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Zdeněk Strakoš
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Many thanks

I am greatly indebted to many collaborators and friends. I am more and more
thankful to those, whom I have tried to learn from without a possibility of meeting
them in person.
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Old work can be surprisingly revealing

Cornelius Lanczos, Why Mathematics, Dublin, 1966

The naive optimist, who believes in progress and is convinced that today is better
than yesterday and in ten years time the world will be infinitely better off than
today, will come to the conclusion that mathematics (and more generally all the
exact sciences) started only about twenty years ago, while all the predecessors must
have walked in a kind of limbo of half-digested and improperly conceived ideas.
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Cornelius Lanczos (1950, 1953)
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Magnus R. Hestenes and Eduard Stiefel (1952)
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Thomas Jan Stieltjes (1856 - 1894)
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W. Karush (1952) and R. M. Hayes (1954)
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Hierarchy of linear problems starting at infinite dimension

A problem with bounded invertible operator G on an infinite dimensional
Hilbert space V

G u = f

is approximated on a finite dimensional subspace Vn ⊂ V by a problem with
the finite dimensional operator

Gn un = fn ,

represented, using an appropriate basis of Vn, by the matrix problem

Ax = b .

There is a continuous operator equation posed in infinite-dimensional spaces that
underlines the linear system of equations [ ... ] awareness of this connection is key
to devising efficient solution strategies for the linear systems. Hiptmair (2006)
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Krylov subspace methods

(Infinite dimensional) Krylov subspace methods implicitly construct at the step j
the finite dimensional approximation Gj of G which determines the desired
approximate solution uj ∈ u0 +Kj(G, r), r = f − Gu0

uj := u0 + pj−1(G) r ≈ u = G−1f .

Here pj−1(λ) is the associated polynomial of degree at most j − 1 and
Gj is obtained by restricting and projecting G onto the jth Krylov subspace

Kj(G, r) := span
{
r,Gr, . . . ,Gj−1r

}
.

A.N. Krylov (1931), Gantmakher (1934), Hestenes and Stiefel (1952),
Lanczos (1952-53); Karush (1952), Hayes (1954), Stesin (1954), Vorobyev (1958)
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Algebraic CG for Ax = b with A HPD (1952)

r0 = b−Ax0, p0 = r0 . For n = 1, . . . , nmax :

αn−1 =
r∗n−1rn−1

p∗n−1Apn−1

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
r∗nrn

r∗n−1rn−1

pn = rn + βnpn−1

Here αn−1 ensures the minimization of the energy norm ‖x− xn‖A along the line

z(α) = xn−1 + αpn−1 .
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Mathematical elegance of CG: Galerkin orthogonality gives optimality

Provided that

pi ⊥A pj , i 6= j,

the one-dimensional line minimizations at the individual steps 1 to n result in the
n-dimensional minimization over the whole shifted Krylov subspace

x0 +Kn(A, r0) = x0 + span{p0, p1, . . . , pn−1} .

Indeed,

x− x0 =

N−1∑
`=0

α`p` =

n−1∑
`=0

α`p` + x− xn ,

where

x− xn ⊥A Kn(A, r0) , or, equivalently, rn ⊥ Kn(A, r0) .
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Cornelius Lanczos, March 9, 1947

On (what are now called) the Lanczos and CG methods:

The reason why I am strongly drawn to such
approximation mathematics problems is ... the fact that
a very “economical” solution is possible only when it is very “adequate”.

To obtain a solution in very few steps
means nearly always that one has found a way
that does justice to the inner nature of the problem.

12 / 25



Albert Einstein, March 18, 1947

Your remark on the importance of
adapted approximation methods makes very
good sense to me, and I am convinced
that this is a fruitful mathematical aspect,
and not just a utilitarian one.

Nonlinear and globally optimal adaptation of the iterations
within Krylov subspaces of increasing dimensionality

to the problem data.
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Magnus R. Hestenes and Eduard Stiefel (1952)

Abstract. An iterative algorithm is given for solving a system Ax = k of n
linear equations in n unknowns. The solution is given in n steps. [ ... ]
Connections are made with the theory of orthogonal polynomials
and continued fractions.

Section 3. At each step the residual ri = k −Axi is computed. Normally this
vector can be used as a measure of the ”goodness” of the estimate xi. However,
this measure is not a reliable one because [ ... ] it is possible to construct cases
in which the squared residual |ri|2 increases at each step (except for the last)
while the length of the error vector decreases monotonically.

Section 8. Propagation of Rounding-Off Errors in the cg-Method.

Sections 14. - 17. Orthogonal polynomials, (Riemann)-Stieltjes integral, mass
distribution on the positive axis. [ ... ] During the following investigations we
use the Gauss mechanical quadrature as a basic tool ...

Gauss quadrature is equivalent to solving the simplified Stieltjes problem of
moments.

Section 18. Continued fractions.
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Cornelius Lanczos (1952)

Title. Solution of Systems of Linear Equations by Minimized Iterations.

In principle we have obtained a method for the solution of sets of linear
equations which is simple and logical in structure. Yet from numerical
standpoint we must not overlooked the danger of the possible accumulation of
rounding errors.

Algorithm I: purification of the initial vector of the components in the direction
of the eigenvectors corresponding to large eigenvalues using Chebyshev
polynomials.

Algorithm II: minimized iterations equivalent to CG.

The principle by which this process [meant CG] gives good attenuation is quite
different from the previous one [meant the purification using Chebyshev
polynomials]. The polynomials of this process have the peculiarity that they
attenuate due to the nearness of their zeros to those λ-values which are present
in A. The advantage of the process is its great economy.

The price we have to pay is that the successive iterations of this process are
more complicated than those of algorithm 1. Another difficulty arises from the
inevitable accumulation of rounding errors.
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How does our presence match the visions in these papers?

The papers by Lanczos, Hestenes and Stiefel, Karush, Hayes, and the book by
Vorobyev (1958R, 1965E, not discussed here), made many fundamental points.

Some were painfully rediscovered (often through computational failures)
decades later, other remain unnoticed in literature, including textbooks and
monographs, until now.

The common knowledge on CG has been reduced to an algorithmic description
without broader context. Convergence rate is viewed through the two-D
projection resulting in the linear Chebyshev-polynomial-based upper bound,
which is sometimes combined with misguided or even plainly wrong arguments
on clustering of eigenvalues.

Rounding errors are typically excluded from theoretical considerations, while
the derived results are subsequently applied to practical computations.

Examples: Attenuation using the (composite) Chebyshev polynomials and
attenuation given by the CG polynomials based on the Galerkin orthogonality,
superlinear convergence.
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Attenuation using Chebyshev polynomials and the CG polynomials

composite shifted Chebyshev: (1− λ

λN
) min
p∈Pn(0)

max
λ∈[λ1,λN−1]

|p(λ)|

conjugate gradients: ‖x− xj‖2 = ‖r0‖2
N∑
`=1

ω`
(ϕj(λ`))

2

λ`
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W. Karush (1952) and R. M. Hayes (1954), Superlinear convergence

Let G = I + F be self-adjoint, bounded and coercive,
with F being compact.

Then the rate of convergence of the conjugate gradient method for a linear problem
with the operator G is accelerating and it is asymptotically faster than any
geometric progression.
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Lanczos, Hestenes, Stiefel - phrases from the papers, Liesen, S (2013)

Numerical analysis

Rounding error analysis

Least squares solutions

Gaussian elimination

Matrix theory

Optimisation

Structure and sparsity

Convex geometry

Convergence analysis

Cornelius Lanczos

An iteration method for the solution

of the eigenvalue problem of linear 

diff ti l d i t l t  1950

Polynomial preconditioningIterative methods Stopping criteria

Vandermonde determinant

Floating point computationsCost of computations

Data uncertainty

y

Projections

Orthogonalisation
Orthogonal polynomials

Linear algebra
Approximation theory

Chebyshev, Jacobi and

Legendre polynomials

Minimising functionals

g y
differential and integral operators, 1950

Solution of systems of linear equations

by minimized iterations, 1952

Chebyshev polynomials in the solution

of large-scale linear systems, 1952

Cauchy-Schwarz inequality

General inner products

Gauss-Christoffel quadrature Riemann-Stieltjes integral

Sturm sequences

Rayleigh quotients Differential and integral operators

Fredholm problem

Functional analysis

g p y

Continued fractions

Liouville-Neumann expansion

Magnus R. Hestenes & Eduard Stiefel

Methods of conjugate gradients for

solving linear systems, 1952

Green s function

Fourier series

Dirichlet and Fejér kernel

Trigonometric interpolation

Gibbs oscillation

Gauss Christoffel quadrature Riemann Stieltjes integral

Real analysis

Dirichlet and Fejér kernel
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An example of warnings: Mesh independent condition numbers

Hiptmair, CMA (2006):

Operator preconditioning is a very general recipe [ ... ]. It is simple to apply, but
may not be particularly efficient, because in case of the [ condition number ] bound
of Theorem [ ...] is too large, the operator preconditioning offers no hint how to
improve the preconditioner. Hence, operator preconditioner may often achieve [ ... ]
the much-vaunted mesh independence of the preconditioner, but it may not perform
satisfactorily on a given mesh.
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An example of warnings: Spectral equivalence and asymptotic behavior

Faber, Manteuffel and Parter, Adv. in Appl. Math. (1990):

For a fixed h, using a preconditioning strategy based on an equivalent operator may
not be superior to classical methods [ ... ] Equivalence alone is not sufficient for a
good preconditioning strategy. One must also choose an equivalent operator for
which the bound is small.

There is no flaw in the analysis, only a flaw in the conclusions drawn from the
analysis [ ... ] asymptotic estimates ignore the constant multiplier. Methods with
similar asymptotic work estimates may behave quite differently in practice.
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The state of the art opinions often do not follow the foundations

Referee report: The only new items presented here have to do with analysis
involving floating point operations [ ... ] . These are likely to bear very little interest
to the audience of [ this Journal ] ...

... the authors give a misguided argument. The main advantage of iterative methods
over direct methods does not primarily lie in the fact that the iteration can be
stopped early (whatever this means), but that their memory (mostly) and
computational requirements are moderate.

It appears obvious to the authors that the A-norm is the quantity to measure to stop
the iteration. In some case [ ... ] it is the residual norm (yes) that matters. For
example, in nonlinear iterations, it is important to monitor the decrease of the
residual norm - because the nonlinear iteration looks at the non-linear residual to
build globally convergent strategies. This is known to practitioners, yet it is
vehemently rejected by the authors.
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And they even refer to the nonexistent and principally wrong results

A quote from a very influential paper:

Soon after the introduction of κ(A) for error analysis, Hestenes and Stiefel showed
that this quantity also played a role in complexity analysis. More precisely, they
showed that the number of iterations of the conjugate gradient method (assuming
infinite precision) needed to ensure that the current approximation to the solution of
a linear system attained a given accuracy is proportional to

√
κ(A).
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It seems to be time to humbly return to the founding authors

Cornelius Lanczos, Why Mathematics, Dublin, 1966

In a recent comment on mathematical preparation an educator wanted to
characterize our backwardness by the following statement: ”Is it not astonishing
that a person graduating in mathematics today knows hardly more than what Euler
knew already at the end of the eighteenth century?”. On its face value this sounds a
convincing argument. Yet it misses the point completely. Personally I would not
hesitate not only to graduate with first class honors, but to give the Ph.D. (and with
summa cum laude) without asking any further questions, to anybody who knew only
one quarter of what Euler knew, provided that he knew it in the way in which Euler
knew it.
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Some references

Liesen,S, Krylov subspace methods: principles and analysis, Oxford University
Press (2013)

Málek, S, Preconditioning and the conjugate gradient method in the context of
solving PDEs, SIAM (2015)

Carson, S, On the cost of iterative computations, Phil. Trans. R. Soc. A
378:20190050

Thank you very much for your kind attention.

25 / 25



Some references

Liesen,S, Krylov subspace methods: principles and analysis, Oxford University
Press (2013)
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