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Motto of the talk

Mathematical modeling, related analysis and computations (here the focus is on
preconditioned Krylov subspace methods) has to deal with questions that go across
several fields and therefore handling them in their complexity requires extensive and
thorough collaboration.
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Adaptation as the main principle

Cornelius Lanczos, March 9, 1947

“To obtain a solution in very few steps

means nearly always that one has found a way

that does justice to the inner nature of the problem.”

Albert Einstein, March 18, 1947

“Your remark on the importance of

adapted approximation methods makes very

good sense to me, and I am convinced

that this is a fruitful mathematical aspect,

and not just a utilitarian one.”

Inner nature of the problem?

Nonlinear adaptation of the iterations to linear problems?
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1. Infinite dimensional problem and finite dimensional
computations
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1 Krylov subspace methods as polynomial methods

Consider a numerical solution of equations

Gu = f, f ∈ V ,

on an infinite dimensional Hilbert space V , where G is a linear invertible
operator, G : V → V .

Krylov subspace methods at the step n implicitly construct a finite dimensional
approximation Gn of G with the desired approximate solution un defined by
(u0 = 0)

un := pn−1(Gn) f ≈ u = G−1
f ,

where pn−1(λ) is a particular polynomial of degree at most n − 1 and Gn is
obtained by restricting and projecting G onto the nth Krylov subspace

Kn(G, f) := span
{
f,Gf, . . . , Gn−1

f
}

.
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1 Four basic questions

1 How fast un, n = 1, 2, . . . approximate the desired solution u ?
Nonlinear adaptation.

2 Which characteristics of G and f can be used in investigating
the previous question? Inner nature of the problem.

3 How to handle efficiently discretization and computational issues?
Provided that Kn(G, f) can be computed, the projection provides
discretization of the infinite dimensional problem Gu = f .

4 How to handle transformation of Gu = f into
an easier-to-solve problem? Preconditioning.
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1 Hierarchy of problems

Problem in infinite dimensional Hilbert space with bounded invertible operator G

G u = f

is approximated on the subspace Vh ⊂ V by the problem with the finite
dimensional operator

Gh uh = fh ,

represented, using an appropriate basis of Vh, by the (sparse?) matrix problem

Ax = b .

Bounded invertible operators in Hilbert spaces can be approximated by compact or
finite dimensional operators only in the sense of strong convergence (pointwise limit)

‖Gh w − G w‖ → 0 as h → 0 for all w ∈ V ;

The convergence Gh w → G w is not uniform w.r.t. w ; the role of right hand sides.
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1 Fundamental theorem of discretization of G, f

Consistency deals with the question how closely Ghuh = fh approximates Gu = f .
The residual measure

Ghπhu − fh

gives
πhu − uh = G−1

h (Ghπhu − fh).

If ‖G−1
h ‖h is bounded from above uniformly in h (the discretization is stable),

then consistency

‖Ghπhu − fh‖h → 0 as h → 0

implies convergence of the discretization scheme

‖πhu − uh‖h → 0 as h → 0 .

In computations we only approximate uh by u
(n)
h .
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1 Integral representation of self-adjoint operators on Hilbert spaces

Finite dimensional self-adjoint operators (finite Hermitian matrices)

A =
1

2πι

∫

Γ

λ (λIN −A)−1
dλ =

1

2πι

N∑

j=1

∫

Γj

λ (λIN −A)−1
dλ

=
N∑

j=1

Y diag

(
1

2πι

∫

Γj

λ

λ − λj
dλ

)
Y

∗ =
N∑

j=1

λj yjy
∗
j

=

∫ M(A)

m(A)

λ dE(λ) .

Compact infinite dimensional self-adjoint operators

Bounded infinite dimensional self-adjoint operators

Generalization to bounded normal and non-normal operators
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2. Convergence and spectral information

Some more details and references to many original works can be found in

J. Liesen. and Z.S., Krylov Subspace Methods, Principles and Analysis.

Oxford University Press (2013), Sections 5.1 - 5.7

T. Gergelits and Z.S., Composite convergence bounds based on Chebyshev

polynomials and finite precision conjugate gradient computations,

Numer. Alg. 65, 759-782 (2014)
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2 Adaptation to the inner nature of the problem?

Problem Ax = b
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2 Linearity and single number characteristics in algebraic iterations

Stationary Richardson (assume A HPD)

x− xn = (I − ω
−1

A)n (x − x0)

Chebyshev semiiterative method

x − xn =
1

|χn(0)|
χn(A) (x − x0) ,

1

|χn(0)|
≤ 2

(√
κ(A) − 1√
κ(A) + 1

)n

;

‖χn(A)‖ = max
λj

|χn(λj)| = max
λ∈[λ1,λN ]

|χn(λ)| = 1 .
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2 Conjugate Gradient method (CG) for Ax = b with A HPD (1952)

r0 = b − Ax0, p0 = r0 . For n = 1, . . . , nmax :

αn−1 =
r∗n−1rn−1

p∗
n−1Apn−1

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
r∗nrn

r∗n−1rn−1

pn = rn + βnpn−1

Here αn−1 ensures the minimization of ‖x − xn‖A along the line

z(α) = xn−1 + αpn−1 .
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2 Mathematical elegance of CG

Provided that

pi ⊥A pj , i 6= j,

the one-dimensional line minimizations at the individual steps 1 to n result in
the n-dimensional minimization over the whole shifted Krylov subspace

x0 + Kn(A, r0) = x0 + span{p0,p1, . . . , pn−1} .

The orthogonality condition leads to short recurrences due to the relationship
to the orthogonal polynomials that define the algebraic residuals and search
vectors.

Inexact computations?
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2 Lanczos (CG) as the nonlinear moment problem

Let G be a linear bounded self-adjoint operator on a Hilbert space V , f ∈ V ,
‖f‖ = 1 . Consider the 2n real numbers

mj = (Gj
f, f) =

∫
λ

j
dω(λ), j = 0, . . . , 2n − 1.

CG (assuming, in addition, the coercivity of G ), as well as the Lanczos method for
approximating eigenvalues, solve the 2n equations

n∑

j=1

ω
(n)
j {θ

(n)
j }ℓ = mℓ , ℓ = 0, 1, . . . , 2n − 1 ,

for the 2n real unknowns ω
(n)
j > 0, θ

(n)
j .

Golub, Welsch (1968), Gordon (1968), . . . , Vorobyev (1958, 1965)

Generalizations to quasi-definite linear functionals and beyond, complex Gauss
quadrature, relationship with the nonsymmetric Lanczos algorithm, minimal
partial realization etc. are given in Draux (1983), Gragg (1974), Gragg and
Lindquist (1983, ... , Pozza, Pranic, S (2017), Pozza, Pranic, S (2018?).
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2 Fundamental mathematical structure of Jacobi matrices

Tn =




γ1 δ2

δ2

. . .
. . .

. . .
. . .

. . .

. . .
. . . δn

δn γn




is the Jacobi matrix of the Lanczos process coefficients at step n .

Whenever the bottom element of a normalized eigenvector of Tn vanishes,
the associated eigenvalue of Tn closely approximates an eigenvalue of A

and an analogous approximation must exist for Tn+1,Tn+2 etc.

The notion of “deflation”.
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2 Finite precision effects on Lanczos/CG

We no longer have Krylov subspaces defined by the input data.

Computed residuals are not orthogonal to the generated subspaces,
i.e., the Galerkin orthogonality does not hold.

The structure of Krylov subspace methods as projection processes onto nested
subspaces of increasing dimensionality seems to be completely lost.

Is anything preserved?
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2 Adaptive Chebyshev bound is not descriptive.
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The difference between the dash-dotted and the solid line?

∫
λ

j
dω(λ) →

∫
λ

j
dω1−n(λ)
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2 Spectral information in GMRES?

Given any spectrum and any sequence of the nonincreasing residual norms,
there is a complete parametrization of the set of all GMRES associated matrices
and right-hand sides.

The set of problems for which the distribution of eigenvalues alone does not
correspond to convergence behavior is not of measure zero and it is not pathological.

Widespread eigenvalues alone can not be identified with poor convergence.

Clustered eigenvalues alone can not be identified with fast convergence.

What does it tell us about the problem?

21 / 50



2 Any GMRES convergence with any spectrum - parametrization

Theorem

1◦ The spectrum of A is given by {λ1, . . . , λN} and GMRES(A,b) yields
residuals with the prescribed nonincreasing sequence (x0 = 0)

‖r0‖ ≥ ‖r1‖ ≥ · · · ≥ ‖rN−1‖ > ‖rN‖ = 0 .

2◦ Let C be the spectral companion matrix, h = (h1, . . . , hN )T ,
h2

i = ‖ri−1‖
2 − ‖ri‖

2 , i = 1, . . . , N . Let R be a nonsingular upper triangular
matrix such that Rs = h with s being the first column of C−1 , and let
W be a unitary matrix. Then

A = WRCR
−1

W
∗ and b = Wh .

Greenbaum, Pták, Arioli and S (1994 - 98); Liesen (1999); Eiermann and Ernst
(2001); Meurant (2012); Meurant and Tebbens (2012, 2014); .....
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3. Mathematical structure preserved
at the presence of numerical errors
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3 Back to the mathematical structure of Jacobi matrices

Practical computation generates a sequence of (nested) Jacobi matrices
Tn, n = 1, 2, . . .

Whenever the bottom element of a normalized eigenvector of Tn vanishes,
the associated eigenvalue of Tn closely approximates an eigenvalue of A

and an analogous approximation must exist for Tn+1,Tn+2 etc;
see Paige (1971 -1980). This breakthrough result is highly nontrivial.

The fundamental question: What distribution function is behind this?

Greenbaum (1989) gave a beautiful answer. For a given iteration step n the
associated distribution function

ω1−n(λ)

has the points of increase close to the eigenvalues of A with clusters around the
eigenvalues of A multiply approximated within the steps 1 to n .
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3 Interlocking property for the modified distribution functions

∫
λ

j
dω(λ) →

∫
λ

j
dω1−n(λ) ≈

∫
λ

j
dω̂(λ) .

Mathematical structure preserved for the methods with short recurrences?
Complex Jacobi matrices, Gauss quadrature in the complex plane?

Mathematical structure preserved for Arnoldi, FOM and GMRES?
Hessenberg matrices?
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4. Preconditioning and discretization

Some more details and many references to original works can be found in

J. Málek and Z.S., Preconditioning and the Conjugate Gradient Method

in the Context of Solving PDEs. SIAM Spotlight Series, SIAM (2015)

I. Pultarová, Z.S., Decomposition into subspaces and operator preconditioning

(2017?)
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4 Basic setting

Hilbert space V with the inner product

(·, ·)V : V × V → R , ‖ · ‖V ,

dual space V # of bounded linear functionals on V with the duality pairing and
the associated Riesz map

〈·, ·〉 : V
# × V → R , τ : V

# → V such that (τf, v)V := 〈f, v〉 for all v ∈ V.

Equation in the functional space V #

Au = b

with a linear, bounded, coercive, and self-adjoint operator

A : V → V
#

, a(u, v) := 〈Au, v〉 ,

CA := sup
v∈V, ‖v‖V =1

‖Av‖V # < ∞ ,

cA := inf
v∈V, ‖v‖V =1

〈Av, v〉 > 0 .

27 / 50



4 Coercivity and boundedness constants, spectrum of τA

Theorem.

The spectrum of τA is enclosed in [cA, CA] with the endpoints belonging to the
spectrum,

CA = ‖A‖L(V,V #) = sup
u∈V, ‖u‖V =1

〈Au, u〉 ,

cA = inf
v∈V, ‖v‖V =1

〈Av, v〉 =
{
‖A−1‖L(V #,V )

}−1
.
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4 Operator preconditioning

Linear, bounded, coercive, and self-adjoint B , CB , cB defined analogously. Define

(·, ·)B : V × V → R, (w, v)B := 〈Bw, v〉 for all w, v ∈ V ,

τB : V
# → V, (τBf, v)B := 〈f, v〉 for all f ∈ V

#
, v ∈ V .

Instead of the equation in the functional space V #

Au = b

we solve the equation in the solution space V

τB Au = τB b ,

i.e.
B−1 A u = B−1

b.
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4 Concept of norm equivalence and spectral equivalence of operators

We are interested in the condition number (but recall Málek, S, 2015, Chapter 11)

κ(B−1A) := ‖B−1A‖V ‖A−1B‖V ≤ κ(A) κ(B)

and in the spectral number

κ̂(B−1A) :=
supu∈V, ‖u‖V =1(B

−1Au, u)V

infv∈V, ‖v‖V =1(B−1Av, v)V
.

Assuming the norm equivalence of A−1 and B−1 , i.e.,

α ≤
‖A−1f‖V

‖B−1f‖V
≤ β for all f ∈ V

#
, f 6= 0 ,

we get

κ(B−1A) ≤
β

α
.
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4 Discretization

N-dimensional subspace Vh ⊂ V ; abstract Galerkin discretization gives uh ∈ Vh,
uh ≈ u ∈ V satisfying Galerkin orthogonality

〈Auh − b, v〉 = 0 for all v ∈ Vh .

The restrictions Ah : Vh → V
#
h , bh : Vh → R gives the problem in V

#
h

Ahuh = bh, uh ∈ Vh, bh ∈ V
#
h .

With the inner product (·, ·)B and the associated restricted Riesz map

τB,h : V
#

h → Vh

we get the abstract form of the preconditioned discretized problem in Vh

τB,h Ah uh = τB,h bh .
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4 Preconditioning - straight consequence of the Vh −→ V
#
h

setting

Using the discretization basis Φh = (φ
(h)
1 , . . . , φ

(h)
N ) of Vh

and the canonical dual basis Φ#
h = (φ

(h)#
1 , . . . , φ

(h)#
N ) of V

#
h , (Φ#

h )∗Φh = IN ,

M
−1
h Ah xh = M

−1
h bh,

where

Ah, Mh ∈ R
N×N

, xh,bh ∈ R
N

,

(xh)i = 〈φ
(h)#
i , uh〉 , (bh)i = 〈b, φ

(h)
i 〉 ,

(Ah)ij =
(
a(φ

(h)
j , φ

(h)
i )
)

i,j=1,...,N
=
(
〈Aφ

(h)
j , φ

(h)
i 〉
)

i,j=1,...,N
,

(Mh)ij =
(
〈Bφ

(h)
j , φ

(h)
i 〉
)

i,j=1,...,N
,

or
Ah = (AΦh)∗Φh, Mh = (BΦh)∗Φh .
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4 Matrix representation – symmetric form

Indeed, for the restricted Riesz map τB,h for v and f , with f = Φ#
h f , v = Φhv

(τB,hf, v)B = (τB,hΦ#
h f , Φhv)B = (ΦhMτ f , Φhv)B = 〈BΦhMτ f , Φhv〉 = v

∗
MhMτ f ,

(τB,hf, v)B = 〈f, v〉 = v
∗
f

and therefore
Mτ = M

−1
h .

Using the Cholesky decomposition Mh = LhL∗
h , the resulting preconditioned

algebraic system can be transformed into

Lh
−1

Ah(L∗
h)−1(L∗

hxh) = L
−1
h bh ,

i.e.,
At,h x

t
h = b

t
h .
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4 Spectral number of the preconditioned problem

If the operators A and B are spectrally equivalent, i.e.,

α ≤
〈Aw, w〉

〈Bw, w〉
≤ β for all w ∈ V, w 6= 0 ,

we get

κ̂(M−1
h Ah) = κ(At,h) ≤

β

α
.

Recall

κ(M−1
h Ah) = ‖M−1

h Ah‖‖A
−1
h Mh‖ 6=

|λmax(M
−1
h Ah)|

|λmin(M
−1
h Ah)|

= κ̂(M−1
h Ah) .

Equality holds iff Mh and Ah commute (then M−1
h Ah = M

−1/2
h AhM

−1/2
h ).
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4 Better conditioning does not necessarily mean faster convergence!
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Nonhomogeneous diffusion tensor, uniform mesh. Unpreconditioned CG; ichol PCG
(no fill-in); ichol PCG (drop-off tolerance 1e-02); Laplace operator PCG.

Condition numbers of At,h : 6.75e04, 4.31e02, 1.6e01, 1.61e02.
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4 Preconditioning as transformation of the discretization basis

Transformation of the discretization basis

Φh → Φt,h such that Mt,h = (BΦt,h)∗Φt,h = I ,

i.e. orthogonalization of the basis with respect to the inner product (·, ·)B ,
gives immediately the preconditioned system.

The transformed basis

Φt,h = Φh(L∗
h)−1

, Φ#
t,h = Φ#

h Lh

gives
At,h x

t
h = b

t
h .

Transformation of the discretization basis (preconditioning) is different from the
change of the algebraic basis (similarity transformation).
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4 Transformed FEM nodal basis elements have global support
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1
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Transformed discretization basis elements corresponding to the lapl (left) and
ichol(tol) preconditioning (right).
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5. Decomposition into subspaces and preconditioning
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5 Decomposition of subspaces

1

V =
∑

j∈J

Vj , i.e., v =
∑

j∈J

vj , vj ∈ Vj , for all v ∈ V, J is finite;

2

cVj
‖u‖2

V ≤ ‖u‖2
j for all u ∈ Vj , 0 < cVj

, j ∈ J ; then V
# ⊂ V

#
j ;

3

‖u‖2
S := inf

uj∈Vj , u=
∑

j∈J uj

{
∑

j∈J

‖uj‖
2
j

}
≤ CS ‖u‖

2
V , for all u ∈ V .
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5 Construction of abstract splitting-based preconditioning

Consider

Bj : Vj → V
#

j , 〈Bjw, z〉 = 〈Bjz, w〉 for all w, z ∈ Vj ,

with CBj
, cBj

defined as above. Then B−1
j : V

#
j → Vj , V # ⊂ V

#
j , and

M−1 =
∑

j∈J

B−1
j , M−1 : V

# → V .

The preconditioned (equivalent?) problem

M−1 A u = M−1
b .
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5 Equivalence of the preconditioned system

Coercivity and boundedness of M−1

inf
f∈V #, ‖f‖

V #=1
〈f,M−1

f〉 ≥ cM−1 :=
1

CS maxj∈J CBj

> 0 ,

‖M−1‖L(V #,V ) = sup
f∈V #, ‖f‖

V #=1

‖M−1
f‖V ≤ CM−1 :=

∑

j∈J

1

cBj
cVj

< ∞ ,

gives equivalence of Au = b and M−1Au = M−1b . Moreover, we have norm
equivalence of A−1 and M−1 as well as spectral equivalence of A and M .
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5 Bound using norms of the locally preconditioned residuals

Theorem

For any v ∈ V

a
(
M−1A(v − u), v − u

)
=
∑

j∈J

‖r̄j‖
2
Bj

,

minj∈J cBj

C2
A

(
∑

k∈J

1

cVk
cBk

)−1 ∑

j∈J

‖r̄j‖
2
j ≤

‖v − u‖2
V ≤

CS(maxj∈J CBj
)2

c2
A

∑

j∈J

‖r̄j‖
2
j ,

where r̄j := B−1
j A v − B−1

j b are the locally preconditioned residuals of v .
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6. h-adaptivity based on the residual-based estimator

More details and references can be found in

J. Papež, Z.S., On a residual-based a posteriori error estimator for the total

error (IMA J. Num. Anal., accepted, 2017)
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6 Equilibrating the discretization error over the domain?

Consider any estimator EST(·) that provides an upper bound for the discretization
error

‖u − uh‖ ≤ EST(uh) ,

In order to evaluate the right-hand side, we need uh that is not available.

This matter can not be resolved by simply plugging-in a computed approximation
u

(n)
h instead of uh unless we prove that this can be done;

i.e., unless it is clear that the derivation of the estimator is not based on
any assumption that is violated by u

(n)
h .

The residual-based formula derived as the lower bound for the discretization error
gives with no change the lower bound for the total error. For the upper bound the
situation is different.
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6 Adaptivity and stopping criteria - Poisson problem illustration

Residual-based a posteriori error bound for the total error that accounts for inexact
algebraic computations, i.e., for arbitrary vh ∈ Vh (vh = u

(n)
h )

‖∇(u − vh)‖2 ≤ 2C
2
1 C

2
2

(
J

2(vh) + osc2
)

+ 2 C̃
2
intp(u, vh) ‖∇(uh − vh)‖2

,

where (using the linear FEM discretization basis functions)

JE(vh) ≡ |E|1/2

∥∥∥∥
[

∂vh

∂nE

]∥∥∥∥
E

, J(vh) ≡




∑

E∈Eint

J
2
E(vh)




1/2

.
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6 L-shape domain
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Exact solution u (left) and the discretization error u − uh (right) in the Poisson
model problem, linear FEM, adaptive mesh refinement.

Quasi equilibrated discretization error over the domain.
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6 L-shape domain
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Algebraic error uh − u
(n)
h (left) and the total error u − u

(n)
h (right) after the

number of CG iterations guaranteeing

‖∇(u − uh)‖ ≫ ‖x − xn‖A .
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7. Concluding remarks and outlook
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7 Concluding remarks and outlook

Individual steps modeling-analysis-discretization-computation should not be
considered separately within isolated disciplines. They form a single problem.
Operator preconditioning follows this philosophy.

Fast HPC computations require handling all involved issues.
A posteriori error analysis leading to efficient and reliable stopping criteria is
essential ...

Krylov subspace methods adapt to the problem. Exploiting this adaptation is
the key to their efficient use.

Daniel (1967) did not identify the CG convergence with the Chebyshev
polynomials-based bound. He carefully writes (modifying slightly his notation)

“assuming only that the spectrum of the matrix A lies inside the interval
[λ1, λN ], we can do no better than Theorem 1.2.2.”

O(n) reliable approximate solvers?
Rüde, Wohlmuth, Burstedde, Kunoth, . . .
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Thank you very much for your kind patience!
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