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Setup

Let k be a commutative noetherian ring and T be a Hom-finite
skeletally small triangulated category over k . Examples to keep
in mind: Db(A), where:

• A = modR for a module finite k -algebra R; or
• A = cohX for projective scheme X over k .

Definition
A full subcategory S of T is thick if it is a triangulated
subcategory closed under direct summands.

Fact
S is thick if and only if there is a triangulated functor F : T → U
such that

S = {X ∈ T | FX = 0}.
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Generating thick subcategories

Let M ∈ T . What does the smallest thick subcategory
containing M look like?

Definition

• 〈M〉 = 〈M〉1 = the closure of {M[i] | i ∈ Z} under products
and summands in T .

• 〈M〉n+1 = summands of objects E appearing in a triangle

X → E → Y → X [1] with X ∈ 〈M〉 and Y ∈ 〈M〉n.

• 〈M〉∞ =
⋃

n≥1〈M〉n, where 〈M〉1 ⊆ 〈M〉2 ⊆ 〈M〉3 ⊆ · · ·

Observation
〈M〉∞ is the smallest thick subcategory of T containing M.
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Dimension

Definition (Rouquier)
The dimension of T , denoted dim T , is the minimum n ≥ 0 with

T = 〈M〉n+1 for some object M ∈ T .

We put dim T =∞ if no such n exists.

Examples

1 dim T ≤ gldim R for T = Db(modR).
2 dim T ≤ dimk R − 1 if k is a field and R is finite

dimensional over k .

Remark
Computing dim T is often not easy. How do we prove for
instance that T 6= 〈M〉n+1 for given n ≥ 0 and M ∈ T ?
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Ghost maps
Definition
A morphism f : X → Y is a (covariant) M-ghost if

HomT (f ,M[i]) = 0 for all i ∈ Z.

That is:

X
f // Y

∀g
��

M[i]

Remark
Traditionally, contravariant ghosts are considered
(i.e. morphisms such that HomT (M[i], f ) = 0).
Example: T = Db(modR) and M = R, then

f is a contrav. R-ghost⇐⇒ f induces zero map on homology.
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Ghost Lemma
Lemma (several versions in the literature)
Suppose that X ∈ 〈M〉n. Then every composition

Xn
ghost−→ Xn−1

ghost−→ · · · ghost−→ X1
ghost−→ X

of n consecutive M-ghosts ending at X vanishes.

Corollary
Suppose that T = 〈M〉n. Then every composition

Xn
ghost−→ Xn−1

ghost−→ · · · ghost−→ X1
ghost−→ X0

of n consecutive M-ghosts vanishes.

Question
When does the converse hold? I.e. vanishing of compositions
=⇒ T = 〈M〉n?
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〈M〉-preenvelopes

Definition
A full subcategory C ⊆ T is preenveloping if each X admits a
morphism fX : X → CX with CX ∈ C such that

X
f //

∀g
##GGGGGGGGG CX

∀C ∈ C

Observation
If C = 〈M〉 and we consider the triangle

Z h→ X f→ CX → Z [1].

Then h is an M-ghost.
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Converse of the Ghost Lemma—v1

Lemma (Beligiannis?)
Suppose that 〈M〉 is preenveloping in T . Then X ∈ 〈M〉n if and
only if every composition

Xn
ghost−→ Xn−1

ghost−→ · · · ghost−→ X1
ghost−→ X

of n consecutive M-ghosts ending at X vanishes.

Corollary
If 〈M〉 is preenveloping, then T = 〈M〉n if and only if every

Xn
ghost−→ Xn−1

ghost−→ · · · ghost−→ X1
ghost−→ X0

vanishes.

Issue
For our T one cannot expect that 〈M〉 will be preenveloping!
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Nevertheless. . .
Theorem (Š.-Oppermann)
Let R be a module finite algebra over a commutative noetherian
ring and let T = Db(modR). TFAE for M ∈ T and n ≥ 1:

1 X ∈ 〈M〉n.
2 Every composition

Xn
ghost−→ Xn−1

ghost−→ · · · ghost−→ X1
ghost−→ X0 −→ X ,

where X0,X1, . . . ,Xn are perfect complexes, vanishes.

Remarks

1 Perfect complex in Db(modR) is a complex isomorphic to a
bounded complex of finitely generated projective modules.

2 gldim R <∞⇐⇒ every complex in Db(modR) is perfect.
3 There is a similar theorem for T = Db(cohX).
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The idea behind

• Consider a bigger triangulated category U = D−(modR).
Objects are bounded above complexes

M : · · · −→ MN−2 ∂−→ MN−1 ∂−→ MN −→ 0 −→ 0 −→ · · ·

• We have some infinite products in U = D−(modR).
Namely those of the form∏

i∈Z
M[i]ni

where ni is finite for each i and ni = 0 for i � 0.
• Consequence: Suppose that M ∈ T = Db(modR). Then
〈M〉, taken in U = D−(modR) (i.e. it may contain infinite
products of the form above), is preenveloping in U . So the
converse of the Ghost Lemma holds for M and U .
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The idea behind—continued

• We know: Given M,X ∈ T = Db(modR) and n ≥ 1, we
have X ∈ 〈M〉n in U if and only if every composition

Xn
ghost−→ Xn−1

ghost−→ · · · ghost−→ X1
ghost−→ X0 = X ,

of M-ghost in U vanishes.
• Objects in T op are up to isomorphism the compact ones in
Uop. This allows us to get rid of infinite products in U , so
that

X ∈ 〈M〉n in U ⇐⇒ X ∈ 〈M〉n in T .

• On the other hand, if we have a composition of M-ghosts
as above, we can w.l.o.g. assume that the complexes
X0, . . . ,Xn have projective components. If we have a
non-vanishing composition of M-ghosts, we get one also
by suitably truncating X0, . . .Xn to bounded complexes.
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The main result

Theorem (Š.-Oppermann)
Let R be a module finite algebra over a commutative noetherian
ring and let T = Db(modR). If T ′ ⊆ T is a thick subcategory
such that dim T ′ <∞ and R ∈ T ′ then

T ′ = T .

Remark

1 The assumption “R ∈ T ′” is necessary.
2 Provided that dim T <∞, we have “if and only if” in the

theorem. This often happens in algebraic geometry and
representation theory.

3 One can compute explicit examples of this phenomenon.
4 Again, there is a similar theorem for T = Db(cohX).
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Sketch of the proof

• Suppose that T ′ = 〈M〉n for some M ∈ T and n ≥ 1.
• Since R ∈ T ′, all perfect complexes belong to T ′.
• Thus, every composition

Xn
ghost−→ Xn−1

ghost−→ · · · ghost−→ X1
ghost−→ X0,

with X0, . . . ,Xn perfect vanishes.
• In particular, given any X ∈ T and f : X0 → X , the chain

Xn
ghost−→ Xn−1

ghost−→ · · · ghost−→ X1
ghost−→ X0

f−→ X ,

composes to zero.
• Converse of the Ghost Lemma: X ∈ T !
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Summary

T = Db(modR)

Perfect complexes

If T ′ = 〈M ⊕ R〉∞ does not coincide with T , we have

〈M ⊕ R〉1 $ 〈M ⊕ R〉2 $ 〈M ⊕ R〉3 $ 〈M ⊕ R〉4 $ · · ·
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