Generating the bounded derived category and perfect ghosts (joint with Steffen Oppermann)

Jan Šťovíček

Charles University in Prague

ÖMG-Tagung – CSASC 2011 September 26th, 2011

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Outline

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

1 Dimension and ghosts

2 A converse of the Ghost Lemma

3 Finite dimension as a saturation property

Outline

1 Dimension and ghosts

2 A converse of the Ghost Lemma

3 Finite dimension as a saturation property

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let *k* be a commutative noetherian ring and \mathcal{T} be a Hom-finite skeletally small triangulated category over *k*. Examples to keep in mind: $\mathbf{D}^{b}(\mathcal{A})$, where:

- A = modR for a module finite k-algebra R; or
- $\mathcal{A} = \operatorname{coh} \mathbb{X}$ for projective scheme \mathbb{X} over *k*.

Definition

A full subcategory \mathcal{S} of \mathcal{T} is thick if it is a triangulated subcategory closed under direct summands.

Fact

$$\mathcal{S} = \{ X \in \mathcal{T} \mid FX = 0 \}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let *k* be a commutative noetherian ring and \mathcal{T} be a Hom-finite skeletally small triangulated category over *k*. Examples to keep in mind: $\mathbf{D}^{\mathrm{b}}(\mathcal{A})$, where:

- A = modR for a module finite k-algebra R; or
- $\mathcal{A} = \operatorname{coh} \mathbb{X}$ for projective scheme \mathbb{X} over k.

Definition

A full subcategory \mathcal{S} of \mathcal{T} is thick if it is a triangulated subcategory closed under direct summands.

Fact

$$\mathcal{S} = \{ X \in \mathcal{T} \mid FX = 0 \}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let *k* be a commutative noetherian ring and \mathcal{T} be a Hom-finite skeletally small triangulated category over *k*. Examples to keep in mind: $\mathbf{D}^{b}(\mathcal{A})$, where:

- A = mod R for a module finite k-algebra R; or
- $\mathcal{A} = \operatorname{coh} \mathbb{X}$ for projective scheme \mathbb{X} over k.

Definition

A full subcategory \mathcal{S} of \mathcal{T} is thick if it is a triangulated subcategory closed under direct summands.

Fact

$$\mathcal{S} = \{ X \in \mathcal{T} \mid FX = 0 \}.$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Let *k* be a commutative noetherian ring and \mathcal{T} be a Hom-finite skeletally small triangulated category over *k*. Examples to keep in mind: $\mathbf{D}^{b}(\mathcal{A})$, where:

- A = modR for a module finite k-algebra R; or
- $\mathcal{A} = \operatorname{coh} \mathbb{X}$ for projective scheme \mathbb{X} over k.

Definition

A full subcategory \mathcal{S} of \mathcal{T} is thick if it is a triangulated subcategory closed under direct summands.

Fact

$$\mathcal{S} = \{ X \in \mathcal{T} \mid FX = 0 \}.$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Let *k* be a commutative noetherian ring and \mathcal{T} be a Hom-finite skeletally small triangulated category over *k*. Examples to keep in mind: $\mathbf{D}^{b}(\mathcal{A})$, where:

- A = modR for a module finite k-algebra R; or
- $\mathcal{A} = \operatorname{coh} \mathbb{X}$ for projective scheme \mathbb{X} over *k*.

Definition

A full subcategory \mathcal{S} of \mathcal{T} is thick if it is a triangulated subcategory closed under direct summands.

Fact

$$\mathcal{S} = \{ X \in \mathcal{T} \mid FX = 0 \}.$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Let *k* be a commutative noetherian ring and \mathcal{T} be a Hom-finite skeletally small triangulated category over *k*. Examples to keep in mind: $\mathbf{D}^{b}(\mathcal{A})$, where:

- A = modR for a module finite k-algebra R; or
- $\mathcal{A} = \operatorname{coh} \mathbb{X}$ for projective scheme \mathbb{X} over *k*.

Definition

A full subcategory \mathcal{S} of \mathcal{T} is thick if it is a triangulated subcategory closed under direct summands.

Fact

$$\mathcal{S} = \{ X \in \mathcal{T} \mid FX = \mathbf{0} \}.$$

Let *k* be a commutative noetherian ring and \mathcal{T} be a Hom-finite skeletally small triangulated category over *k*. Examples to keep in mind: $\mathbf{D}^{b}(\mathcal{A})$, where:

- A = modR for a module finite k-algebra R; or
- $\mathcal{A} = \operatorname{coh} \mathbb{X}$ for projective scheme \mathbb{X} over *k*.

Definition

A full subcategory \mathcal{S} of \mathcal{T} is thick if it is a triangulated subcategory closed under direct summands.

Fact

$$\mathcal{S} = \{ X \in \mathcal{T} \mid FX = 0 \}.$$

Let $M \in \mathcal{T}$. What does the smallest thick subcategory containing *M* look like?

Definition

- ⟨*M*⟩ = ⟨*M*⟩₁ = the closure of {*M*[*i*] | *i* ∈ ℤ} under products and summands in *T*.
- $\langle M \rangle_{n+1}$ = summands of objects *E* appearing in a triangle

 $X \to E \to Y \to X[1]$ with $X \in \langle M \rangle$ and $Y \in \langle M \rangle_n$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• $\langle M \rangle_{\infty} = \bigcup_{n \ge 1} \langle M \rangle_n$, where $\langle M \rangle_1 \subseteq \langle M \rangle_2 \subseteq \langle M \rangle_3 \subseteq \cdots$

Observation

Let $M \in \mathcal{T}$. What does the smallest thick subcategory containing M look like?

Definition

- ⟨*M*⟩ = ⟨*M*⟩₁ = the closure of {*M*[*i*] | *i* ∈ ℤ} under products and summands in *T*.
- $\langle M \rangle_{n+1}$ = summands of objects *E* appearing in a triangle

 $X \to E \to Y \to X[1]$ with $X \in \langle M \rangle$ and $Y \in \langle M \rangle_n$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• $\langle M \rangle_{\infty} = \bigcup_{n \ge 1} \langle M \rangle_n$, where $\langle M \rangle_1 \subseteq \langle M \rangle_2 \subseteq \langle M \rangle_3 \subseteq \cdots$

Observation

Let $M \in \mathcal{T}$. What does the smallest thick subcategory containing *M* look like?

Definition

- ⟨*M*⟩ = ⟨*M*⟩₁ = the closure of {*M*[*i*] | *i* ∈ ℤ} under products and summands in *T*.
- $\langle M \rangle_{n+1}$ = summands of objects *E* appearing in a triangle

 $X \to E \to Y \to X[1]$ with $X \in \langle M \rangle$ and $Y \in \langle M \rangle_n$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• $\langle M \rangle_{\infty} = \bigcup_{n \ge 1} \langle M \rangle_n$, where $\langle M \rangle_1 \subseteq \langle M \rangle_2 \subseteq \langle M \rangle_3 \subseteq \cdots$

Observation

Let $M \in \mathcal{T}$. What does the smallest thick subcategory containing *M* look like?

Definition

- ⟨*M*⟩ = ⟨*M*⟩₁ = the closure of {*M*[*i*] | *i* ∈ ℤ} under products and summands in *T*.
- $\langle M \rangle_{n+1}$ = summands of objects *E* appearing in a triangle

 $X \to E \to Y \to X[1]$ with $X \in \langle M \rangle$ and $Y \in \langle M \rangle_n$.

• $\langle M \rangle_{\infty} = \bigcup_{n \ge 1} \langle M \rangle_n$, where $\langle M \rangle_1 \subseteq \langle M \rangle_2 \subseteq \langle M \rangle_3 \subseteq \cdots$

Observation

Let $M \in \mathcal{T}$. What does the smallest thick subcategory containing *M* look like?

Definition

- ⟨*M*⟩ = ⟨*M*⟩₁ = the closure of {*M*[*i*] | *i* ∈ ℤ} under products and summands in *T*.
- $\langle M \rangle_{n+1}$ = summands of objects *E* appearing in a triangle

 $X \to E \to Y \to X[1]$ with $X \in \langle M \rangle$ and $Y \in \langle M \rangle_n$.

• $\langle M \rangle_{\infty} = \bigcup_{n \ge 1} \langle M \rangle_n$, where $\langle M \rangle_1 \subseteq \langle M \rangle_2 \subseteq \langle M \rangle_3 \subseteq \cdots$

Observation

Let $M \in \mathcal{T}$. What does the smallest thick subcategory containing *M* look like?

Definition

- ⟨*M*⟩ = ⟨*M*⟩₁ = the closure of {*M*[*i*] | *i* ∈ ℤ} under products and summands in *T*.
- $\langle M \rangle_{n+1}$ = summands of objects *E* appearing in a triangle

 $X \to E \to Y \to X[1]$ with $X \in \langle M \rangle$ and $Y \in \langle M \rangle_n$.

• $\langle M \rangle_{\infty} = \bigcup_{n \ge 1} \langle M \rangle_n$, where $\langle M \rangle_1 \subseteq \langle M \rangle_2 \subseteq \langle M \rangle_3 \subseteq \cdots$

Observation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition (Rouquier)

The dimension of \mathcal{T} , denoted dim \mathcal{T} , is the minimum $n \ge 0$ with

 $\mathcal{T} = \langle M \rangle_{n+1}$ for some object $M \in \mathcal{T}$.

We put dim $T = \infty$ if no such *n* exists.

Examples

- 1 dim $\mathcal{T} \leq$ gldim R for $\mathcal{T} = \mathbf{D}^{\mathrm{b}}(\mathrm{mod}R)$.
- 2 dim $T \leq \dim_k R 1$ if k is a field and R is finite dimensional over k.

Remark

Computing dim \mathcal{T} is often not easy. How do we prove for instance that $\mathcal{T} \neq \langle M \rangle_{n+1}$ for given $n \geq 0$ and $M \in \mathcal{T}$?

(日) (日) (日) (日) (日) (日) (日)

Definition (Rouquier)

The dimension of \mathcal{T} , denoted dim \mathcal{T} , is the minimum $n \ge 0$ with

 $\mathcal{T} = \langle M \rangle_{n+1}$ for some object $M \in \mathcal{T}$.

We put dim $T = \infty$ if no such *n* exists.

Examples

- 1 dim $\mathcal{T} \leq$ gldim R for $\mathcal{T} = \mathbf{D}^{\mathrm{b}}(\mathrm{mod}R)$.
- 2 dim $T \leq \dim_k R 1$ if k is a field and R is finite dimensional over k.

Remark

Computing dim \mathcal{T} is often not easy. How do we prove for instance that $\mathcal{T} \neq \langle M \rangle_{n+1}$ for given $n \geq 0$ and $M \in \mathcal{T}$?

(日) (日) (日) (日) (日) (日) (日)

Definition (Rouquier)

The dimension of \mathcal{T} , denoted dim \mathcal{T} , is the minimum $n \ge 0$ with

 $\mathcal{T} = \langle M \rangle_{n+1}$ for some object $M \in \mathcal{T}$.

We put dim $T = \infty$ if no such *n* exists.

Examples

- 1 dim $\mathcal{T} \leq$ gldim R for $\mathcal{T} = \mathbf{D}^{\mathrm{b}}(\mathrm{mod}R)$.
- 2 dim $T \leq \dim_k R 1$ if k is a field and R is finite dimensional over k.

Remark Computing dim \mathcal{T} is often not easy. How do we prove for instance that $\mathcal{T} \neq \langle M \rangle_{n+1}$ for given $n \geq 0$ and $M \in \mathcal{T}$?

(日) (日) (日) (日) (日) (日) (日)

Definition (Rouquier)

The dimension of \mathcal{T} , denoted dim \mathcal{T} , is the minimum $n \ge 0$ with

$$\mathcal{T} = \langle M \rangle_{n+1}$$
 for some object $M \in \mathcal{T}$.

We put dim $T = \infty$ if no such *n* exists.

Examples

1 dim $\mathcal{T} \leq$ gldim R for $\mathcal{T} = \mathbf{D}^{\mathrm{b}}(\mathrm{mod}R)$.

2 dim $T \leq \dim_k R - 1$ if k is a field and R is finite dimensional over k.

Remark Computing dim \mathcal{T} is often not easy. How do we prove for instance that $\mathcal{T} \neq \langle M \rangle_{n+1}$ for given $n \ge 0$ and $M \in \mathcal{T}$?

(日) (日) (日) (日) (日) (日) (日)

Definition (Rouquier)

The dimension of \mathcal{T} , denoted dim \mathcal{T} , is the minimum $n \ge 0$ with

$$\mathcal{T} = \langle M \rangle_{n+1}$$
 for some object $M \in \mathcal{T}$.

We put dim $T = \infty$ if no such *n* exists.

Examples

- 1 dim $\mathcal{T} \leq$ gldim R for $\mathcal{T} = \mathbf{D}^{\mathrm{b}}(\mathrm{mod}R)$.
- 2 dim $T \leq \dim_k R 1$ if k is a field and R is finite dimensional over k.

Remark

Computing dim T is often not easy. How do we prove for instance that $T \neq \langle M \rangle_{n+1}$ for given $n \ge 0$ and $M \in T$?

(日) (日) (日) (日) (日) (日) (日)

Definition (Rouquier)

The dimension of \mathcal{T} , denoted dim \mathcal{T} , is the minimum $n \ge 0$ with

$$\mathcal{T} = \langle M \rangle_{n+1}$$
 for some object $M \in \mathcal{T}$.

We put dim $T = \infty$ if no such *n* exists.

Examples

- 1 dim $\mathcal{T} \leq$ gldim R for $\mathcal{T} = \mathbf{D}^{\mathrm{b}}(\mathrm{mod}R)$.
- 2 dim $T \leq \dim_k R 1$ if k is a field and R is finite dimensional over k.

Remark Computing dim \mathcal{T} is often not easy. How do we prove for

instance that $\mathcal{T} \neq \langle M \rangle_{n+1}$ for given $n \ge 0$ and $M \in \mathcal{T}$?

Definition (Rouquier)

The dimension of \mathcal{T} , denoted dim \mathcal{T} , is the minimum $n \ge 0$ with

$$\mathcal{T} = \langle M \rangle_{n+1}$$
 for some object $M \in \mathcal{T}$.

We put dim $T = \infty$ if no such *n* exists.

Examples

- 1 dim $\mathcal{T} \leq$ gldim R for $\mathcal{T} = \mathbf{D}^{\mathrm{b}}(\mathrm{mod}R)$.
- 2 dim $T \leq \dim_k R 1$ if k is a field and R is finite dimensional over k.

Remark

Computing dim \mathcal{T} is often not easy. How do we prove for instance that $\mathcal{T} \neq \langle M \rangle_{n+1}$ for given $n \ge 0$ and $M \in \mathcal{T}$?

(ロ) (同) (三) (三) (三) (○) (○)

Definition A morphism $f: X \to Y$ is a (covariant) *M*-ghost if

```
\operatorname{Hom}_{\mathcal{T}}(f, M[i]) = 0 \text{ for all } i \in \mathbb{Z}.
```

That is:

Remark

Traditionally, contravariant ghosts are considered (i.e. morphisms such that $\text{Hom}_{\mathcal{T}}(M[i], f) = 0$). Example: $\mathcal{T} = \mathbf{D}^{b}(\text{mod}R)$ and M = R, then

(ロ) (同) (三) (三) (三) (○) (○)

Definition

A morphism $f: X \to Y$ is a (covariant) *M*-ghost if

$$\operatorname{Hom}_{\mathcal{T}}(f, M[i]) = 0 \text{ for all } i \in \mathbb{Z}.$$

That is:

Remark

Traditionally, contravariant ghosts are considered (i.e. morphisms such that $\text{Hom}_{\mathcal{T}}(M[i], f) = 0$). Example: $\mathcal{T} = \mathbf{D}^{\text{b}}(\text{mod}R)$ and M = R, then

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Definition

A morphism $f: X \to Y$ is a (covariant) *M*-ghost if

$$\operatorname{Hom}_{\mathcal{T}}(f, M[i]) = 0 \text{ for all } i \in \mathbb{Z}.$$

That is:

Remark

Traditionally, contravariant ghosts are considered (i.e. morphisms such that $\text{Hom}_{\mathcal{T}}(M[i], f) = 0$). Example: $\mathcal{T} = \mathbf{D}^{\text{b}}(\text{mod}R)$ and M = R, then

(ロ) (同) (三) (三) (三) (○) (○)

Definition

A morphism $f: X \to Y$ is a (covariant) *M*-ghost if

$$\operatorname{Hom}_{\mathcal{T}}(f, M[i]) = 0 \text{ for all } i \in \mathbb{Z}.$$

That is:

Remark

Traditionally, contravariant ghosts are considered

(i.e. morphisms such that $Hom_T(M[i], f) = 0$). Example: $T = \mathbf{D}^b(modR)$ and M = R, then

(ロ) (同) (三) (三) (三) (○) (○)

Definition

A morphism $f: X \to Y$ is a (covariant) *M*-ghost if

$$\operatorname{Hom}_{\mathcal{T}}(f, M[i]) = 0 \text{ for all } i \in \mathbb{Z}.$$

That is:

Remark

Traditionally, contravariant ghosts are considered (i.e. morphisms such that $\text{Hom}_{\mathcal{T}}(M[i], f) = 0$). Example: $\mathcal{T} = D^{b}(\text{mod}R)$ and M = R, then

(ロ) (同) (三) (三) (三) (○) (○)

Definition

A morphism $f: X \to Y$ is a (covariant) *M*-ghost if

$$\operatorname{Hom}_{\mathcal{T}}(f, M[i]) = 0 \text{ for all } i \in \mathbb{Z}.$$

That is:

Remark

Traditionally, contravariant ghosts are considered (i.e. morphisms such that $\text{Hom}_{\mathcal{T}}(M[i], f) = 0$). Example: $\mathcal{T} = \mathbf{D}^{\text{b}}(\text{mod}R)$ and M = R, then

Definition

A morphism $f: X \to Y$ is a (covariant) *M*-ghost if

$$\operatorname{Hom}_{\mathcal{T}}(f, M[i]) = 0 \text{ for all } i \in \mathbb{Z}.$$

That is:

Remark

Traditionally, contravariant ghosts are considered (i.e. morphisms such that $\text{Hom}_{\mathcal{T}}(M[i], f) = 0$). Example: $\mathcal{T} = \mathbf{D}^{b}(\text{mod}R)$ and M = R, then

Lemma (several versions in the literature) Suppose that $X \in \langle M \rangle_n$. Then every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X$$

of n consecutive M-ghosts ending at X vanishes.

Corollary

Suppose that $T = \langle M \rangle_n$. Then every composition

 $X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0$

of n consecutive M-ghosts vanishes.

Question

Lemma (several versions in the literature) Suppose that $X \in \langle M \rangle_n$. Then every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X$$

of n consecutive M-ghosts ending at X vanishes.

Corollary Suppose that $T = \langle M \rangle_n$. Then every composition

 $X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0$

of n consecutive M-ghosts vanishes.

Question

Lemma (several versions in the literature) Suppose that $X \in \langle M \rangle_n$. Then every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X$$

of n consecutive M-ghosts ending at X vanishes.

Corollary Suppose that $T = \langle M \rangle_n$. Then every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0$$

of n consecutive M-ghosts vanishes.

Question

Lemma (several versions in the literature) Suppose that $X \in \langle M \rangle_n$. Then every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X$$

of n consecutive M-ghosts ending at X vanishes.

Corollary

Suppose that $\mathcal{T} = \langle M \rangle_n$. Then every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0$$

of n consecutive M-ghosts vanishes.

Question

Lemma (several versions in the literature) Suppose that $X \in \langle M \rangle_n$. Then every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X$$

of n consecutive M-ghosts ending at X vanishes.

Corollary

Suppose that $\mathcal{T} = \langle M \rangle_n$. Then every composition

 $X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0$

of n consecutive M-ghosts vanishes.

Question

When does the converse hold? I.e. vanishing of compositions

 $\Longrightarrow \mathcal{T} = \langle M \rangle_n$?

Lemma (several versions in the literature) Suppose that $X \in \langle M \rangle_n$. Then every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X$$

of n consecutive M-ghosts ending at X vanishes.

Corollary

Suppose that $\mathcal{T} = \langle M \rangle_n$. Then every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0$$

of n consecutive M-ghosts vanishes.

Question
Outline

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Dimension and ghosts

2 A converse of the Ghost Lemma

3 Finite dimension as a saturation property

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Definition

A full subcategory $C \subseteq T$ is preenveloping if each X admits a morphism $f_X : X \to C_X$ with $C_X \in C$ such that

Observation If $C = \langle M \rangle$ and we consider the triangle

$$Z \xrightarrow{h} X \xrightarrow{f} C_X \to Z[1].$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Definition

A full subcategory $C \subseteq T$ is preenveloping if each X admits a morphism $f_X : X \to C_X$ with $C_X \in C$ such that

Observation If $C = \langle M \rangle$ and we consider the triangle

$$Z \xrightarrow{h} X \xrightarrow{f} C_X \to Z[1].$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Definition

A full subcategory $C \subseteq T$ is preenveloping if each X admits a morphism $f_X : X \to C_X$ with $C_X \in C$ such that

Observation If $C = \langle M \rangle$ and we consider the triangle

$$Z \xrightarrow{h} X \xrightarrow{f} C_X \to Z[1].$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition

A full subcategory $C \subseteq T$ is preenveloping if each X admits a morphism $f_X : X \to C_X$ with $C_X \in C$ such that

Observation If $C = \langle M \rangle$ and we consider the triangle

$$Z \xrightarrow{h} X \xrightarrow{f} C_X \to Z[1].$$

(ロ) (同) (三) (三) (三) (○) (○)

Definition

A full subcategory $C \subseteq T$ is preenveloping if each X admits a morphism $f_X : X \to C_X$ with $C_X \in C$ such that

Observation

If $C = \langle M \rangle$ and we consider the triangle

$$Z \xrightarrow{h} X \xrightarrow{f} C_X \to Z[1].$$

Lemma (Beligiannis?)

Suppose that $\langle M \rangle$ is preenveloping in T. Then $X \in \langle M \rangle_n$ if and only if every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X$$

of n consecutive M-ghosts ending at X vanishes.

Corollary

If $\langle M \rangle$ is preenveloping, then $\mathcal{T} = \langle M \rangle_n$ if and only if every

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0$$

vanishes.

Issue For our T one cannot expect that $\langle M \rangle$ will be preenveloping!

Lemma (Beligiannis?)

Suppose that $\langle M \rangle$ is preenveloping in \mathcal{T} . Then $X \in \langle M \rangle_n$ if and only if every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X$$

of n consecutive M-ghosts ending at X vanishes.

Corollary

If $\langle M \rangle$ is preenveloping, then $\mathcal{T} = \langle M \rangle_n$ if and only if every

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0$$

vanishes.

Issue For our T one cannot expect that $\langle M \rangle$ will be preenveloping!

Lemma (Beligiannis?)

Suppose that $\langle M \rangle$ is preenveloping in T. Then $X \in \langle M \rangle_n$ if and only if every composition

$$X_n \stackrel{\text{ghost}}{\longrightarrow} X_{n-1} \stackrel{\text{ghost}}{\longrightarrow} \cdots \stackrel{\text{ghost}}{\longrightarrow} X_1 \stackrel{\text{ghost}}{\longrightarrow} X$$

of n consecutive M-ghosts ending at X vanishes.

Corollary

If $\langle M\rangle$ is preenveloping, then $\mathcal{T}=\langle M\rangle_n$ if and only if every

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0$$

vanishes.

Issue

For our \mathcal{T} one cannot expect that $\langle M \rangle$ will be preenveloping!

Lemma (Beligiannis?)

Suppose that $\langle M \rangle$ is preenveloping in T. Then $X \in \langle M \rangle_n$ if and only if every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X$$

of n consecutive M-ghosts ending at X vanishes.

Corollary

If $\langle M \rangle$ is preenveloping, then $\mathcal{T} = \langle M \rangle_n$ if and only if every

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0$$

vanishes.

Issue

For our \mathcal{T} one cannot expect that $\langle M \rangle$ will be preenveloping!

Theorem (Š.-Oppermann)

Let *R* be a module finite algebra over a commutative noetherian ring and let $T = \mathbf{D}^{b}(\text{mod}R)$. TFAE for $M \in T$ and $n \ge 1$:

 $X \in \langle M \rangle_n.$

2 Every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0 \longrightarrow X,$$

where X_0, X_1, \ldots, X_n are perfect complexes, vanishes.

- Perfect complex in D^b(modR) is a complex isomorphic to a bounded complex of finitely generated projective modules.
- 2 gldim $R < \infty \iff$ every complex in $D^{b}(mod R)$ is perfect.
- **③** There is a similar theorem for $T = D^{b}(\operatorname{coh} X)$.

Theorem (Š.-Oppermann)

Let *R* be a module finite algebra over a commutative noetherian ring and let $T = \mathbf{D}^{b}(\text{mod}R)$. TFAE for $M \in T$ and $n \ge 1$:

- $1 X \in \langle M \rangle_n.$
- 2 Every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0 \longrightarrow X,$$

where X_0, X_1, \ldots, X_n are perfect complexes, vanishes.

- Perfect complex in D^b(modR) is a complex isomorphic to a bounded complex of finitely generated projective modules.
- 2 gldim $R < \infty \iff$ every complex in $D^{b}(mod R)$ is perfect.
- **3** There is a similar theorem for $T = \mathbf{D}^{b}(\operatorname{coh} \mathbb{X})$.

Theorem (Š.-Oppermann)

Let *R* be a module finite algebra over a commutative noetherian ring and let $T = \mathbf{D}^{b}(\text{mod}R)$. TFAE for $M \in T$ and $n \ge 1$:

- $1 X \in \langle M \rangle_n.$
- 2 Every composition

$$X_n \stackrel{\text{ghost}}{\longrightarrow} X_{n-1} \stackrel{\text{ghost}}{\longrightarrow} \cdots \stackrel{\text{ghost}}{\longrightarrow} X_1 \stackrel{\text{ghost}}{\longrightarrow} X_0 \longrightarrow X,$$

where X_0, X_1, \ldots, X_n are perfect complexes, vanishes.

- Perfect complex in D^b(modR) is a complex isomorphic to a bounded complex of finitely generated projective modules.
- 2 gldim $R < \infty \iff$ every complex in $D^{b}(mod R)$ is perfect.
- **3** There is a similar theorem for $\mathcal{T} = \mathbf{D}^{\mathsf{b}}(\mathsf{coh}\mathbb{X})$.

Theorem (Š.-Oppermann)

Let *R* be a module finite algebra over a commutative noetherian ring and let $T = \mathbf{D}^{b}(\text{mod}R)$. TFAE for $M \in T$ and $n \ge 1$:

- $1 X \in \langle M \rangle_n.$
- 2 Every composition

$$X_n \stackrel{\text{ghost}}{\longrightarrow} X_{n-1} \stackrel{\text{ghost}}{\longrightarrow} \cdots \stackrel{\text{ghost}}{\longrightarrow} X_1 \stackrel{\text{ghost}}{\longrightarrow} X_0 \longrightarrow X,$$

where X_0, X_1, \ldots, X_n are perfect complexes, vanishes.

- Perfect complex in D^b(modR) is a complex isomorphic to a bounded complex of finitely generated projective modules.
- 2 gldim $R < \infty \iff$ every complex in $\mathbf{D}^{\mathsf{b}}(\mathsf{mod}R)$ is perfect.
- **3** There is a similar theorem for $T = \mathbf{D}^{b}(\operatorname{coh} \mathbb{X})$.

Theorem (Š.-Oppermann)

Let *R* be a module finite algebra over a commutative noetherian ring and let $T = \mathbf{D}^{b}(\text{mod}R)$. TFAE for $M \in T$ and $n \ge 1$:

- $1 X \in \langle M \rangle_n.$
- 2 Every composition

$$X_n \stackrel{\text{ghost}}{\longrightarrow} X_{n-1} \stackrel{\text{ghost}}{\longrightarrow} \cdots \stackrel{\text{ghost}}{\longrightarrow} X_1 \stackrel{\text{ghost}}{\longrightarrow} X_0 \longrightarrow X,$$

where X_0, X_1, \ldots, X_n are perfect complexes, vanishes.

Remarks

- Perfect complex in D^b(modR) is a complex isomorphic to a bounded complex of finitely generated projective modules.
- 2 gldim $R < \infty \iff$ every complex in $\mathbf{D}^{b}(\text{mod}R)$ is perfect.

3 There is a similar theorem for $T = \mathbf{D}^{b}(\operatorname{coh} \mathbb{X})$.

シック・ 川 ・ 川田・ 小田・ 小田・

Theorem (Š.-Oppermann)

Let *R* be a module finite algebra over a commutative noetherian ring and let $T = \mathbf{D}^{b}(\text{mod}R)$. TFAE for $M \in T$ and $n \ge 1$:

- $1 X \in \langle M \rangle_n.$
- 2 Every composition

$$X_n \stackrel{\text{ghost}}{\longrightarrow} X_{n-1} \stackrel{\text{ghost}}{\longrightarrow} \cdots \stackrel{\text{ghost}}{\longrightarrow} X_1 \stackrel{\text{ghost}}{\longrightarrow} X_0 \longrightarrow X,$$

where X_0, X_1, \ldots, X_n are perfect complexes, vanishes.

- Perfect complex in D^b(modR) is a complex isomorphic to a bounded complex of finitely generated projective modules.
- 2 gldim $R < \infty \iff$ every complex in $\mathbf{D}^{b}(\text{mod}R)$ is perfect.
- **3** There is a similar theorem for $\mathcal{T} = \mathbf{D}^{b}(\operatorname{coh}\mathbb{X})$.

Consider a bigger triangulated category U = D⁻(modR).
Objects are bounded above complexes

$$M: \cdots \longrightarrow M^{N-2} \xrightarrow{\partial} M^{N-1} \xrightarrow{\partial} M^N \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$$

We have some infinite products in U = D⁻(modR).
Namely those of the form

$$\prod_{i\in\mathbb{Z}}M[i]^{n_i}$$

where n_i is finite for each *i* and $n_i = 0$ for $i \ll 0$.

Consider a bigger triangulated category U = D⁻(modR).
Objects are bounded above complexes

$$M: \cdots \longrightarrow M^{N-2} \xrightarrow{\partial} M^{N-1} \xrightarrow{\partial} M^N \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$$

We have some infinite products in U = D⁻(modR).
Namely those of the form

$$\prod_{i\in\mathbb{Z}}M[i]^{n_i}$$

where n_i is finite for each *i* and $n_i = 0$ for $i \ll 0$.

Consider a bigger triangulated category U = D⁻(modR).
Objects are bounded above complexes

$$M: \cdots \longrightarrow M^{N-2} \xrightarrow{\partial} M^{N-1} \xrightarrow{\partial} M^N \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$$

We have some infinite products in U = D⁻(modR).
Namely those of the form

$$\prod_{i\in\mathbb{Z}}M[i]^{n_i}$$

where n_i is finite for each *i* and $n_i = 0$ for $i \ll 0$.

Consider a bigger triangulated category U = D⁻(modR).
Objects are bounded above complexes

$$M: \cdots \longrightarrow M^{N-2} \xrightarrow{\partial} M^{N-1} \xrightarrow{\partial} M^N \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$$

We have some infinite products in U = D⁻(modR).
Namely those of the form

$$\prod_{i\in\mathbb{Z}}M[i]^{n_i}$$

where n_i is finite for each *i* and $n_i = 0$ for $i \ll 0$.

• Consequence: Suppose that $M \in \mathcal{T} = \mathbf{D}^{b}(\text{mod}R)$. Then

 $\langle M \rangle$, taken in $\mathcal{U} = \mathbf{D}^- (\text{mod}R)$ (i.e. it may contain infinite products of the form above), is preenveloping in \mathcal{U} . So the converse of the Ghost Lemma holds for M and \mathcal{U} .

Consider a bigger triangulated category U = D⁻(modR).
Objects are bounded above complexes

$$M: \cdots \longrightarrow M^{N-2} \xrightarrow{\partial} M^{N-1} \xrightarrow{\partial} M^N \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$$

We have some infinite products in U = D⁻(modR).
Namely those of the form

$$\prod_{i\in\mathbb{Z}}M[i]^{n_i}$$

where n_i is finite for each *i* and $n_i = 0$ for $i \ll 0$.

Consider a bigger triangulated category U = D⁻(modR).
Objects are bounded above complexes

$$M: \cdots \longrightarrow M^{N-2} \xrightarrow{\partial} M^{N-1} \xrightarrow{\partial} M^N \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$$

We have some infinite products in U = D⁻(modR).
Namely those of the form

$$\prod_{i\in\mathbb{Z}}M[i]^{n_i}$$

where n_i is finite for each *i* and $n_i = 0$ for $i \ll 0$.

Consider a bigger triangulated category U = D⁻(modR).
Objects are bounded above complexes

$$M: \cdots \longrightarrow M^{N-2} \xrightarrow{\partial} M^{N-1} \xrightarrow{\partial} M^N \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$$

We have some infinite products in U = D⁻(modR).
Namely those of the form

$$\prod_{i\in\mathbb{Z}}M[i]^{n_i}$$

where n_i is finite for each *i* and $n_i = 0$ for $i \ll 0$.

We know: Given M, X ∈ T = D^b(modR) and n ≥ 1, we have X ∈ ⟨M⟩_n in U if and only if every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0 = X,$$

of M-ghost in \mathcal{U} vanishes.

 Objects in T^{op} are up to isomorphism the compact ones in U^{op}. This allows us to get rid of infinite products in U, so that

$$X \in \langle M \rangle_n$$
 in $\mathcal{U} \iff X \in \langle M \rangle_n$ in \mathcal{T} .

On the other hand, if we have a composition of *M*-ghosts as above, we can w.l.o.g. assume that the complexes X₀,..., X_n have projective components. If we have a non-vanishing composition of *M*-ghosts, we get one also by suitably truncating X₀,... X_n to bounded complexes.

We know: Given M, X ∈ T = D^b(modR) and n ≥ 1, we have X ∈ ⟨M⟩_n in U if and only if every composition

$$X_n \stackrel{\text{ghost}}{\longrightarrow} X_{n-1} \stackrel{\text{ghost}}{\longrightarrow} \cdots \stackrel{\text{ghost}}{\longrightarrow} X_1 \stackrel{\text{ghost}}{\longrightarrow} X_0 = X,$$

of *M*-ghost in \mathcal{U} vanishes.

Objects in T^{op} are up to isomorphism the compact ones in U^{op}. This allows us to get rid of infinite products in U, so that

$$X \in \langle M \rangle_n$$
 in $\mathcal{U} \iff X \in \langle M \rangle_n$ in \mathcal{T} .

On the other hand, if we have a composition of *M*-ghosts as above, we can w.l.o.g. assume that the complexes X₀,..., X_n have projective components. If we have a non-vanishing composition of *M*-ghosts, we get one also by suitably truncating X₀,... X_n to bounded complexes.

We know: Given M, X ∈ T = D^b(modR) and n ≥ 1, we have X ∈ ⟨M⟩_n in U if and only if every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0 = X,$$

of *M*-ghost in \mathcal{U} vanishes.

• Objects in \mathcal{T}^{op} are up to isomorphism the compact ones in \mathcal{U}^{op} . This allows us to get rid of infinite products in \mathcal{U} , so that

$$X \in \langle M \rangle_n$$
 in $\mathcal{U} \iff X \in \langle M \rangle_n$ in \mathcal{T} .

We know: Given *M*, *X* ∈ *T* = D^b(mod*R*) and *n* ≥ 1, we have *X* ∈ ⟨*M*⟩_n in *U* if and only if every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0 = X,$$

of *M*-ghost in \mathcal{U} vanishes.

• Objects in \mathcal{T}^{op} are up to isomorphism the compact ones in \mathcal{U}^{op} . This allows us to get rid of infinite products in \mathcal{U} , so that

$$X \in \langle M \rangle_n$$
 in $\mathcal{U} \iff X \in \langle M \rangle_n$ in \mathcal{T} .

On the other hand, if we have a composition of *M*-ghosts as above, we can w.l.o.g. assume that the complexes X₀,..., X_n have projective components. If we have a non-vanishing composition of *M*-ghosts, we get one also by suitably truncating X₀,... X_n to bounded complexes.

We know: Given M, X ∈ T = D^b(modR) and n ≥ 1, we have X ∈ ⟨M⟩_n in U if and only if every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0 = X,$$

of *M*-ghost in \mathcal{U} vanishes.

• Objects in \mathcal{T}^{op} are up to isomorphism the compact ones in \mathcal{U}^{op} . This allows us to get rid of infinite products in \mathcal{U} , so that

$X \in \langle M \rangle_n$ in $\mathcal{U} \iff X \in \langle M \rangle_n$ in \mathcal{T} .

On the other hand, if we have a composition of *M*-ghosts as above, we can w.l.o.g. assume that the complexes X₀,..., X_n have projective components. If we have a non-vanishing composition of *M*-ghosts, we get one also by suitably truncating X₀,... X_n to bounded complexes.

We know: Given *M*, *X* ∈ *T* = D^b(mod*R*) and *n* ≥ 1, we have *X* ∈ ⟨*M*⟩_n in *U* if and only if every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0 = X,$$

of *M*-ghost in \mathcal{U} vanishes.

• Objects in \mathcal{T}^{op} are up to isomorphism the compact ones in \mathcal{U}^{op} . This allows us to get rid of infinite products in \mathcal{U} , so that

$$X \in \langle M \rangle_n$$
 in $\mathcal{U} \iff X \in \langle M \rangle_n$ in \mathcal{T} .

We know: Given M, X ∈ T = D^b(modR) and n ≥ 1, we have X ∈ ⟨M⟩_n in U if and only if every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0 = X,$$

of *M*-ghost in \mathcal{U} vanishes.

• Objects in \mathcal{T}^{op} are up to isomorphism the compact ones in \mathcal{U}^{op} . This allows us to get rid of infinite products in \mathcal{U} , so that

$$X \in \langle M \rangle_n$$
 in $\mathcal{U} \iff X \in \langle M \rangle_n$ in \mathcal{T} .

We know: Given *M*, *X* ∈ *T* = D^b(mod*R*) and *n* ≥ 1, we have *X* ∈ ⟨*M*⟩_n in *U* if and only if every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0 = X,$$

of *M*-ghost in \mathcal{U} vanishes.

Objects in T^{op} are up to isomorphism the compact ones in U^{op}. This allows us to get rid of infinite products in U, so that

$$X \in \langle M \rangle_n$$
 in $\mathcal{U} \iff X \in \langle M \rangle_n$ in \mathcal{T} .

We know: Given M, X ∈ T = D^b(modR) and n ≥ 1, we have X ∈ ⟨M⟩_n in U if and only if every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0 = X,$$

of *M*-ghost in \mathcal{U} vanishes.

• Objects in \mathcal{T}^{op} are up to isomorphism the compact ones in \mathcal{U}^{op} . This allows us to get rid of infinite products in \mathcal{U} , so that

$$X \in \langle M \rangle_n$$
 in $\mathcal{U} \iff X \in \langle M \rangle_n$ in \mathcal{T} .

On the other hand, if we have a composition of *M*-ghosts as above, we can w.l.o.g. assume that the complexes X₀,..., X_n have projective components. If we have a non-vanishing composition of *M*-ghosts, we get one also by suitably truncating X₀,..., X_n to bounded complexes.

Outline

Dimension and ghosts

2 A converse of the Ghost Lemma

3 Finite dimension as a saturation property

▲□▶▲□▶▲□▶▲□▶ □ のへで

The main result

Theorem (Š.-Oppermann)

Let *R* be a module finite algebra over a commutative noetherian ring and let $\mathcal{T} = \mathbf{D}^{b}(\text{mod}R)$. If $\mathcal{T}' \subseteq \mathcal{T}$ is a thick subcategory such that dim $\mathcal{T}' < \infty$ and $R \in \mathcal{T}'$ then

$\mathcal{T}' = \mathcal{T}.$

- 1 The assumption " $R \in \mathcal{T}$ " is necessary.
- 2 Provided that dim $T < \infty$, we have "if and only if" in the theorem. This often happens in algebraic geometry and representation theory.
- 3 One can compute explicit examples of this phenomenon.
- ④ Again, there is a similar theorem for $\mathcal{T} = \mathbf{D}^{b}(\operatorname{coh}\mathbb{X})$.

The main result

Theorem (Š.-Oppermann)

Let R be a module finite algebra over a commutative noetherian ring and let $\mathcal{T} = \mathbf{D}^{b}(\text{mod}R)$. If $\mathcal{T}' \subseteq \mathcal{T}$ is a thick subcategory such that dim $\mathcal{T}' < \infty$ and $R \in \mathcal{T}'$ then

$\mathcal{T}' = \mathcal{T}.$

- 1 The assumption " $R \in T'$ " is necessary.
- 2 Provided that dim $T < \infty$, we have "if and only if" in the theorem. This often happens in algebraic geometry and representation theory.
- 3 One can compute explicit examples of this phenomenon.
- 4 Again, there is a similar theorem for $\mathcal{T} = \mathbf{D}^{b}(\operatorname{coh} \mathbb{X})$.

The main result

Theorem (Š.-Oppermann)

Let R be a module finite algebra over a commutative noetherian ring and let $\mathcal{T} = \mathbf{D}^{b}(\text{mod}R)$. If $\mathcal{T}' \subseteq \mathcal{T}$ is a thick subcategory such that dim $\mathcal{T}' < \infty$ and $R \in \mathcal{T}'$ then

$$\mathcal{T}' = \mathcal{T}.$$

- **1** The assumption " $R \in T$ " is necessary.
- 2 Provided that dim $T < \infty$, we have "if and only if" in the theorem. This often happens in algebraic geometry and representation theory.
- 3 One can compute explicit examples of this phenomenon.
- 4 Again, there is a similar theorem for $\mathcal{T} = \mathbf{D}^{b}(\operatorname{coh} \mathbb{X})$.
Theorem (Š.-Oppermann)

Let R be a module finite algebra over a commutative noetherian ring and let $\mathcal{T} = \mathbf{D}^{b}(\text{mod}R)$. If $\mathcal{T}' \subseteq \mathcal{T}$ is a thick subcategory such that dim $\mathcal{T}' < \infty$ and $R \in \mathcal{T}'$ then

$$\mathcal{T}' = \mathcal{T}.$$

- **1** The assumption " $R \in \mathcal{T}'$ " is necessary.
- 2 Provided that dim $T < \infty$, we have "if and only if" in the theorem. This often happens in algebraic geometry and representation theory.
- 3 One can compute explicit examples of this phenomenon.
- 4 Again, there is a similar theorem for $\mathcal{T} = \mathbf{D}^{b}(\operatorname{coh} \mathbb{X})$.

Theorem (Š.-Oppermann)

Let R be a module finite algebra over a commutative noetherian ring and let $\mathcal{T} = \mathbf{D}^{b}(\text{mod}R)$. If $\mathcal{T}' \subseteq \mathcal{T}$ is a thick subcategory such that dim $\mathcal{T}' < \infty$ and $R \in \mathcal{T}'$ then

$$\mathcal{T}' = \mathcal{T}.$$

- **1** The assumption " $R \in T'$ " is necessary.
- 2 Provided that dim $T < \infty$, we have "if and only if" in the theorem. This often happens in algebraic geometry and representation theory.
- One can compute explicit examples of this phenomenon.
- 4 Again, there is a similar theorem for $\mathcal{T} = \mathbf{D}^{b}(\operatorname{coh} \mathbb{X})$.

Theorem (Š.-Oppermann)

Let R be a module finite algebra over a commutative noetherian ring and let $\mathcal{T} = \mathbf{D}^{b}(\text{mod}R)$. If $\mathcal{T}' \subseteq \mathcal{T}$ is a thick subcategory such that dim $\mathcal{T}' < \infty$ and $R \in \mathcal{T}'$ then

$$\mathcal{T}' = \mathcal{T}.$$

- **1** The assumption " $R \in T'$ " is necessary.
- 2 Provided that dim $T < \infty$, we have "if and only if" in the theorem. This often happens in algebraic geometry and representation theory.
- One can compute explicit examples of this phenomenon.
- 4 Again, there is a similar theorem for $\mathcal{T} = \mathbf{D}^{b}(\operatorname{coh} \mathbb{X})$.

Theorem (Š.-Oppermann)

Let R be a module finite algebra over a commutative noetherian ring and let $\mathcal{T} = \mathbf{D}^{b}(\text{mod}R)$. If $\mathcal{T}' \subseteq \mathcal{T}$ is a thick subcategory such that dim $\mathcal{T}' < \infty$ and $R \in \mathcal{T}'$ then

$$\mathcal{T}' = \mathcal{T}.$$

- **1** The assumption " $R \in T'$ " is necessary.
- 2 Provided that dim $T < \infty$, we have "if and only if" in the theorem. This often happens in algebraic geometry and representation theory.
- 3 One can compute explicit examples of this phenomenon.
- **4** Again, there is a similar theorem for $T = \mathbf{D}^{b}(\operatorname{coh} \mathbb{X})$.

Theorem (Š.-Oppermann)

Let R be a module finite algebra over a commutative noetherian ring and let $\mathcal{T} = \mathbf{D}^{b}(\text{mod}R)$. If $\mathcal{T}' \subseteq \mathcal{T}$ is a thick subcategory such that dim $\mathcal{T}' < \infty$ and $R \in \mathcal{T}'$ then

$$\mathcal{T}' = \mathcal{T}.$$

- **1** The assumption " $R \in T'$ " is necessary.
- 2 Provided that dim $T < \infty$, we have "if and only if" in the theorem. This often happens in algebraic geometry and representation theory.
- 3 One can compute explicit examples of this phenomenon.
- 4 Again, there is a similar theorem for $\mathcal{T} = \mathbf{D}^{b}(\operatorname{coh}\mathbb{X})$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Suppose that $\mathcal{T}' = \langle M \rangle_n$ for some $M \in \mathcal{T}$ and $n \ge 1$.
- Since $R \in \mathcal{T}'$, all perfect complexes belong to \mathcal{T}' .
- Thus, every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0,$$

with X_0, \ldots, X_n perfect vanishes.

• In particular, given any $X \in \mathcal{T}$ and $f: X_0 \to X$, the chain

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0 \xrightarrow{f} X,$$

composes to zero.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Suppose that $\mathcal{T}' = \langle M \rangle_n$ for some $M \in \mathcal{T}$ and $n \ge 1$.
- Since $R \in T'$, all perfect complexes belong to T'.

Thus, every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0,$$

with X_0, \ldots, X_n perfect vanishes.

• In particular, given any $X \in \mathcal{T}$ and $f: X_0 \to X$, the chain

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0 \xrightarrow{f} X,$$

composes to zero.

(ロ) (同) (三) (三) (三) (○) (○)

- Suppose that $\mathcal{T}' = \langle M \rangle_n$ for some $M \in \mathcal{T}$ and $n \ge 1$.
- Since $R \in T'$, all perfect complexes belong to T'.
- Thus, every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0,$$

with X_0, \ldots, X_n perfect vanishes.

• In particular, given any $X \in \mathcal{T}$ and $f: X_0 \to X$, the chain

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0 \xrightarrow{f} X,$$

composes to zero.

(ロ) (同) (三) (三) (三) (○) (○)

- Suppose that $\mathcal{T}' = \langle M \rangle_n$ for some $M \in \mathcal{T}$ and $n \ge 1$.
- Since $R \in T'$, all perfect complexes belong to T'.
- Thus, every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0,$$

with X_0, \ldots, X_n perfect vanishes.

• In particular, given any $X \in \mathcal{T}$ and $f: X_0 \to X$, the chain

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0 \xrightarrow{f} X,$$

composes to zero.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Suppose that $\mathcal{T}' = \langle M \rangle_n$ for some $M \in \mathcal{T}$ and $n \ge 1$.
- Since $R \in T'$, all perfect complexes belong to T'.
- Thus, every composition

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0,$$

with X_0, \ldots, X_n perfect vanishes.

• In particular, given any $X \in \mathcal{T}$ and $f: X_0 \to X$, the chain

$$X_n \xrightarrow{\text{ghost}} X_{n-1} \xrightarrow{\text{ghost}} \cdots \xrightarrow{\text{ghost}} X_1 \xrightarrow{\text{ghost}} X_0 \xrightarrow{f} X,$$

composes to zero.

Converse of the Ghost Lemma: X ∈ T!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

 $\mathcal{T} = \mathbf{D}^{\mathrm{b}}(\mathrm{mod}R)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

 $\mathcal{T} = \mathbf{D}^{\mathrm{b}}(\mathrm{mod}R)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

