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I am greatly indebted to many collaborators and friends. I am more and more
thankful to those, whom I have tried to learn from without a possibility of meeting
them in person.
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Old work > sur 7 revealing

Cornelius Lanczos, Why Mathematics, Dublin, 1966

The naive optimist, who believes in progress and is convinced that today is better
than yesterday and in ten years time the world will be infinitely better off than
today, will come to the conclusion that mathematics (and more generally all the
exact sciences) started only about twenty years ago, while all the predecessors must
have walked in a kind of limbo of half-digested and improperly conceived ideas.
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Cornelius Lanczos (1950, 1953)
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Jan Stieltjes (1856 - 189

Investigations on Continued Fractions

T.J. Stieltjes

Ann. Fac. Sci. Toulouse 8 (1894) J.1-122; 9 (1895) A.1-47 (translation)

The object of this work is the study of the continued fraction

az+

i

: ‘ Introduction
l
‘ Tt
|

all real or complex values.
Pu(z)

Denoting by the nth convergent!, which depends only on the first
(2

n coefficients a;, we shall determine in which cases this convergent tends to a.

limit for 7 — oo and we shall investigate more closely the nature of this limit

regarded as a function of .

] in which the a; are positive real numbers, while z is a variable which can take
1
|

We shall summarize the principal result of this study. There are two dis-
‘ i tinet cases.

First case. - The series 35° a, is convergent.
In this case we have for each finite value of z,
lim Pya(z) = p(2),
SEe e lim Qza(2) = g(2),
lim Popya(2) = pi (=),
rhum?:;:::lmlucs lim Qznia(2) = a1(2),

P(2),9(2),p1(2), 1 (2) being holomorphic functions in the whole plane which
satisfy the relation

| a(=)p1(2) ~ a1()p(z) = +1.
| These functions are of genus zero and admit only simple zeros whi

h are
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Karush (1

CONVERGENCE OF A METHOD OF SOLVING
LINEAR PROBLEMS!

W. KARUSH

1. Introduction. We are concerned with the solution of two
lems associated with a linear operator A. First, the characteristic
value problem

0] Ay =1y
for the of istic values A and the ch:
istic vectors y; second, the linear equation problem

@ A=)z =5, b0,

for the determination of x, given the number X and the vector b (I is
the identity operator). Lanczos [3]* has described an interesting
iterative method for the solution of these problems w pears to

effective for numerical calculation. It is our purpose to consider
the convergence and rate of convergence of the method, in the Hil-
bert space sense, for a bounded self-adjoint operator.

The procedure for obtaining the solution may be described as
follows. Let 4540 be a given initial vector, arbitrary for problem (1),
equal to the right side of (2) for problem (2). Let
) W= (3, Ab, e, AW,

i.e., the linear subspace spanned by the indicated vectors. Let 3 be
the invariant subspace which is the closure of the linear subspace
spanned by all non-negative powers 4b; symbolically

@ 3= (b, Ab, -, Alh, o).

Let 7, be the projection operator onto 3. Then to solve (1) and (2)
we replace the operator A by the operator i on X, solve the cor-
responding finite-dimensional problem, and allow 4 to approach .
That is, (1) and (2) are approximated respectively by

©) Tdy =y on 3

and

(©) (xd = N)z = b on X
Received by the edit mrwy u 1952,

1The prepaaton of

vas sponsored (in part) by the Offce of Naval
Researc)

T bers in brackets refer to the st of efeence t th end ofthe paper.
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archy of linear proble ting at infinite dimension

A problem with bounded invertible operator G on an infinite dimensional
Hilbert space V
Gu = f

is approximated on a finite dimensional subspace V,, C V by a problem with
the finite dimensional operator

gnun = fn7

represented, using an appropriate basis of V,,, by the matrix problem

Ax = b.
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Hierarchy of linear proble ting at infinite dimension

A problem with bounded invertible operator G on an infinite dimensional
Hilbert space V

Gu = f

is approximated on a finite dimensional subspace V,, C V by a problem with
the finite dimensional operator

gn Un = f n
represented, using an appropriate basis of V,,, by the matrix problem

Ax = b.

There is a continuous operator equation posed in infinite-dimensional spaces that
underlines the linear system of equations [ ... | awareness of this connection is key
to devising efficient solution strategies for the linear systems. Hiptmair (2006)
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Krylov subspace methods

(Infinite dimensional) Krylov subspace methods implicitly construct at the step j
the finite dimensional approximation G; of G which determines the desired
approximate solution u; € uo +K;(G,r), r=f—Guo

wj = uo+p; 1(G)r = u=¢G 'f.

Here pj—1()A) is the associated polynomial of degree at most j —1 and
G; 1is obtained by restricting and projecting G onto the jth Krylov subspace

K;(G,r) := span {r, gr,.. .,ijlr}.

A.N. Krylov (1931), Gantmakher (1934), Hestenes and Stiefel (1952),
Lanczos (1952-53); Karush (1952), Hayes (1954), Stesin (1954), Vorobyev (1958)
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¢ CG for Az =0 with A HPD (1952)

7o =b— Axo, po =710. For n=1,..., nmax:
*
@ Tn—1Tn-1
n-1 = G
Dy —1APn—1
Tn = Xp—1+ Qn—1Pn—1, stop when the stopping criterion is satisfied
Tn = Tn—1 — Ofn—lApn—l
TR
/Bn = -
Tn—1Tn-1
Pn = Tn + ﬂnpnfl

Here a,—1 ensures the minimization of the energy norm ||z — z,||a along the line

z(a) = Tp—1 4+ apn-1.
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Mathematical elegance of CG: Galerkin orthogonality

Provided that
pi Lapj, i#7,

the one-dimensional line minimizations at the individual steps 1 to n result in the
n-dimensional minimization over the whole shifted Krylov subspace

2o + Kn(A,r0) = xo + span{po, p1,...,Pn—1}.
Indeed,

N-1 n—1
T —To = E Qupe = E oape + T —Tn,
£=0 =0

where

x—an La Kn(Aro), or,equivalently, r, L K,(A rg).

11/25



rch 9, 1947

On (what are now called) the Lanczos and CG methods:

The reason why I am strongly drawn to such
approximation mathematics problems is ... the fact that
a very “economical” solution is possible only when it is very “adequate”.

To obtain a solution in very few steps
means nearly always that one has found a way
that does justice to the inner nature of the problem.
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Albert Einstein, M

Your remark on the importance of

adapted approximation methods makes very
good sense to me, and I am convinced

that this is a fruitful mathematical aspect,
and not just a utilitarian one.

13/25



Albert Einstein, March 18, 1

Your remark on the importance of

adapted approximation methods makes very
good sense to me, and I am convinced

that this is a fruitful mathematical aspect,
and not just a utilitarian one.

Nonlinear and globally optimal adaptation of the iterations
within Krylov subspaces of increasing dimensionality
to the problem data.
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enes and Eduard Stiefel (1952)

Abstract. An iterative algorithm is given for solving a system Ax =k of n
linear equations in n unknowns. The solution is given in n steps. [ ... |
Connections are made with the theory of orthogonal polynomials

and continued fractions.

Section 3. At each step the residual r; = k — Ax; is computed. Normally this
vector can be used as a measure of the ”"goodness” of the estimate x;. However,
this measure is not a reliable one because [ ... | it is possible to construct cases
in which the squared residual |r;|* increases at each step (except for the last)
while the length of the error vector decreases monotonically.

Section 8. Propagation of Rounding-Off Errors in the cg-Method.

Sections 14. - 17. Orthogonal polynomials, (Riemann)-Stieltjes integral, mass
distribution on the positive axis. [ ... ] During the following investigations we
use the Gauss mechanical quadrature as a basic tool ...

Gauss quadrature is equivalent to solving the simplified Stieltjes problem of
moments.

Section 18. Continued fractions.
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Title. Solution of Systems of Linear Equations by Minimized Iterations.

In principle we have obtained a method for the solution of sets of linear
equations which is simple and logical in structure. Yet from numerical
standpoint we must not overlooked the danger of the possible accumulation of
rounding errors.

Algorithm I: purification of the initial vector of the components in the direction
of the eigenvectors corresponding to large eigenvalues using Chebyshev
polynomials.

Algorithm II: minimized iterations equivalent to CG.

The principle by which this process [meant CG] gives good attenuation is quite
different from the previous one [meant the purification using Chebyshev
polynomials]. The polynomials of this process have the peculiarity that they
attenuate due to the nearness of their zeros to those A-values which are present
i A. The advantage of the process is its great economy.

The price we have to pay is that the successive iterations of this process are
more complicated than those of algorithm 1. Another difficulty arises from the
inevitable accumulation of rounding errors.



ce match the visions in thes

The papers by Lanczos, Hestenes and Stiefel, Karush, Hayes, and the book by
Vorobyev (1958R, 1965E, not discussed here), made many fundamental points.

Some were painfully rediscovered (often through computational failures)
decades later, other remain unnoticed in literature, including textbooks and
monographs, until now.

The common knowledge on CG has been reduced to an algorithmic description
without broader context. Convergence rate is viewed through the two-D
projection resulting in the linear Chebyshev-polynomial-based upper bound,
which is sometimes combined with misguided or even plainly wrong arguments
on clustering of eigenvalues.

Rounding errors are typically excluded from theoretical considerations, while
the derived results are subsequently applied to practical computations.

Examples: Attenuation using the (composite) Chebyshev polynomials and
attenuation given by the CG polynomials based on the Galerkin orthogonality,
superlinear convergence.
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Attenuation using Chebyshev polynomials and the CG polynomials

composite shifted Chebyshev: 1- i) m [p(N)]

in max
AN pEPR(0) AEAL,AN_1]

MAN. AN A, /)
) U\, Y, ., Ay
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Attenuation using Che ev polynomials and the CG polynomials

composite shifted Chebyshev: 1- i) m [p(N)]

in max
AN pEPR(0) AEAL,AN_1]

MAN /N A /)
W WU,V Yy, An

(M)
conjugate gradients: z—xz;||* = [|ro]]? we ALFAZ
jugate g l =Nl Y

(=1
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W. Karush (1952) and R. M. Hayes (1954), Superlinear convergence

Let G =7+ F be self-adjoint, bounded and coercive,
with F being compact.
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Karush (1952) and R. M. Hz: (1954), Superlir convergence

Let G =7+ F be self-adjoint, bounded and coercive,
with F being compact.

Then the rate of convergence of the conjugate gradient method for a linear problem
with the operator G is accelerating and it is asymptotically faster than any
geometric progression.
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Hestenes, Stiefel - es from the paper n, S (2013)

Convergence analysis Rounding

Numerical analysis

error analysis  Cost of computations  Floating point computations

Iterative methods Polynomial preconditioning Stopping criteria Data uncertainty
Least squares solutions Structure and sparsity
— K Cornelius Lanczos \ Gaussian elimination
An iteration method for the solution Vandermonde determinant

of

Convex geometry

Minimising functionals

[ Approximation theory ]

the eigenvalue problem of linear Matrix theory

differential and integral operators, 1950
Solution of systems of linear equations Linear algebra

by minimized iterations, 1952 General inner products

. . . . C. hy-Sch i alit;
Orthogonal polynomials Chebyshev polynomials in the solution Oi;lhco ); nach;zzirjnmequ 1y
Chebyshev, Jacobi and of large-scale linear systems, 1952 no8
Projections

Legendre polynomials
Green's function Mag

Gibbs oscillation M
Rayleigh quotients

nus R. Hestenes & Eduard Stiefel

ethods of conjugate gradients for
solving linear systems, 1952 j

[ Functional analysis ]

Differential and integral operators

Fourier series

Trigonometric interpolation

Liouville-Neumann expansion

Continued fractions Sturm sequences Fredholm problem

Gauss-Christoffel quadrature  Riemann-Stieltjes integral — Dirichlet and Fejér kernel

Real analysis
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An example of warnin h independent condition numb

Hiptmair, CMA (2006):

Operator preconditioning is a very general recipe [ ... |. It is simple to apply, but
may not be particularly efficient, because in case of the [ condition number | bound
of Theorem [ ...] is too large, the operator preconditioning offers no hint how to
improve the preconditioner. Hence, operator preconditioner may often achieve [ ... |
the much-vaunted mesh independence of the preconditioner, but it may not perform
satisfactorily on a given mesh.
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An example of warnin 1 equivalence and tic behavior

Faber, Manteuffel and Parter, Adv. in Appl. Math. (1990):

For a fized h, using a preconditioning strategy based on an equivalent operator may
not be superior to classical methods [ ... | Equivalence alone is not sufficient for a

good preconditioning strategy. One must also choose an equivalent operator for
which the bound is small.

There is no flaw in the analysis, only a flaw in the conclusions drawn from the

analysis [ ... | asymptotic estimates ignore the constant multiplier. Methods with
similar asymptotic work estimates may behave quite differently in practice.
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The state of the art opinions often do not follow the foundati

Referee report: The only new items presented here have to do with analysis
involving floating point operations [ ... | . These are likely to bear very little interest
to the audience of | this Journal | ...

. the authors give a misquided argument. The main advantage of iterative methods
over direct methods does not primarily lie in the fact that the iteration can be
stopped early (whatever this means), but that their memory (mostly) and
computational requirements are moderate.

It appears obvious to the authors that the A-norm is the quantity to measure to stop
the iteration. In some case [ ... | it is the residual norm (yes) that matters. For
example, in nonlinear iterations, it is important to monitor the decrease of the
residual norm - because the nonlinear iteration looks at the non-linear residual to
build globally convergent strategies. This is known to practitioners, yet it is
vehemently rejected by the authors.
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And they even refer to the nonexistent and principally wrong results

A quote from a very influential paper:
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even refer to the no ent and principally wrong

A quote from a very influential paper:

Soon after the introduction of k(A) for error analysis, Hestenes and Stiefel showed
that this quantity also played a role in complexity analysis. More precisely, they
showed that the number of iterations of the conjugate gradient method (assuming
infinite precision) needed to ensure that the current approzimation to the solution of
a linear system attained a given accuracy is proportional to \/k(A).
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s to be time to humb irn to the founding autho

Cornelius Lanczos, Why Mathematics, Dublin, 1966

In a recent comment on mathematical preparation an educator wanted to
characterize our backwardness by the following statement: ”Is it not astonishing
that a person graduating in mathematics today knows hardly more than what Euler
knew already at the end of the eighteenth century?”. On its face value this sounds a
convincing argument. Yet it misses the point completely. Personally I would not
hesitate not only to graduate with first class honors, but to give the Ph.D. (and with
summa cum laude) without asking any further questions, to anybody who knew only
one quarter of what Euler knew, provided that he knew it in the way in which Euler
knew 4t.
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Thank you very much for your kind attention.



