove (b), we take an exact sequence 0 → E −→ F −→ G → 0 with
E,F ∈ B. Consider A ∈ A. Applying HomR(A,−), we get the exact sequence
0 = Ext1

R(A,F )→ Ext1
R(A,G)→ Ext2

R(A,E) = 0. This proves that G ∈ A⊥ = B.
(b) implies (c) by a dual argument.
(c) implies (a): let 0 → E −→ D −→ C → 0 be an exact sequence of modules,

such that C,D ∈ A. Take B ∈ B and apply HomR(−, B). Then the sequence
0 = Ext1

R(D,B)→ Ext1
R(E,B)→ Ext2

R(C,B) = 0 is exact, whence E ∈ A.

Note that any resolving class is syzygy closed; any coresolving class is cosyzygy
closed. Also, if C is any class of modules, then the class ⊥∞C is resolving, and C⊥∞
coresolving.

Assume that C is syzygy closed. Then C⊥ = C⊥∞ is coresolving and ⊥(C⊥) =
⊥∞(C⊥∞) is resolving, and the cotorsion pair generated by C is hereditary. Dually,
if C is cosyzygy closed, then ⊥C = ⊥∞C is resolving and (⊥C)⊥ = (⊥∞C)⊥∞ is
coresolving, and The cotorsion pair cogenerated by C is hereditary.

Now we can continue with the basic properties of tilting cotorsion pairs:

Lemma 11.4. Let R be a ring and T be an n-tilting module. Denote by T = (A,B)
the n-tilting cotorsion pair induced by T .

(a) Let 0 → Pn → · · · → P0 → T → 0 be a projective resolution of T with the
syzygy modules S0 = T, . . . , Sn = Pn. Let S =

⊕
i≤n Si. Then T is the

cotorsion pair generated by S. In particular, T is complete.
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(b) A ⊆ Pn and B ⊆ Gen(T ), where Gen(T ) denotes the class of all homomor-
phic images of (possibly infinite) direct sums of copies of T .

Each of the short exact sequences forming the long exact sequence in
(T3) is given by a special B-preenvelope of an element of A. The length r
in (T3) can be taken ≤ n.

(c) The kernel of T equals Add(T ).
(d) Let m ≥ 0 and M ∈ B ∩ Pm. Then M has Add(T )-resolution dimension
≤ m.

Proof. (a) We have T⊥∞ =
⋂
i≤n S

⊥
i = S⊥.

(b) By assumption, S ∈ Pn, so A ⊆ Pn.
Let M ∈ B. Consider the long exact sequence from (T3):

0→ R
ϕ→ T0

ϕ0→ T1
ϕ1→ . . .

ϕr−1→ Tr
ϕr→ 0.

Since Ti ∈ A for all i ≤ r, and A is resolving (because T is hereditary, see Lemma
11.3), we have Ki = Ker(ϕi) ∈ A. In particular, Ki ∈ Pn. Let f : R(λ) →M be an

epimorphism and put g = ϕ(λ). Consider the exact sequence 0 → R(λ) g−→ T
(λ)
0 −→

K
(λ)
1 → 0, and form the pushout of f and g:

0 −−−−→ R(λ) g−−−−→ T
(λ)
0 −−−−→ K

(λ)
1 −−−−→ 0

f

y h

y ∥∥∥
0 −−−−→ M −−−−→ G −−−−→ K

(λ)
1 −−−−→ 0y y

0 0.

Since M ∈ B, the second row splits, so M is a direct summand in G. Since
h is surjective, G ∈ Gen(T0) ⊆ Gen(T ), and M ∈ Gen(T ). This proves that
B ⊆ Gen(T ).

By (T2), Ti ∈ Add(T ) ⊆ B for all i ≤ r. So the embedding Ki ↪→ Ti is a special
B-preenvelope of Ki ∈ A and proj dimKi ≤ n for each i ≤ r. If n < r, then the
short exact sequence 0 → Kn −→ Tn −→ Kn+1 → 0 splits, since Ext1

R(Kn+1,Kn) ∼=
. . . ∼= ExtnR(Kn+1,K1) ∼= Extn+1

R (Kn+1,K0) = 0. So we can assume r ≤ n in (T3).
(c) By (T2), Add(T ) ⊆ A ∩ B.

Conversely, let M ∈ A ∩ B. By part (b), M ∈ Gen(T ). So the canonical map
ϕ ∈ HomR(T (HomR(T,M)),M) is surjective, and there is a short exact sequence

(3) 0→ L −→ T (HomR(T,M)) ϕ−→M → 0.

Applying HomR(T,−) to (3), we obtain the long exact sequence

0→ HomR(T, L)→ HomR(T, T (HomR(T,M)))
HomR(T,ϕ)→ HomR(T,M)

→ Ext1
R(T, L)→ Ext1

R(T, T (HomR(T,M)))→ Ext1
R(T,M)→ . . .

· · · → ExtiR(T, L)→ ExtiR(T, T (HomR(T,M)))→ ExtiR(T,M)→ . . . .

Since HomR(T, ϕ) is surjective, Ext1
R(T, L) = 0 by (T2). As ExtiR(T,M) = 0 for

all 0 < i < ω, condition (T2) also implies that L ∈ T⊥∞ = B. Since M ∈ A, (3)
splits, and M ∈ Add(T ).

(d) Let M ∈ B ∩ Pm. An iteration of special A-precovers (of M etc.) gives rise
to a long exact sequence

0→ Km → Em
ψn−−−−→ Em−1

ψm−1−−−−→ . . .
ψ1−−−−→ E0

ψ0−−−−→ M → 0,
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where Ei ∈ Add(T ), Ki = Kerψi ∈ B and ψi induces a special A-precover of
its image for all i ≤ m. By assumption, M ∈ Pm, so Ext1

R(Km−1,Km) ∼= . . . ∼=
ExtmR (K0,Km) ∼= Extm+1

R (M,Km) = 0. It follows that Km−1 ∈ Add(T ), so we can
take Em = Km−1 and Km = 0.

If T is a tilting module, then its projective dimension is the maximum of projec-
tive dimensions of the modules in A = ⊥(T⊥∞). In particular, by Lemma 11.4(b),
equivalent tilting modules have equal projective dimensions.

By Lemma 11.4(c), the kernel of T equals Add(T ). The classes A and B can
be recovered from the kernel simply using the equalities B = (Add(T ))⊥∞ and
A = ⊥B.

There is another way of recovering A and B from the kernel, via Add(T )-
resolutions and Add(T )-coresolutions in the sense of Definition 11.1:

Proposition 11.5. Let R be a ring, T be an n-tilting module and (A,B) the n-
tilting cotorsion pair induced by T .

(a) A equals the class of all Add(T )-coresolved modules of Add(T )-coresolution
dimension ≤ n.

(b) B equals the class of all Add(T )-resolved modules. In particular, B is closed
under direct sums.

Proof. (a) Since A is resolving, M ∈ A for any module M of finite Add(T )-
coresolution dimension.

Conversely, let A ∈ A. An iteration of special B-preenvelopes (of A etc.) yields
a long exact sequence

0→ A→ E0
ψ0−−−−→ E1

ψ1−−−−→ . . .
ψn−1−−−−→ En

ψn−−−−→ Kn+1 → 0,

where Ei ∈ Add(T ) for all i ≤ n and Kn+1 ∈ A. Let Ki = Kerψi (i ≤ n).
By Lemma 11.4(b), Kn+1 ∈ Pn, so Ext1

R(Kn+1,Kn) ∼= . . . ∼= ExtnR(Kn+1,K1) ∼=
Extn+1

R (Kn+1, A) = 0. It follows that Kn+1 ∈ Add(T ), so we can take En = Kn

and Kn+1 = 0.
(b) If M ∈ B, then an Add(T )-resolution is obtained by an iteration of special

A-precovers (of M etc.).
Conversely, assume there exists an Add(T )-resolution B

· · · → En → · · · → E0 → B → 0.

Denote by K0 the kernel of the epimorphism E0 → B, by K1 the kernel of the
epimorphism E1 → K0, etc. Let A ∈ A. Then Ext1

R(A,B) ∼= Ext2
R(A,K0) ∼= . . . ∼=

Extn+1
R (A,Kn−1) = 0 by Lemma 11.4(b), so B ∈ B.

Now we are in a position to give a characterization of tilting classes of modules,
going back to [3]:

Theorem 11.6. Let R be a ring, n < ω and C be a class of modules. Then the
following assertions are equivalent:

(a) C is n-tilting.
(b) C is coresolving, special preenveloping, closed under direct sums and direct

summands and ⊥C ⊆ Pn.

Proof. (a) implies (b): this follows from parts (a) and (b) of Lemma 11.4, and
from Proposition 11.5(b).

(b) implies (a): first, the special C-preenvelope of any injective module splits.
Since C is closed under direct summands and it is coresolving, we have I0 ⊆ C and
C is cosyzygy closed. So ⊥∞C = ⊥C.

The special C-preenvelope of R gives rise to a short exact sequence 0 → K0 −→
T0 −→ K1 → 0, where K0 = R, T0 ∈ C and K1 ∈ ⊥C ⊆ Pn. Since R ∈ ⊥C, we
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have T0 ∈ C ∩ ⊥C. By induction we obtain short exact sequences 0 → Ki −→ Ti −→
Ki+1 → 0 with Ti ∈ C ∩ ⊥C and Ki+1 ∈ ⊥C ⊆ Pn. Since Kn+1 ∈ Pn, the sequence
0 → Kn −→ Tn −→ Kn+1 → 0 splits by dimension shifting. So we can assume that
Kn+1 = 0, and form the long exact sequence (with Ti ∈ C ∩ ⊥C for all i ≤ n)

(4) 0→ R
ϕ0→ T0

ϕ1→ T1
ϕ2→ . . .

ϕn−1→ Tn−1
ϕn→ Tn → 0.

Put T =
⊕

i≤n Ti. We will prove that T is n-tilting. First, T ∈ C ∩ ⊥C ⊆ Pn, so

(T1) holds. Since C is closed under direct sums, T (κ) ∈ C for each cardinal κ, and
(T2) holds. The long exact sequence above gives (T3).

Finally, we will prove that T⊥∞ = C. Since T ∈ ⊥C, clearly T⊥∞ ⊇ C. Con-
versely, let C ∈ T⊥∞ . Consider a special C-preenvelope ψ0 of C, a special C-
preenvelope ψ1 of Cokerϕ0 etc. Since Cokerψn+1 ∈ Pn, dimension shifting shows
that ψn+1 splits. So there is a long exact sequence

0→ C
ψ0→ D0

ψ1→ D1
ψ2→ . . .

ψn−1→ Dn−1
ψn→ Dn → 0

with Di ∈ C ⊆ T⊥∞ for all i < n, and Dn ∈ C ∩ ⊥C. Since C ∈ T⊥∞ and T⊥∞

is coresolving, we get Cokerψi ∈ T⊥∞ for all i ≤ n. It remains to prove that
C ∩ ⊥C ⊆ ⊥(T⊥∞) – then ψn splits and, by induction, ψ0 splits, so C ∈ C.

Let M ∈ C∩⊥C (⊆ T⊥∞∩Pn). By Lemma 11.4(d), there is a long exact sequence

0→ En → · · · → E0
η0→M → 0,

where Ei ∈ Add(T ) for all i ≤ n. By the closure properties of C, Add(T ) ⊆ C ∩⊥C,
and Ker η0 ∈ C. So η0 splits, and M ∈ Add(T ) ⊆ ⊥(T⊥∞).

Remark 11.7. Note that the proof of (b) implies (a) above is constructive: the
tilting module T is obtained as T =

⊕
i≤n Ti, where Ti form the long exact sequence

(4) obtained by an iteration of special C-preenvelopes, starting from a special C-
preenvelope of R, ϕ0 : R → T0, over a special C-preenvelope of the cokernel of ϕ0,
etc. In view of (4), T is a good tilting module.

Moreover, if T ′ is an arbitrary tilting module, then applying the construction
above to the tilting class C = (T ′)⊥∞ , we obtain a good tilting module T which is
equivalent to T ′.

Similarly, we can characterize tilting cotorsion pairs by the closure properties of
their components:

Corollary 11.8. Let n < ω. Let R be a ring and C = (A,B) be a cotorsion pair.
Then the following assertions are equivalent:

(a) C is an n-tilting cotorsion pair.
(b) C is a hereditary and complete cotorsion pair, such that A ⊆ Pn and B is

closed under direct sums.

Proof. By Theorem 11.6, for C = B.

Remark 11.9. Surprisingly, the completeness of C is redundant in the statement
of part (b) of Corollary 11.8. That is, if C is hereditary, A ⊆ Pn, and B is closed
under direct sums, then C is complete (and hence tilting). For a proof, we refer e.g.
to [26, 8.21].

In the rest of these notes, for a class of modules C, the notation C<ω and C≤ω
will stand for the class of all strongly finitely presented, and strongly countably
presented, modules, respectively (cf. Definition 10.1).
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12. Classes of finite type

Our Definition 10.1 of a tilting module admits infinitely generated modules. In-
deed, most examples of tilting modules presented so far were not finitely generated
(for a very good reason in the commutative case - see Lemma 10.3).

There is, however, an implicit finiteness condition hidden in the notion of a tilting
module: every tilting module T is of finite type. This says that, though T is large,
when computing the corresponding tilting class T⊥∞ , we can replace T by a set S
consisting of strongly finitely presented modules of bounded projective dimension,
such that T⊥∞ = S⊥∞ .

Definition 12.1. Let R be a ring.
Let C be a class of modules. Then C is of finite type provided there exist n < ω and
S ⊆ P<ωn (S ⊆ P≤ωn ), such that C = S⊥∞ .
Let T be a module. The T is of finite type provided that the class T⊥∞ is of finite
type.

Let C be a class of finite type and A = ⊥C (= ⊥∞C). Then (A, C) is a hereditary
cotorsion pair generated by the class A<ω, so S = A<ω is the largest possible choice
for S in Definition 12.1.

Any class of finite type is a tilting class, so there is a actually rich supply of
tilting classes and modules available:

Theorem 12.2. Let R be a ring and C be a class of finite type. Then C is tilting,
and definable (i.e., closed under pure submodules, direct limits and direct products).

Proof. By assumption, there are n < ω and S ⊆ P<ωn , such that C = S⊥∞ .
Clearly, C is closed under direct products. Since S consists of strongly finitely pre-
sented modules, for each A ∈ S and each i < ω, the functor ExtiR(A,−) commutes
with direct limits, cf. [26, 6.6]. So the class S⊥∞ is closed under direct limits. Since
F⊥ is closed under pure submodules for any finitely presented module F , C is closed
under pure submodules. This proves that C is a definable class.

Let C = (A, C) be the cotorsion pair cogenerated by C. By Theorem 6.1, C is
complete. By Theorem 7.7, A ⊆ Pn. By Corollary 11.8, C is an n-tilting cotorsion
pair, that is, C is an n-tilting class.

The converse of Theorem 12.2 also holds: all tilting classes and modules are of
finite type. We will now only state this result, postponing a sketch of its proof to
an appendix below, in order to present some of its remarkable consequences first.

Theorem 12.3 (Finite type of tilting modules). Let R be a ring, T a tilting module
and (A,B) the cotorsion pair induced by T . Then

(a) T and B are of finite type.
(b) T is equivalent to a tilting module Tfin, such that Tfin is A<ω-filtered.

Proof. (a) will be proved in Section 14.
(b) By part (a), B = (A<ω)⊥. By Corollary 6.3 and Lemma 11.4(c), there are

a A<ω-filtered module Tfin and a module Q ∈ Add(T ), such that Tfin = Q ⊕ T .

Then Tfin is a tilting module with T⊥∞ = T⊥∞fin , so Tfin is equivalent to T .

Remark 12.4. There is an explicit construction of the tilting module Tfin avail-
able: as remarked in 11.7, the proof of the implication (b) implies (a) in Theo-
rem 11.6 shows that any iteration of special B-preenvelopes: ϕ0 : R → T0 of the
ring R, ϕ1 of the cokernel of ϕ0 etc., yields a long exact sequence

0→ R
ϕ0→ T0 → T1 → · · · → Tn−1 → Tn → 0,

such that T ′ =
⊕

i≤n Ti is a tilting module equivalent to T . By part (a), B = C⊥∞ ,

where C = A<ω. By Theorem 6.1(a), each of the special B-preenvelopes ϕi above
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can be taken so that its cokernel is C-filtered. But then also each Ti (i ≤ n) is
C-filtered, and so is T ′.

The tilting module T itself need not in general possess an A<ω-filtration. For
example, if T = R⊕P , where P is a countably generated projective module, which
has no finitely generated direct summands, then T is not P<ω0 -filtered.

13. Finitistic dimension conjectures

Our goal in this section is to present an application of tilting theory to proving
results on finitistic dimensions of rings. First, we recall the relevant notions and
their basic properties.

We will denote by gl dimR the (right) global dimension of R, i.e., is the supre-
mum of the projective dimensions of all (right R-) modules.

Definition 13.1. Let R be a ring. Denote by Fin dimR the big finitistic dimension
of R, that is, the supremum of the projective dimensions of arbitrary modules of
finite projective dimension.
Similarly, fin dimR will denote the little finitistic dimension, that is, the supremum
of the projective dimensions of all finitely generated modules of finite projective
dimension.
Obviously, fin dimR ≤ Fin dimR ≤ gl dimR for any ring R.

We recall a couple of simple and well-known facts:

Lemma 13.2. Let R be a ring, such that gl dimR <∞.

(a) fin dimR = Fin dimR = gl dimR = max {proj dimR/I | I ⊆ R}.
(b) If R is right semiartinian, then these dimensions are also equal to

max{proj dimS | S ∈ simpR}.

Proof. This is an easy consequence of the Eklof Lemma 1.3.

So the little and the big finitistic dimensions provide a refinement of the homo-
logical dimension theory in the case when gl dimR = ∞. The following example
shows that such refinement is needed even in very simple cases:

Example 13.3. Let R be a 0-Iwanaga-Gorenstein ring (= QF-ring) which is not
completely reducible. For example, let p be a prime integer, n > 1 and R = Zpn .

Since all projective modules are injective, there is no module of projective dimen-
sion 1, hence no module of projective dimension m for any m ≥ 1. By assumption,
there is a non-projective simple module M , so proj dimM = ∞. It follows that
fin dimR = Fin dimR = 0, while gl dimR =∞.
Since R = Zpn is of finite representation type, it is certainly the finitistic dimension
rather than the global dimension that reflects better the simple structure of the
module category Mod–Zpn .

Notice that, if R is a right ℵ0-noetherian ring, then the possible difference be-
tween Fin dimR and fin dimR comes from (a representative set of) countably in-
finitely generated modules of finite projective dimension:

Lemma 13.4. Assume that each right ideal of R is countably generated. Then

Fin dimR = sup {proj dimM |M ∈ P≤ω}.

Proof. This follows by Lemma 7.5.
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Example 13.5. Let R be a commutative noetherian ring. Then the little and
the big finitistic dimensions are known to be closely related to other dimensions
of the ring. Bass, Gruson and Raynaud proved that Fin dimR coincides with the
Krull dimension of R. Auslander and Buchsbaum proved that, if R is moreover
local, then fin dimR = depthR, where depthR denotes the length of a maximal
regular sequence in RadR. So in the local case, both dimensions are finite, but they
coincide, if and only if R is Cohen-Macaulay. Examples of commutative noetherian
rings with Fin dimR = fin dimR =∞ were constructed by Nagata.

If R is an arbitrary ring, then the statements

• (I) Fin dimR = fin dimR,
• (II) fin dimR <∞

are known as the first and the second finitistic dimension conjectures for R, respec-
tively.

In the case of artin algebras, (I) was disproved by Huisgen-Zimmermann: for
each n ≥ 2, she constructed a finite-dimensional monomial algebra R, such that
fin dimR = n and Fin dimR = n+ 1 (see [29]).

Examples with arbitrarily big differences between the two dimensions were later
constructed by Smalø: for each n ≥ 1 there is a finite-dimensional algebra R over
a field, such that fin dimR = 1 and Fin dimR = n, [39].

The second finitistic dimension conjecture has been proved for all finite-dimensional
monomial algebras, all algebras with representation dimension ≤ 3, et al., however,
this conjecture remains a major open of the represention theory of finite dimensional
algebras.

We will finish this section by employing tilting modules in proving both finitistic
dimension conjectures for Iwanaga-Gorenstein rings:

Theorem 13.6 (Finitistic dimension conjectures for Iwanaga-Gorenstein rings).
Let n ≥ 0 and R be an n-Iwanaga-Gorenstein ring.

(a) Let 0→ R→ I0 → I1 → · · · → In → 0 be the minimal injective coresolution
of R, and T =

⊕
i≤n Ii be the n-tilting module from Example 10.7. Let

(A,B) be the tilting cotorsion pair generated by T .
Then Add(T ) = I0, and A = Pn.

(b) fin dimR = Fin dimR = n.

Proof. First note that by Example 10.7, P = Pn = In = I, so Fin dimR = n.
Since T is injective and R is right noetherian, Add(T ) ⊆ I0.

We will prove that Add(T ) = I0. Since Add(T ) = A ∩ B by Lemma 11.4(c),
it suffices to prove that I0 ⊆ A. By Proposition 11.5(b), each module B ∈ B is
Add(T )-resolved. Denote by B′ the kernel of the n-th map in a fixed Add(T )-
resolution of B. Since Add(T ) ⊆ I0, dimension shifting gives for each I ∈ I0 that
Ext1

R(I,B) ∼= Extn+1
R (I,B′) . However, I0 ⊆ Pn, so the latter Ext-group is zero,

proving that I ∈ A.
Since Add(T ) = I0, Proposition 11.5 yields that A = In = Pn = P, and B is the

class of all I0-resolved modules. .
Finally, since T is a tilting module, T is of finite type by Theorem 12.3(a), so

B = (A<ω)⊥. However, A<ω = P<ω. By Corollary 6.3, each module P ∈ P is a
direct summand of a P<ω-filtered module, so fin dimR = Fin dimR.

Note that the equality Add(T ) = I0 proved above implies (by the Krull-Remak-
Schmidt-Azumaya Theorem) that each indecomposable injective module occurs as
a direct summand in some term of the minimal injective coresolution of R. In
particular, the tilting module T from 13.6 is an injective cogenerator in Mod–R.
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For further applications of tilting and approximation theory to the finitistic di-
mension conjectures, we refer to [26, Chap. 17].

14. Appendix

This final section presents a sketch of the proof of Theorem 12.3(a), that is, of
the fact that each tilting module is of finite type.

The proof is in three steps, each of which uses quite a different set of techniques:
Step I is based on deep results from set-theoretic homological algebra, Step II
involves a study of Mittag-Leffler conditions for inverse systems of modules, while
Step III uses also model theoretic techniques. The original proof was given gradually
in a series of papers [6], [42], [7] and [10], here we follow the simplified version from
[26].

First we recall a piece of auxiliary notation needed in Step I: for a ring R, G will
denote the class of all modules that are F-products of injective modules, where F
runs over all filters of the following form: there is a cardinal λ and a regular infinite
cardinal κ ≤ λ, such that F is the filter of all sets I ⊆ λ with |λ \ I| < κ.

Here, an F-product is the submodule of the product
∏
α<λ Iα of injective modules

Iα that consists of all (xα | α < λ) such that {α < λ | xα = 0} ∈ F. For example,
if κ = ℵ0, then the F-product is just the direct sum

⊕
α<λ Iα.

Step I. Let R be a ring and B be a class of modules such that B is closed under
direct sums and B contains the class G defined above. Let n < ℵ0. Then each
M ∈ ⊥∞B ∩ Pn is C-filtered, where C = ⊥∞B ∩ P≤ℵ0n

The proof is by induction on n: the case of n = 0 is just the Kaplansky structure
theorem for projective modules.

The inductive step (= [26, Lemma 13.33]) is proved by induction on the cardi-
nality, λ, of a minimal generating subset of M .

For λ a regular uncountable cardinal, we use the following more general result
(= [26, Theorem 8.17]): If a class of modules B is closed under direct sums and
M ∈ ⊥B is equipped with a λ-filtrationM consisting of modules from ⊥B, then M
is ⊥B-filtered by a subfiltration of M.

If λ is singular, we use a consequence of Shelah’s singular compactness theorem
for C-filtered modules (= [26, Theorem 7.29]), which says that if for each regular
infinite cardinal κ < λ, M contains a dense system consisting of < κ-generated
C-filtered submodules, then M is C-filtered.

Since each right tilting class B contains the class G (= [26, Corollary 13.29]), it
follows from Step I that each left tilting class A = ⊥∞B is ℵ0-deconstructible.

Step II. ([26, Theorem 13.41]) Let R be a ring and B be a class of modules closed
under direct sums. Let A be a countably presented module such that Ext1

R(A,B) =
0 for all B ∈ B. Let (Bi | i ∈ I) be any sequence of elements of B and B′ be a pure
submodule of

∏
i∈I Bi. Then also Ext1

R(A,B′) = 0.
If B is a right tilting class, then by Step I and Step II, B is a definable class (i.e.,

a class closed under direct products, pure submodules, and direct limits).

Step III. ([26, Lemma 13.44]) Let T be a tilting module, and (A,B) be the
corresponding tilting cotorsion pair. Then T is of finite type, iff A≤ℵ0 ⊆ lim−→A

<ℵ0 .
The key point of the proof of the if-part is the fact, that two definable classes of
modules are equal, iff they contain the same pure-injective modules.

The finite type of T is then proved by induction on the projective dimension n
of T , using in the inductive step the fact (= [26, Lemma 13.45]) that the hereditary
cotorsion pair generated by the 1st syzygy Ω(T ) is an (n − 1)-tilting cotorsion
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pair, and the trivial fact that the unique 0-tilting cotorsion pair, (P0,Mod–R), is
generated by R, hence it is of finite type.
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[3] L. Angeleri Hügel, F. Coelho, Infinitely generated tilting modules of finite projective

dimension, Forum Math. 13 (2001), 239 – 250.
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[10] S. Bazzoni, J. Šťov́ıček, All tilting modules are of finite type, Proc. Amer. Math. Soc.

135 (2007), 3771 – 3781.
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[33] L. Positselski, J. Šťov́ıček, The tilting-cotilting correspondence, Int. Math. Res. Not. 2021,
189 – 274.

[34] J. Rickard, Morita theory for derived categories, J. London Math. Soc. 39 (1989), 436 –

456.
[35] D. Quillen, Homotopical Algebra, Lect. Notes Math. 43, Springer, Berlin 1967.

[36] L. Salce, Cotorsion theories for abelian groups, Symposia Math. 23 (1979), 11 – 32.
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