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Setup

Let k be a commutative noetherian ring and 7 be a Hom-finite
skeletally small triangulated category over k. Examples to keep
in mind: D®(A), where:

e A = modR for a module finite k-algebra R; or
¢ A = cohX for projective scheme X over k.

Definition
A full subcategory S of T is thick if it is a triangulated
subcategory closed under direct summands.

Fact
S is thick if and only if there is a triangulated functor F: 7 — U
such that

S={XeT|FX=0}
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Generating thick subcategories

Let M € T. What does the smallest thick subcategory
containing M look like?

Definition

o (M) = (M) = the closure of {M[i] | i € Z} under products
and summands in 7.
e (M),.1 = summands of objects E appearing in a triangle

X—E— Y= X[] withX e (M)and Y € (M),.
o (M)os = Up>1(M)n, where (M)1 € (M) € (M)3 C -

Observation
(M) is the smallest thick subcategory of 7 containing M.
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Dimension

Definition (Rouquier)
The dimension of 7, denoted dim 7T, is the minimum n > 0 with

T = (M), forsome object M € T.

We put dim 7" = o if no such n exists.
Examples

@ dim7 < gldim R for 7 = D*(modR).
® dim7T <dim, R—1if kis afield and R is finite
dimensional over k.

Remark
Computing dim 7 is often not easy. How do we prove for
instance that 7 # (M), 1 forgivenn>0and M € 77
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Ghost maps

Definition
A morphism f: X — Y is a (covariant) M-ghost if

Homy(f,M[i]) =0 forallie Z.

That is:
x—1—y
0 lvg
Q2
Mi]
Remark

Traditionally, contravariant ghosts are considered
(i.e. morphisms such that Hom(M[i], f) = 0).
Example: 7 = D°(modR) and M = R, then

f is a contrav. R-ghost <= f induces zero map on homology.
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Ghost Lemma

Lemma (several versions in the literature)
Suppose that X € (M),. Then every composition

host host host host
g Xn g & )(1 g X

Xn —
of n consecutive M-ghosts ending at X vanishes.

Corollary
Suppose that T = (M),. Then every composition

ghost ghost ghost X ghost

Xn Xn 1 XO

of n consecutive M-ghosts vanishes.

Question
When does the converse hold? l.e. vanishing of compositions
=T = (M),?
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(M)-preenvelopes

Definition
A full subcategory C C T is preenveloping if each X admits a
morphism fyx: X — Cx with Cx € C such that

f

X Cx
3
v

VCeC

vg

Observation
If C = (M) and we consider the triangle

zZh x5 o — Z[1].

Then his an M-ghost.
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Converse of the Ghost Lemma—v1

Lemma (Beligiannis?)
Suppose that (M) is preenveloping in T. Then X € (M), if and
only if every composition

host host host host
Xn 25 X, 25 28 X, B x

of n consecutive M-ghosts ending at X vanishes.
Corollary
If (M) is preenveloping, then T = (M), if and only if every

host host host host
Xn 25 X 25 2B X 28 X,

vanishes.

Issue
For our 7 one cannot expect that (M) will be preenveloping!
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Nevertheless. ..

Theorem (S.-Oppermann)

Let R be a module finite algebra over a commutative noetherian
ring and let T = D°(modR). TFAEforM € T andn > 1:

O X c (M),

® Every composition

ghost ghost ghost ghost

Xn Xn X1 XO — X

where Xy, X1, ..., Xy are perfect complexes, vanishes.

Remarks
@ Perfect complex in D°(modR) is a complex isomorphic to a
bounded complex of finitely generated projective modules.
® gldim R < oo <= every complex in D’(modR) is perfect.
® There is a similar theorem for 7 = D°(cohX).
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The idea behind

e Consider a bigger triangulated category &/ = D~ (modR).
Objects are bounded above complexes

M: o MN-2 D N DN 00—

¢ We have some infinite products in / = D~ (modR).
Namely those of the form

[T M
i€Z
where n; is finite for each i and n; = 0 for i <« 0.

« Consequence: Suppose that M € T = D*’(modR). Then
(M), taken in Y = D~ (modR) (i.e. it may contain infinite
products of the form above), is preenveloping in /. So the
converse of the Ghost Lemma holds for M and /.
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The idea behind—continued

e We know: Given M, X € T = Db(modR) and n> 1, we
have X € (M), in U if and only if every composition

ghost ghost ghoqt ghost

Xn — Xn—_1 — X1 — Xp =X,

of M-ghost in U vanishes.

e Objects in 7°P are up to isomorphism the compact ones in
U°P. This allows us to get rid of infinite products in i, so
that

XeMpin <= XeM),inT.

¢ On the other hand, if we have a composition of M-ghosts
as above, we can w.l.o.g. assume that the complexes
Xo, - - -, Xn have projective components. If we have a
non-vanishing composition of M-ghosts, we get one also
by suitably truncating X, . . . X, to bounded complexes.
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The main result

Theorem (S.-Oppermann)

Let R be a module finite algebra over a commutative noetherian
ring and let T = D®(modR). If T C T is a thick subcategory
such thatdim 7’ < co and R € T then

T =T.

Remark

© The assumption “R € 7'” is necessary.

® Provided that dim 7 < oo, we have “if and only if” in the
theorem. This often happens in algebraic geometry and
representation theory.

® One can compute explicit examples of this phenomenon.
@ Again, there is a similar theorem for 7 = D°(cohX).
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Sketch of the proof

Suppose that 7/ = (M), forsome M € T and n > 1.
Since R € T, all perfect complexes belong to 7.
Thus, every composition

ghost ghost ghost ghost

Xn Xn X1 XO ’

with Xy, ..., X, perfect vanishes.
In particular, given any X € 7 and f: Xo — X, the chain

ghost ghost ghoqt ghost

Xn — Xn—1 — X1 — Xo —> X,

composes to zero.
Converse of the Ghost Lemma: X € T!
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