Smashing localization for rings of weak global dimension 1

Jan Šťovíček

Charles University in Prague

ASTA 2014, Spineto June 17th, 2014

Outline

Localization of derived categories

Relation to homological epimorphisms

A classification for valuation domains

Outline

Localization of derived categories

Relation to homological epimorphisms

A classification for valuation domains

- Object of interest: the derived category
 D(ModR) = C(ModR)[quasi-iso⁻¹] of a ring R.
- D(ModR) is triangulated, the suspension functor
 ∑: D(ModR) → D(ModR) shifts complexes

$$X: \cdots \to X^{-1} \to X^0 \to X^1 \to \cdots$$

- D(ModR) is compactly generated. There is a set $\mathcal C$ of objects of D(ModR) such that each $C \in \mathcal C$ is compact (that is, Hom(C, -): D(ModR) \to Ab preserves coproducts) and for each $0 \neq X \in D(\operatorname{Mod}R)$ there exists $0 \neq f \colon C \to X$ with $C \in \mathcal C$. For instance $\mathcal S = \{R[n] \mid n \in \mathbb Z\}$.
- If R is commutative, $(\mathsf{D}(\mathsf{Mod}R), \otimes_R^L, R)$ is a symmetric monoidal category, where \otimes_R^L denotes the left derived functor of the tensor product. The functor $-\otimes_R^L$ is exact in each variable.

- Object of interest: the derived category
 D(ModR) = C(ModR)[quasi-iso⁻¹] of a ring R.
- D(ModR) is triangulated, the suspension functor
 ∑: D(ModR) → D(ModR) shifts complexes

$$X: \cdots \to X^{-1} \to X^0 \to X^1 \to \cdots$$

- D(ModR) is compactly generated. There is a set $\mathcal C$ of objects of D(ModR) such that each $C \in \mathcal C$ is compact (that is, Hom(C, -): D(ModR) \to Ab preserves coproducts) and for each $0 \neq X \in D(\operatorname{Mod}R)$ there exists $0 \neq f \colon C \to X$ with $C \in \mathcal C$. For instance $\mathcal S = \{R[n] \mid n \in \mathbb Z\}$.
- If R is commutative, $(\mathsf{D}(\mathsf{Mod}R), \otimes_R^L, R)$ is a symmetric monoidal category, where \otimes_R^L denotes the left derived functor of the tensor product. The functor $-\otimes_R^L$ is exact in each variable.

- Object of interest: the derived category
 D(ModR) = C(ModR)[quasi-iso⁻¹] of a ring R.
- D(ModR) is triangulated, the suspension functor
 ∑: D(ModR) → D(ModR) shifts complexes

$$X: \cdots \to X^{-1} \to X^0 \to X^1 \to \cdots$$

- D(ModR) is compactly generated. There is a set C of objects of D(ModR) such that each C ∈ C is compact (that is, Hom(C, -): D(ModR) → Ab preserves coproducts) and for each 0 ≠ X ∈ D(ModR) there exists 0 ≠ f: C → X with C ∈ C. For instance S = {R[n] | n ∈ Z}.
- If R is commutative, $(\mathsf{D}(\mathsf{Mod}R), \otimes_R^L, R)$ is a symmetric monoidal category, where \otimes_R^L denotes the left derived functor of the tensor product. The functor $-\otimes_R^L$ is exact in each variable.

- Object of interest: the derived category
 D(ModR) = C(ModR)[quasi-iso⁻¹] of a ring R.
- $D(\mathsf{Mod}R)$ is triangulated, the suspension functor $\Sigma \colon \mathsf{D}(\mathsf{Mod}R) \to \mathsf{D}(\mathsf{Mod}R)$ shifts complexes

$$X: \cdots \to X^{-1} \to X^0 \to X^1 \to \cdots$$

- D(ModR) is compactly generated. There is a set C of objects of D(ModR) such that each C∈ C is compact (that is, Hom(C, -): D(ModR) → Ab preserves coproducts) and for each 0 ≠ X ∈ D(ModR) there exists 0 ≠ f: C → X with C∈ C. For instance S = {R[n] | n ∈ Z}.
- If R is commutative, $(\mathsf{D}(\mathsf{Mod}R), \otimes^L_R, R)$ is a symmetric monoidal category, where \otimes^L_R denotes the left derived functor of the tensor product. The functor $-\otimes^L_R$ is exact in each variable.

- Object of interest: the derived category
 D(ModR) = C(ModR)[quasi-iso⁻¹] of a ring R.
- D(ModR) is triangulated, the suspension functor
 ∑: D(ModR) → D(ModR) shifts complexes

$$X: \cdots \to X^{-1} \to X^0 \to X^1 \to \cdots$$

- D(ModR) is compactly generated. There is a set $\mathcal C$ of objects of D(ModR) such that each $C \in \mathcal C$ is compact (that is, Hom(C, -): D(ModR) \to Ab preserves coproducts) and for each $0 \neq X \in D(\mathsf{Mod}R)$ there exists $0 \neq f \colon C \to X$ with $C \in \mathcal C$. For instance $\mathcal S = \{R[n] \mid n \in \mathbb Z\}$.
- If R is commutative, $(\mathsf{D}(\mathsf{Mod}R), \otimes_R^L, R)$ is a symmetric monoidal category, where \otimes_R^L denotes the left derived functor of the tensor product. The functor $-\otimes_R^L$ is exact in each variable.

- Object of interest: the derived category
 D(ModR) = C(ModR)[quasi-iso⁻¹] of a ring R.
- D(ModR) is triangulated, the suspension functor
 ∑: D(ModR) → D(ModR) shifts complexes

$$X: \cdots \to X^{-1} \to X^0 \to X^1 \to \cdots$$

- D(ModR) is compactly generated. There is a set $\mathcal C$ of objects of D(ModR) such that each $C \in \mathcal C$ is compact (that is, Hom(C, -): D(ModR) \to Ab preserves coproducts) and for each $0 \neq X \in \mathsf{D}(\mathsf{Mod}R)$ there exists $0 \neq f \colon C \to X$ with $C \in \mathcal C$. For instance $\mathcal S = \{R[n] \mid n \in \mathbb Z\}$.
- If R is commutative, $(\mathsf{D}(\mathsf{Mod}R), \otimes_R^L, R)$ is a symmetric monoidal category, where \otimes_R^L denotes the left derived functor of the tensor product. The functor $-\otimes_R^L$ is exact in each variable.

- Object of interest: the derived category
 D(ModR) = C(ModR)[quasi-iso⁻¹] of a ring R.
- D(ModR) is triangulated, the suspension functor
 ∑: D(ModR) → D(ModR) shifts complexes

$$X: \cdots \to X^{-1} \to X^0 \to X^1 \to \cdots$$

- D(ModR) is compactly generated. There is a set $\mathcal C$ of objects of D(ModR) such that each $C \in \mathcal C$ is compact (that is, Hom(C, -): D(ModR) \to Ab preserves coproducts) and for each $0 \neq X \in D(\mathsf{Mod}R)$ there exists $0 \neq f \colon C \to X$ with $C \in \mathcal C$. For instance $\mathcal S = \{R[n] \mid n \in \mathbb Z\}$.
- If R is commutative, $(\mathsf{D}(\mathsf{Mod}R), \otimes_R^L, R)$ is a symmetric monoidal category, where \otimes_R^L denotes the left derived functor of the tensor product. The functor $-\otimes_R^L$ is exact in each variable.

- Object of interest: the derived category
 D(ModR) = C(ModR)[quasi-iso⁻¹] of a ring R.
- D(ModR) is triangulated, the suspension functor
 ∑: D(ModR) → D(ModR) shifts complexes

$$X: \cdots \to X^{-1} \to X^0 \to X^1 \to \cdots$$

- D(ModR) is compactly generated. There is a set $\mathcal C$ of objects of D(ModR) such that each $C \in \mathcal C$ is compact (that is, Hom(C, -): D(ModR) \to Ab preserves coproducts) and for each $0 \neq X \in \mathsf{D}(\mathsf{Mod}R)$ there exists $0 \neq f \colon C \to X$ with $C \in \mathcal C$. For instance $\mathcal S = \{R[n] \mid n \in \mathbb Z\}$.
- If R is commutative, $(\mathsf{D}(\mathsf{Mod}R), \otimes_R^L, R)$ is a symmetric monoidal category, where \otimes_R^L denotes the left derived functor of the tensor product. The functor $-\otimes_R^L$ is exact in each variable.

- We would like to understand the structure of D(ModR). It is hopeless to classify objects, but we may classify kernels of various triangulated functors.
- We have

- We would like to understand the structure of D(ModR). It is hopeless to classify objects, but we may classify kernels of various triangulated functors.
- We have

- We would like to understand the structure of D(ModR). It is hopeless to classify objects, but we may classify kernels of various triangulated functors.
- We have

```
Coproduct preserving Verdier localizations D(ModR) \rightarrow D(ModR)/\mathcal{L}
```

- We would like to understand the structure of D(ModR). It is hopeless to classify objects, but we may classify kernels of various triangulated functors.
- We have

```
Coproduct preserving Verdier localizations D(ModR) \rightarrow D(ModR)/\mathcal{L}
{ Bousfield localizations L: D(ModR) \rightarrow D(ModR) }
```

- We would like to understand the structure of D(ModR). It is hopeless to classify objects, but we may classify kernels of various triangulated functors.
- We have

```
Coproduct preserving Verdier localizations D(ModR) \rightarrow D(ModR)/\mathcal{L}
{ Bousfield localizations L: D(ModR) \rightarrow D(ModR) }
{ Smashing localizations L: D(ModR) \rightarrow D(ModR) }
```

assinable:

5/16

- We would like to understand the structure of D(ModR). It is hopeless to classify objects, but we may classify kernels of various triangulated functors.
- We have

```
Coproduct preserving Verdier localizations D(ModR) \rightarrow D(ModR)/\mathcal{L}
{ Bousfield localizations L: D(ModR) \rightarrow D(ModR) }
{ Smashing localizations L: D(ModR) \rightarrow D(ModR) }
           \left\{ \begin{array}{c} \mathsf{Compactly\ generated\ localizations} \\ \mathsf{L} \colon \mathsf{D}(\mathsf{Mod} R) \to \mathsf{D}(\mathsf{Mod} R) \end{array} \right\}
```

Classifiable

- We would like to understand the structure of D(ModR). It is hopeless to classify objects, but we may classify kernels of various triangulated functors.
- We have

```
Coproduct preserving Verdier localizations D(ModR) \rightarrow D(ModR)/\mathcal{L}
{ Bousfield localizations L: D(ModR) \rightarrow D(ModR) }
{ Smashing localizations L: D(ModR) \rightarrow D(ModR) }

\begin{cases}
    \text{Compactly generated localizations} \\
    L: D(ModR) \rightarrow D(ModR)
\end{cases}

                               Classifiable!
```

Theorem (Thomason, 1997)

Let R be a commutative ring. Then there is a bijection between

- lacktriangledown compactly generated localizations L: D(ModR) o D(ModR);
- 2 Thomason subsets of Spec R.

Definition

A subset $U \subseteq \operatorname{Spec} R$ is a Thomason set if U is a union of Zariski closed sets of $\operatorname{Spec} R$ with quasi-compact complements.

Example

$$R_{\mathfrak{p}_{j-1}}\otimes_R -\colon \mathsf{D}(\mathsf{Mod}R) o \mathsf{D}(\mathsf{Mod}R).$$

Theorem (Thomason, 1997)

Let R be a commutative ring. Then there is a bijection between

- $\textcircled{0} \ \ \textit{compactly generated localizations $L\colon \mathsf{D}(\mathsf{Mod}R) \to \mathsf{D}(\mathsf{Mod}R)$;}$
- Thomason subsets of Spec R.

Definition

A subset $U \subseteq \operatorname{Spec} R$ is a Thomason set if U is a union of Zariski closed sets of $\operatorname{Spec} R$ with quasi-compact complements.

Example

$$R_{\mathfrak{p}_{j-1}}\otimes_R -\colon \mathsf{D}(\mathsf{Mod}R) o \mathsf{D}(\mathsf{Mod}R).$$

Theorem (Thomason, 1997)

Let R be a commutative ring. Then there is a bijection between

- compactly generated localizations L: $D(ModR) \rightarrow D(ModR)$;
- Thomason subsets of Spec R.

Definition

A subset $U \subseteq \operatorname{Spec} R$ is a Thomason set if U is a union of Zariski closed sets of $\operatorname{Spec} R$ with quasi-compact complements.

Example

$$R_{\mathfrak{p}_{j-1}}\otimes_R -: \mathsf{D}(\mathsf{Mod}R) \to \mathsf{D}(\mathsf{Mod}R).$$

Theorem (Thomason, 1997)

Let R be a commutative ring. Then there is a bijection between

- compactly generated localizations L: $D(ModR) \rightarrow D(ModR)$;
- 2 Thomason subsets of Spec R.

Definition

A subset $U \subseteq \operatorname{Spec} R$ is a Thomason set if U is a union of Zariski closed sets of $\operatorname{Spec} R$ with quasi-compact complements.

Example

$$R_{\mathfrak{p}_{j-1}}\otimes_R -: \mathsf{D}(\mathsf{Mod}R) \to \mathsf{D}(\mathsf{Mod}R).$$

Theorem (Thomason, 1997)

Let R be a commutative ring. Then there is a bijection between

- compactly generated localizations L: D(ModR) → D(ModR);
- Thomason subsets of Spec R.

Definition

A subset $U \subseteq \operatorname{Spec} R$ is a Thomason set if U is a union of Zariski closed sets of $\operatorname{Spec} R$ with quasi-compact complements.

Example

$$\mathsf{R}_{\mathfrak{p}_{j-1}}\otimes_R -\colon \mathsf{D}(\mathsf{Mod}R) o \mathsf{D}(\mathsf{Mod}R).$$

Theorem (Thomason, 1997)

Let R be a commutative ring. Then there is a bijection between

- compactly generated localizations L: $D(ModR) \rightarrow D(ModR)$;
- Thomason subsets of Spec R.

Definition

A subset $U \subseteq \operatorname{Spec} R$ is a Thomason set if U is a union of Zariski closed sets of $\operatorname{Spec} R$ with quasi-compact complements.

Example

$$R_{\mathfrak{p}_{j-1}}\otimes_R -\colon \mathsf{D}(\mathsf{Mod}R) o \mathsf{D}(\mathsf{Mod}R).$$

Theorem (Thomason, 1997)

Let R be a commutative ring. Then there is a bijection between

- compactly generated localizations L: $D(ModR) \rightarrow D(ModR)$;
- Thomason subsets of Spec R.

Definition

A subset $U \subseteq \operatorname{Spec} R$ is a Thomason set if U is a union of Zariski closed sets of $\operatorname{Spec} R$ with quasi-compact complements.

Example

$$R_{\mathfrak{p}_{j-1}}\otimes_R -: \mathsf{D}(\mathsf{Mod}R) \to \mathsf{D}(\mathsf{Mod}R).$$

Definition

A functor $L : D(ModR) \to D(ModR)$ is a smashing localization if it preserves coproducts.

Facts

- ① If R is commutative, this is equivalent to $L \cong S \otimes_R^L$ for some complex S.
- Every compactly generated localization is smashing.

Remark

The term smashing comes from the stable homotopy category, where the role of \otimes_{R}^{L} is taken by the smash product \wedge .

Definition

A functor $L \colon \mathsf{D}(\mathsf{Mod} R) \to \mathsf{D}(\mathsf{Mod} R)$ is a smashing localization if it preserves coproducts.

Facts

- If R is commutative, this is equivalent to $L \cong S \otimes_R^L$ for some complex S.
- Every compactly generated localization is smashing.

Remark

The term smashing comes from the stable homotopy category, where the role of \otimes_{R}^{L} is taken by the smash product \wedge .

Definition

A functor $L \colon \mathsf{D}(\mathsf{Mod} R) \to \mathsf{D}(\mathsf{Mod} R)$ is a smashing localization if it preserves coproducts.

Facts

- If R is commutative, this is equivalent to $L \cong S \otimes_R^L$ for some complex S.
- Every compactly generated localization is smashing.

Remark

The term smashing comes from the stable homotopy category, where the role of \otimes_R^L is taken by the smash product \wedge .

Definition

A functor $L : D(ModR) \to D(ModR)$ is a smashing localization if it preserves coproducts.

Facts

- If R is commutative, this is equivalent to $L \cong S \otimes_R^L$ for some complex S.
- Every compactly generated localization is smashing.

Remark

The term smashing comes from the stable homotopy category, where the role of \otimes_R^L is taken by the smash product \wedge .

Outline

Localization of derived categories

Relation to homological epimorphisms

A classification for valuation domains

- A ring epimorphism is an epimorphism in the category of rings.
- A ring homomorphism $f: R \to S$ is an epimorphism if and only if $\mu: S \otimes_R S \to S$ is an isomorphism.
- For a homological epimorphism we further require that $\operatorname{Tor}_{i}^{R}(S,S)=0$ for all $i\geq 1$ (due to Geigle and Lenzing). We can write that compactly as $S\otimes_{R}^{L}S\cong S$.
- If R has weak global dimension \leq 1, we only need to check $\operatorname{Tor}_1^R(S,S)=0$.

- A ring epimorphism is an epimorphism in the category of rings.
- A ring homomorphism $f: R \to S$ is an epimorphism if and only if $\mu: S \otimes_R S \to S$ is an isomorphism.
- For a homological epimorphism we further require that $\operatorname{Tor}_i^R(S,S)=0$ for all $i\geq 1$ (due to Geigle and Lenzing). We can write that compactly as $S\otimes_R^L S\cong S$.
- If R has weak global dimension \leq 1, we only need to check $\operatorname{Tor}_1^R(S,S)=0$.

- A ring epimorphism is an epimorphism in the category of rings.
- A ring homomorphism $f: R \to S$ is an epimorphism if and only if $\mu: S \otimes_R S \to S$ is an isomorphism.
- For a homological epimorphism we further require that $\operatorname{Tor}_{i}^{R}(S,S)=0$ for all $i\geq 1$ (due to Geigle and Lenzing). We can write that compactly as $S\otimes_{R}^{L}S\cong S$.
- If R has weak global dimension ≤ 1 , we only need to check $\operatorname{Tor}_1^R(S,S)=0$.

- A ring epimorphism is an epimorphism in the category of rings.
- A ring homomorphism $f: R \to S$ is an epimorphism if and only if $\mu: S \otimes_R S \to S$ is an isomorphism.
- For a homological epimorphism we further require that $\operatorname{Tor}_{i}^{R}(S,S)=0$ for all $i\geq 1$ (due to Geigle and Lenzing). We can write that compactly as $S\otimes_{R}^{L}S\cong S$.
- If R has weak global dimension \leq 1, we only need to check $\operatorname{Tor}_1^R(S,S)=0$.

- A ring epimorphism is an epimorphism in the category of rings.
- A ring homomorphism $f: R \to S$ is an epimorphism if and only if $\mu: S \otimes_R S \to S$ is an isomorphism.
- For a homological epimorphism we further require that $\operatorname{Tor}_{i}^{R}(S,S)=0$ for all $i\geq 1$ (due to Geigle and Lenzing). We can write that compactly as $S\otimes_{R}^{L}S\cong S$.
- If R has weak global dimension ≤ 1 , we only need to check $\operatorname{Tor}_1^R(S,S)=0$.

- A ring epimorphism is an epimorphism in the category of rings.
- A ring homomorphism $f: R \to S$ is an epimorphism if and only if $\mu: S \otimes_R S \to S$ is an isomorphism.
- For a homological epimorphism we further require that $\operatorname{Tor}_{i}^{R}(S,S)=0$ for all $i\geq 1$ (due to Geigle and Lenzing). We can write that compactly as $S\otimes_{R}^{L}S\cong S$.
- If R has weak global dimension \leq 1, we only need to check $\operatorname{Tor}_1^R(S,S)=0$.

Theorem (Bazzoni-Š.)

Let R be a ring of weak global dimension at most 1. Then there is a bijective correspondence between

- $\textcircled{\scriptsize 10} \textit{ smashing localizations L: $D(\mathsf{Mod}R) \to D(\mathsf{Mod}R)$ and }$
- ② homological epimorphisms $f: R \rightarrow S$ of rings.

The bijection is given by $f \mapsto L = S \otimes_R^L -$.

Remark

Theorem (Bazzoni-Š.)

Let R be a ring of weak global dimension at most 1. Then there is a bijective correspondence between

- $\bullet \quad \textit{smashing localizations } L \colon \mathsf{D}(\mathsf{Mod} R) \to \mathsf{D}(\mathsf{Mod} R) \textit{ and }$
- ② homological epimorphisms $f: R \rightarrow S$ of rings.

The bijection is given by $f \mapsto L = S \otimes_R^L -$.

Remark

Theorem (Bazzoni-Š.)

Let R be a ring of weak global dimension at most 1. Then there is a bijective correspondence between

- lacktriangledown smashing localizations L: $D(\mathsf{Mod}R) o D(\mathsf{Mod}R)$ and
- **3** homological epimorphisms $f: R \to S$ of rings.

The bijection is given by $f \mapsto L = S \otimes_R^L -.$

Remark

Theorem (Bazzoni-Š.)

Let R be a ring of weak global dimension at most 1. Then there is a bijective correspondence between

- lacktriangledown smashing localizations L: $D(\mathsf{Mod}R) o D(\mathsf{Mod}R)$ and
- ② homological epimorphisms $f: R \rightarrow S$ of rings.

The bijection is given by $f \mapsto L = S \otimes_R^L -$.

Remark

Theorem (Bazzoni-Š.)

Let R be a ring of weak global dimension at most 1. Then there is a bijective correspondence between

- $\textbf{ 0} \ \textit{smashing localizations } L \colon \mathsf{D}(\mathsf{Mod} R) \to \mathsf{D}(\mathsf{Mod} R) \ \textit{and}$
- ② homological epimorphisms $f: R \rightarrow S$ of rings.

The bijection is given by $f \mapsto L = S \otimes_R^L -$.

Remark

- Nicolás and Saorín related smashing localization of D(ModR) to homological epimorphisms of differential graded rings.
- A dg-ring is a \mathbb{Z} -graded ring R with a differential $\partial \colon R \to R$ of degree 1. That is, $\partial^2 = 0$ and $\partial(x \cdot y) = \partial(x) \cdot y + (-1)^{|x|} x \cdot \partial(y)$.
- In fact, the correct context to work with homological epimorphisms of dg-rings is the homotopy category of dg-rings: Ho(DgRings) = DgRings[quasi-iso⁻¹].
- Given a smashing localization of D(ModR), we have a hom. epi. $R \to S$ in Ho(DgRings).
- If R is of w.gl.dim. \leq 1, then have Künneth's theorem relating $H^n(S \otimes_R^L S)$ to $H^j(S) \otimes_R H^j(S)$ and $\operatorname{Tor}_1^R(H^i(S), H^j(S))$. This allows to prove that S is quasi-isomorphic to an ordinary ring.

- Nicolás and Saorín related smashing localization of D(ModR) to homological epimorphisms of differential graded rings.
- A dg-ring is a \mathbb{Z} -graded ring R with a differential $\partial: R \to R$ of degree 1. That is, $\partial^2 = 0$ and $\partial(x \cdot y) = \partial(x) \cdot y + (-1)^{|x|} x \cdot \partial(y)$.
- In fact, the correct context to work with homological epimorphisms of dg-rings is the homotopy category of dg-rings: Ho(DgRings) = DgRings[quasi-iso⁻¹].
- Given a smashing localization of D(ModR), we have a hom. epi. $R \to S$ in Ho(DgRings).
- If R is of w.gl.dim. \leq 1, then have Künneth's theorem relating $H^n(S \otimes_R^L S)$ to $H^i(S) \otimes_R H^j(S)$ and $\operatorname{Tor}_1^R(H^i(S), H^j(S))$. This allows to prove that S is quasi-isomorphic to an ordinary ring.

- Nicolás and Saorín related smashing localization of D(ModR) to homological epimorphisms of differential graded rings.
- A dg-ring is a \mathbb{Z} -graded ring R with a differential $\partial \colon R \to R$ of degree 1. That is, $\partial^2 = 0$ and $\partial(x \cdot y) = \partial(x) \cdot y + (-1)^{|x|} x \cdot \partial(y)$.
- In fact, the correct context to work with homological epimorphisms of dg-rings is the homotopy category of dg-rings: Ho(DgRings) = DgRings[quasi-iso⁻¹].
- Given a smashing localization of D(ModR), we have a hom. epi. $R \to S$ in Ho(DgRings).
- If R is of w.gl.dim. ≤ 1 , then have Künneth's theorem relating $H^n(S \otimes_R^L S)$ to $H^i(S) \otimes_R H^j(S)$ and $\operatorname{Tor}_1^R(H^i(S), H^j(S))$. This allows to prove that S is quasi-isomorphic to an ordinary ring.

- Nicolás and Saorín related smashing localization of D(ModR) to homological epimorphisms of differential graded rings.
- A dg-ring is a \mathbb{Z} -graded ring R with a differential $\partial \colon R \to R$ of degree 1. That is, $\partial^2 = 0$ and $\partial(x \cdot y) = \partial(x) \cdot y + (-1)^{|x|} x \cdot \partial(y)$.
- In fact, the correct context to work with homological epimorphisms of dg-rings is the homotopy category of dg-rings: Ho(DgRings) = DgRings[quasi-iso⁻¹].
- Given a smashing localization of D(ModR), we have a hom. epi. $R \to S$ in Ho(DgRings).
- If R is of w.gl.dim. \leq 1, then have Künneth's theorem relating $H^n(S \otimes_R^L S)$ to $H^i(S) \otimes_R H^j(S)$ and $\operatorname{Tor}_1^R(H^i(S), H^j(S))$. This allows to prove that S is quasi-isomorphic to an ordinary ring.

- Nicolás and Saorín related smashing localization of D(ModR) to homological epimorphisms of differential graded rings.
- A dg-ring is a \mathbb{Z} -graded ring R with a differential $\partial \colon R \to R$ of degree 1. That is, $\partial^2 = 0$ and $\partial(x \cdot y) = \partial(x) \cdot y + (-1)^{|x|} x \cdot \partial(y)$.
- In fact, the correct context to work with homological epimorphisms of dg-rings is the homotopy category of dg-rings: Ho(DgRings) = DgRings[quasi-iso⁻¹].
- Given a smashing localization of D(ModR), we have a hom. epi. $R \to S$ in Ho(DgRings).
- If R is of w.gl.dim. ≤ 1 , then have Künneth's theorem relating $H^n(S \otimes_R^L S)$ to $H^i(S) \otimes_R H^j(S)$ and $\operatorname{Tor}_1^R(H^i(S), H^j(S))$. This allows to prove that S is quasi-isomorphic to an ordinary ring.

- Nicolás and Saorín related smashing localization of D(ModR) to homological epimorphisms of differential graded rings.
- A dg-ring is a \mathbb{Z} -graded ring R with a differential $\partial \colon R \to R$ of degree 1. That is, $\partial^2 = 0$ and $\partial(x \cdot y) = \partial(x) \cdot y + (-1)^{|x|} x \cdot \partial(y)$.
- In fact, the correct context to work with homological epimorphisms of dg-rings is the homotopy category of dg-rings: Ho(DgRings) = DgRings[quasi-iso⁻¹].
- Given a smashing localization of D(ModR), we have a hom. epi. $R \to S$ in Ho(DgRings).
- If R is of w.gl.dim. ≤ 1 , then have Künneth's theorem relating $H^n(S \otimes_R^L S)$ to $H^i(S) \otimes_R H^j(S)$ and $\operatorname{Tor}_1^R(H^i(S), H^j(S))$. This allows to prove that S is quasi-isomorphic to an ordinary ring.

- Nicolás and Saorín related smashing localization of D(ModR) to homological epimorphisms of differential graded rings.
- A dg-ring is a \mathbb{Z} -graded ring R with a differential $\partial \colon R \to R$ of degree 1. That is, $\partial^2 = 0$ and $\partial(x \cdot y) = \partial(x) \cdot y + (-1)^{|x|} x \cdot \partial(y)$.
- In fact, the correct context to work with homological epimorphisms of dg-rings is the homotopy category of dg-rings: Ho(DgRings) = DgRings[quasi-iso⁻¹].
- Given a smashing localization of D(ModR), we have a hom. epi.
 R → S in Ho(DgRings).
- If R is of w.gl.dim. ≤ 1 , then have Künneth's theorem relating $H^n(S \otimes_R^L S)$ to $H^i(S) \otimes_R H^j(S)$ and $\operatorname{Tor}_1^R(H^i(S), H^j(S))$. This allows to prove that S is quasi-isomorphic to an ordinary ring.

- Nicolás and Saorín related smashing localization of D(ModR) to homological epimorphisms of differential graded rings.
- A dg-ring is a \mathbb{Z} -graded ring R with a differential $\partial \colon R \to R$ of degree 1. That is, $\partial^2 = 0$ and $\partial(x \cdot y) = \partial(x) \cdot y + (-1)^{|x|} x \cdot \partial(y)$.
- In fact, the correct context to work with homological epimorphisms of dg-rings is the homotopy category of dg-rings: Ho(DgRings) = DgRings[quasi-iso⁻¹].
- Given a smashing localization of D(ModR), we have a hom. epi. $R \to S$ in Ho(DgRings).
- If R is of w.gl.dim. ≤ 1 , then have Künneth's theorem relating $H^n(S \otimes_R^L S)$ to $H^i(S) \otimes_R H^j(S)$ and $\operatorname{Tor}_1^R(H^i(S), H^j(S))$. This allows to prove that S is quasi-isomorphic to an ordinary ring.

- Nicolás and Saorín related smashing localization of D(ModR) to homological epimorphisms of differential graded rings.
- A dg-ring is a \mathbb{Z} -graded ring R with a differential $\partial \colon R \to R$ of degree 1. That is, $\partial^2 = 0$ and $\partial(x \cdot y) = \partial(x) \cdot y + (-1)^{|x|} x \cdot \partial(y)$.
- In fact, the correct context to work with homological epimorphisms of dg-rings is the homotopy category of dg-rings: Ho(DgRings) = DgRings[quasi-iso⁻¹].
- Given a smashing localization of D(ModR), we have a hom. epi. $R \to S$ in Ho(DgRings).
- If R is of w.gl.dim. \leq 1, then have Künneth's theorem relating $H^n(S \otimes_R^L S)$ to $H^j(S) \otimes_R H^j(S)$ and $\operatorname{Tor}_1^R(H^i(S), H^j(S))$. This allows to prove that S is quasi-isomorphic to an ordinary ring.

- Nicolás and Saorín related smashing localization of D(ModR) to homological epimorphisms of differential graded rings.
- A dg-ring is a \mathbb{Z} -graded ring R with a differential $\partial \colon R \to R$ of degree 1. That is, $\partial^2 = 0$ and $\partial(x \cdot y) = \partial(x) \cdot y + (-1)^{|x|} x \cdot \partial(y)$.
- In fact, the correct context to work with homological epimorphisms of dg-rings is the homotopy category of dg-rings: Ho(DgRings) = DgRings[quasi-iso⁻¹].
- Given a smashing localization of D(ModR), we have a hom. epi. $R \to S$ in Ho(DgRings).
- If R is of w.gl.dim. \leq 1, then have Künneth's theorem relating $H^n(S \otimes_R^L S)$ to $H^i(S) \otimes_R H^j(S)$ and $\operatorname{Tor}_1^R(H^i(S), H^j(S))$. This allows to prove that S is quasi-isomorphic to an ordinary ring.

- Nicolás and Saorín related smashing localization of D(ModR) to homological epimorphisms of differential graded rings.
- A dg-ring is a \mathbb{Z} -graded ring R with a differential $\partial \colon R \to R$ of degree 1. That is, $\partial^2 = 0$ and $\partial(x \cdot y) = \partial(x) \cdot y + (-1)^{|x|} x \cdot \partial(y)$.
- In fact, the correct context to work with homological epimorphisms of dg-rings is the homotopy category of dg-rings: Ho(DgRings) = DgRings[quasi-iso⁻¹].
- Given a smashing localization of D(ModR), we have a hom. epi. $R \to S$ in Ho(DgRings).
- If R is of w.gl.dim. \leq 1, then have Künneth's theorem relating $H^n(S \otimes_R^L S)$ to $H^i(S) \otimes_R H^j(S)$ and $\operatorname{Tor}_1^R(H^i(S), H^j(S))$. This allows to prove that S is quasi-isomorphic to an ordinary ring.

Outline

Localization of derived categories

Relation to homological epimorphisms

A classification for valuation domains

Theorem (Glaz)

Let R be a commutative ring. Then the following are equivalent:

- R is of weak global dimension at most 1,
- ② $R_{\mathfrak{p}}$ is a valuation domain for each $\mathfrak{p} \in \operatorname{Spec} R$.

Corollary

Suppose that R is a valuation domain, $f: R \to S$ is a homological epimorphism (so that w.gl.dim. $S \le 1$) and $\mathfrak{m} \in \mathsf{mSpec}\, S$.

Then $S_{\mathfrak{m}} \cong R_{\mathfrak{p}}/\mathfrak{i}$, where $\mathfrak{i}^2 = \mathfrak{i} \subseteq \mathfrak{p}$ are primes in R. That is, for each $\mathfrak{m} \in \mathsf{mSpec}\, S$ we have a formal interval $[\mathfrak{i},\mathfrak{p}]$ in $(\mathsf{Spec}\, R,\subseteq)$ with \mathfrak{i} idempotent.

Theorem (Glaz)

Let R be a commutative ring. Then the following are equivalent:

- R is of weak global dimension at most 1,
- ② $R_{\mathfrak{p}}$ is a valuation domain for each $\mathfrak{p} \in \operatorname{Spec} R$.

Corollary

Suppose that R is a valuation domain, $f: R \to S$ is a homological epimorphism (so that w.gl.dim. $S \le 1$) and $\mathfrak{m} \in \mathsf{mSpec}\, S$.

Then $S_{\mathfrak{m}} \cong R_{\mathfrak{p}}/\mathfrak{i}$, where $\mathfrak{i}^2 = \mathfrak{i} \subseteq \mathfrak{p}$ are primes in R. That is, for each $\mathfrak{m} \in \mathsf{mSpec}\, S$ we have a formal interval $[\mathfrak{i},\mathfrak{p}]$ in $(\mathsf{Spec}\, R,\subseteq)$ with \mathfrak{i} idempotent.

Theorem (Glaz)

Let R be a commutative ring. Then the following are equivalent:

- R is of weak global dimension at most 1,
- ② $R_{\mathfrak{p}}$ is a valuation domain for each $\mathfrak{p} \in \operatorname{Spec} R$.

Corollary

Suppose that R is a valuation domain, $f: R \to S$ is a homological epimorphism (so that w.gl.dim. $S \le 1$) and $\mathfrak{m} \in \mathsf{mSpec}\, S$.

Then $S_{\mathfrak{m}} \cong R_{\mathfrak{p}}/\mathfrak{i}$, where $\mathfrak{i}^2 = \mathfrak{i} \subseteq \mathfrak{p}$ are primes in R. That is, for each $\mathfrak{m} \in \mathsf{mSpec}\,S$ we have a formal interval $[\mathfrak{i},\mathfrak{p}]$ in $(\mathsf{Spec}\,R,\subseteq)$ with \mathfrak{i} idempotent.

Theorem (Glaz)

Let R be a commutative ring. Then the following are equivalent:

- R is of weak global dimension at most 1,
- ② $R_{\mathfrak{p}}$ is a valuation domain for each $\mathfrak{p} \in \operatorname{Spec} R$.

Corollary

Suppose that R is a valuation domain, $f: R \to S$ is a homological epimorphism (so that w.gl.dim. $S \le 1$) and $\mathfrak{m} \in \mathsf{mSpec}\, S$.

Then $S_{\mathfrak{m}} \cong R_{\mathfrak{p}}/\mathfrak{i}$, where $\mathfrak{i}^2 = \mathfrak{i} \subseteq \mathfrak{p}$ are primes in R. That is, for each $\mathfrak{m} \in \mathsf{mSpec}\, S$ we have a formal interval $[\mathfrak{i},\mathfrak{p}]$ in $(\mathsf{Spec}\, R,\subseteq)$ with \mathfrak{i} idempotent.

Theorem (Glaz)

Let R be a commutative ring. Then the following are equivalent:

- R is of weak global dimension at most 1,
- ② $R_{\mathfrak{p}}$ is a valuation domain for each $\mathfrak{p} \in \operatorname{Spec} R$.

Corollary

Suppose that R is a valuation domain, $f: R \to S$ is a homological epimorphism (so that w.gl.dim. $S \le 1$) and $m \in \mathsf{mSpec}\,S$.

Then $S_{\mathfrak{m}} \cong R_{\mathfrak{p}}/\mathfrak{i}$, where $\mathfrak{i}^2 = \mathfrak{i} \subseteq \mathfrak{p}$ are primes in R. That is, for each $\mathfrak{m} \in \mathsf{mSpec}\, S$ we have a formal interval $[\mathfrak{i},\mathfrak{p}]$ in $(\mathsf{Spec}\, R,\subseteq)$ with \mathfrak{i} idempotent.

Theorem (Glaz)

Let R be a commutative ring. Then the following are equivalent:

- R is of weak global dimension at most 1,
- ② $R_{\mathfrak{p}}$ is a valuation domain for each $\mathfrak{p} \in \operatorname{Spec} R$.

Corollary

Suppose that R is a valuation domain, $f: R \to S$ is a homological epimorphism (so that w.gl.dim. $S \le 1$) and $\mathfrak{m} \in \mathsf{mSpec}\, S$.

Then $S_{\mathfrak{m}} \cong R_{\mathfrak{p}}/\mathfrak{i}$, where $\mathfrak{i}^2 = \mathfrak{i} \subseteq \mathfrak{p}$ are primes in R. That is, for each $\mathfrak{m} \in \mathsf{mSpec}\, S$ we have a formal interval $[\mathfrak{i},\mathfrak{p}]$ in $(\mathsf{Spec}\, R,\subseteq)$ with \mathfrak{i} idempotent.

Theorem (Glaz)

Let R be a commutative ring. Then the following are equivalent:

- R is of weak global dimension at most 1,
- ② $R_{\mathfrak{p}}$ is a valuation domain for each $\mathfrak{p} \in \operatorname{Spec} R$.

Corollary

Suppose that R is a valuation domain, $f: R \to S$ is a homological epimorphism (so that w.gl.dim. $S \le 1$) and $\mathfrak{m} \in \mathsf{mSpec}\, S$.

Then $S_{\mathfrak{m}} \cong R_{\mathfrak{p}}/\mathfrak{i}$, where $\mathfrak{i}^2 = \mathfrak{i} \subseteq \mathfrak{p}$ are primes in R. That is, for each $\mathfrak{m} \in \mathsf{mSpec}\,S$ we have a formal interval $[\mathfrak{i},\mathfrak{p}]$ in $(\mathsf{Spec}\,R,\subseteq)$ with \mathfrak{i} idempotent.

Theorem (Glaz)

Let R be a commutative ring. Then the following are equivalent:

- R is of weak global dimension at most 1,
- ② $R_{\mathfrak{p}}$ is a valuation domain for each $\mathfrak{p} \in \operatorname{Spec} R$.

Corollary

Suppose that R is a valuation domain, $f: R \to S$ is a homological epimorphism (so that w.gl.dim. $S \le 1$) and $\mathfrak{m} \in \mathsf{mSpec}\, S$.

Then $S_{\mathfrak{m}} \cong R_{\mathfrak{p}}/\mathfrak{i}$, where $\mathfrak{i}^2 = \mathfrak{i} \subseteq \mathfrak{p}$ are primes in R. That is, for each $\mathfrak{m} \in \mathsf{mSpec}\,S$ we have a formal interval $[\mathfrak{i},\mathfrak{p}]$ in $(\mathsf{Spec}\,R,\subseteq)$ with \mathfrak{i} idempotent.

Theorem (Glaz)

Let R be a commutative ring. Then the following are equivalent:

- R is of weak global dimension at most 1,
- ② $R_{\mathfrak{p}}$ is a valuation domain for each $\mathfrak{p} \in \operatorname{Spec} R$.

Corollary

Suppose that R is a valuation domain, $f: R \to S$ is a homological epimorphism (so that w.gl.dim. $S \le 1$) and $\mathfrak{m} \in \mathsf{mSpec}\, S$.

Then $S_{\mathfrak{m}}\cong R_{\mathfrak{p}}/\mathfrak{i}$, where $\mathfrak{i}^2=\mathfrak{i}\subseteq\mathfrak{p}$ are primes in R. That is, for each $\mathfrak{m}\in\mathsf{mSpec}\,S$ we have a formal interval $[\mathfrak{i},\mathfrak{p}]$ in $(\mathsf{Spec}\,R,\subseteq)$ with \mathfrak{i} idempotent.

Theorem (Bazzoni-Š.)

Let R be a valuation domain. Then there is a bijection between

- **1** homological epimorphisms $f: R \rightarrow S$ and
- ② collections $\mathcal{I}=\{[\mathfrak{i}_a,\mathfrak{p}_a]\mid a\in A\}$ of disjoint intervals with $\mathfrak{i}=\mathfrak{i}^2$ such that
 - I has "no gaps",
 - 2 I is nowhere dense.

Theorem (Bazzoni-Š.)

Let R be a valuation domain. Then there is a bijection between

- **1** homological epimorphisms $f: R \rightarrow S$ and
- ② collections $\mathcal{I}=\{[\mathfrak{i}_a,\mathfrak{p}_a]\mid a\in A\}$ of disjoint intervals with $\mathfrak{i}=\mathfrak{i}^2$ such that
 - I has "no gaps",
 - 2 I is nowhere dense.

Theorem (Bazzoni-Š.)

Let R be a valuation domain. Then there is a bijection between

- **1** homological epimorphisms $f: R \rightarrow S$ and
- ② collections $\mathcal{I}=\{[\mathfrak{i}_a,\mathfrak{p}_a]\mid a\in A\}$ of disjoint intervals with $\mathfrak{i}=\mathfrak{i}^2$ such that

 - ② I is nowhere dense.

Theorem (Bazzoni-Š.)

Let R be a valuation domain. Then there is a bijection between

- **1** homological epimorphisms $f: R \rightarrow S$ and
- ② collections $\mathcal{I}=\{[\mathfrak{i}_a,\mathfrak{p}_a]\mid a\in A\}$ of disjoint intervals with $\mathfrak{i}=\mathfrak{i}^2$ such that
 - 1 I has "no gaps",
 - 2 \mathcal{I} is nowhere dense.

Theorem (Bazzoni-Š.)

Let R be a valuation domain. Then there is a bijection between

- lacktriangledown homological epimorphisms f:R o S and
- 2 collections $\mathcal{I}=\{[\mathfrak{i}_a,\mathfrak{p}_a]\mid a\in A\}$ of disjoint intervals with $\mathfrak{i}=\mathfrak{i}^2$ such that
 - I has "no gaps",
 - 2 I is nowhere dense.

• Let R be a valuation domain with Spec $R = \{0, \mathfrak{m}\}$ and $\mathfrak{m} = \mathfrak{m}^2$.

$$R = \Big\{ \sum_{i=0}^{\infty} a_{\frac{i}{\ell}} x^{\frac{i}{\ell}} \Big\}$$

- Let Q be the quotient field and k = R/m the residue field.
- Then there are 5 homological epimorphisms:
 - \blacksquare $R \rightarrow 0$,
 - \bigcirc $R \rightarrow Q$,

 - 4 $R \rightarrow k$,
- Only the first three correspond to compactly generated localizations of D(Mod*R*). Equivalently, an ordinary localization with respect to a multiplicative set.

• Let R be a valuation domain with Spec $R = \{0, \mathfrak{m}\}$ and $\mathfrak{m} = \mathfrak{m}^2$.

$$R = \Big\{ \sum_{i=0}^{\infty} a_{\frac{i}{\ell}} x^{\frac{i}{\ell}} \Big\}$$

- Let Q be the quotient field and k = R/m the residue field.
- Then there are 5 homological epimorphisms:
 - ① $R \rightarrow 0$,
 - \bigcirc $R \rightarrow Q$,

 - 4 $R \rightarrow k$,
- Only the first three correspond to compactly generated localizations of D(Mod*R*). Equivalently, an ordinary localization with respect to a multiplicative set.

• Let R be a valuation domain with Spec $R = \{0, \mathfrak{m}\}$ and $\mathfrak{m} = \mathfrak{m}^2$. For instance

$$R = \Big\{ \sum_{i=0}^{\infty} a_{\frac{i}{\ell}} x^{\frac{i}{\ell}} \Big\}$$

- Let Q be the quotient field and k = R/m the residue field.
- Then there are 5 homological epimorphisms:
 - \bigcirc $R \rightarrow 0$.

 - 4 $R \rightarrow k$,
 - \bigcirc $R \rightarrow Q \times k$.
- Only the first three correspond to compactly generated localizations of D(Mod*R*). Equivalently, an ordinary localization with respect to a multiplicative set.

• Let R be a valuation domain with Spec $R = \{0, \mathfrak{m}\}$ and $\mathfrak{m} = \mathfrak{m}^2$. For instance

$$R = \Big\{ \sum_{i=0}^{\infty} a_{\frac{i}{\ell}} x^{\frac{i}{\ell}} \Big\}$$

- Let Q be the quotient field and $k = R/\mathfrak{m}$ the residue field.
- Then there are 5 homological epimorphisms:
 - \bigcirc $R \rightarrow 0$,
- Only the first three correspond to compactly generated localizations of D(ModR). Equivalently, an ordinary localization with respect to a multiplicative set.

• Let R be a valuation domain with Spec $R = \{0, \mathfrak{m}\}$ and $\mathfrak{m} = \mathfrak{m}^2$. For instance

$$R = \Big\{ \sum_{i=0}^{\infty} a_{\frac{i}{\ell}} x^{\frac{i}{\ell}} \Big\}$$

- Let Q be the quotient field and $k = R/\mathfrak{m}$ the residue field.
- Then there are 5 homological epimorphisms:

 - $\P \rightarrow k$,
- Only the first three correspond to compactly generated localizations of D(Mod*R*). Equivalently, an ordinary localization with respect to a multiplicative set.

• Let R be a valuation domain with Spec $R = \{0, \mathfrak{m}\}$ and $\mathfrak{m} = \mathfrak{m}^2$. For instance

$$R = \Big\{ \sum_{i=0}^{\infty} a_{\frac{i}{\ell}} x^{\frac{i}{\ell}} \Big\}$$

- Let Q be the quotient field and $k = R/\mathfrak{m}$ the residue field.
- Then there are 5 homological epimorphisms:

 - $\P \rightarrow k$,
- Only the first three correspond to compactly generated localizations of D(ModR). Equivalently, an ordinary localization with respect to a multiplicative set.

• Let R be a valuation domain with Spec $R = \{0, \mathfrak{m}\}$ and $\mathfrak{m} = \mathfrak{m}^2$. For instance

$$R = \Big\{ \sum_{i=0}^{\infty} a_{\frac{i}{\ell}} x^{\frac{i}{\ell}} \Big\}$$

- Let Q be the quotient field and $k = R/\mathfrak{m}$ the residue field.
- Then there are 5 homological epimorphisms:
 - \bigcirc $R \rightarrow 0$,

 - O $P \rightarrow P$
- Only the first three correspond to compactly generated localizations of D(ModR). Equivalently, an ordinary localization with respect to a multiplicative set.

• Let R be a valuation domain with Spec $R = \{0, \mathfrak{m}\}$ and $\mathfrak{m} = \mathfrak{m}^2$. For instance

$$R = \Big\{ \sum_{i=0}^{\infty} a_{\frac{i}{\ell}} x^{\frac{i}{\ell}} \Big\}$$

- Let Q be the quotient field and $k = R/\mathfrak{m}$ the residue field.
- Then there are 5 homological epimorphisms:
- Only the first three correspond to compactly generated localizations of D(ModR). Equivalently, an ordinary localization with respect to a multiplicative set.

• Let R be a valuation domain with Spec $R = \{0, \mathfrak{m}\}$ and $\mathfrak{m} = \mathfrak{m}^2$. For instance

$$R = \Big\{ \sum_{i=0}^{\infty} a_{\frac{i}{\ell}} x^{\frac{i}{\ell}} \Big\}$$

- Let Q be the quotient field and $k = R/\mathfrak{m}$ the residue field.
- Then there are 5 homological epimorphisms:

 - \bigcirc $R \rightarrow k$,
- Only the first three correspond to compactly generated localizations of D(ModR). Equivalently, an ordinary localization with respect to a multiplicative set.

• Let R be a valuation domain with Spec $R = \{0, \mathfrak{m}\}$ and $\mathfrak{m} = \mathfrak{m}^2$. For instance

$$R = \Big\{ \sum_{i=0}^{\infty} a_{\frac{i}{\ell}} x^{\frac{i}{\ell}} \Big\}$$

- Let Q be the quotient field and $k = R/\mathfrak{m}$ the residue field.
- Then there are 5 homological epimorphisms:
 - \bigcirc $R \rightarrow 0$,

 - \bigcirc $R \rightarrow k$,
- Only the first three correspond to compactly generated localizations of D(ModR). Equivalently, an ordinary localization with respect to a multiplicative set.

• Let R be a valuation domain with Spec $R = \{0, \mathfrak{m}\}$ and $\mathfrak{m} = \mathfrak{m}^2$. For instance

$$R = \Big\{ \sum_{i=0}^{\infty} a_{\frac{i}{\ell}} x^{\frac{i}{\ell}} \Big\}$$

- Let Q be the quotient field and $k = R/\mathfrak{m}$ the residue field.
- Then there are 5 homological epimorphisms:

 - \bigcirc $R \rightarrow k$,
- Only the first three correspond to compactly generated localizations of D(ModR). Equivalently, an ordinary localization with respect to a multiplicative set.

• There are valuation domains R with Zariski spectrum

$$\operatorname{Spec} R: \quad 0 \subsetneq \mathfrak{p}_1 \subsetneq \mathfrak{p}_2 \subsetneq \mathfrak{p}_3 \subsetneq \cdots \subsetneq \mathfrak{m}.$$

- We do not know which p_i's are idempotent, but m must be such! In particular, there certainly are smashing localizations of D(ModR) which are not compactly generated (the telescope conjecture fails for D(ModR)).
- This is the same as Balmer's spectrum of $(\mathcal{SH}_p, \wedge, \mathbb{S}^0)$, the stable homotopy category of p-local spectra. So compactly generated localizations of \mathcal{SH}_p are formally the same as those of D(ModR).
- It is not known whether there are non-compactly generated smashing localizations of \mathcal{SH}_p . Another hint for the failure of the telescope conjecture in stable homotopy theory?

• There are valuation domains R with Zariski spectrum

$$\operatorname{Spec} R: \quad 0 \subsetneq \mathfrak{p}_1 \subsetneq \mathfrak{p}_2 \subsetneq \mathfrak{p}_3 \subsetneq \cdots \subsetneq \mathfrak{m}.$$

- We do not know which p_i's are idempotent, but m must be such! In particular, there certainly are smashing localizations of D(ModR) which are not compactly generated (the telescope conjecture fails for D(ModR)).
- This is the same as Balmer's spectrum of $(\mathcal{SH}_p, \wedge, \mathbb{S}^0)$, the stable homotopy category of p-local spectra. So compactly generated localizations of \mathcal{SH}_p are formally the same as those of D(ModR).
- It is not known whether there are non-compactly generated smashing localizations of \mathcal{SH}_p . Another hint for the failure of the telescope conjecture in stable homotopy theory?

There are valuation domains R with Zariski spectrum

$$\operatorname{Spec} R: \quad 0 \subsetneq \mathfrak{p}_1 \subsetneq \mathfrak{p}_2 \subsetneq \mathfrak{p}_3 \subsetneq \cdots \subsetneq \mathfrak{m}.$$

- We do not know which p_i's are idempotent, but m must be such! In particular, there certainly are smashing localizations of D(ModR) which are not compactly generated (the telescope conjecture fails for D(ModR)).
- This is the same as Balmer's spectrum of $(\mathcal{SH}_p, \wedge, \mathbb{S}^0)$, the stable homotopy category of p-local spectra. So compactly generated localizations of \mathcal{SH}_p are formally the same as those of D(ModR).
- It is not known whether there are non-compactly generated smashing localizations of \mathcal{SH}_p . Another hint for the failure of the telescope conjecture in stable homotopy theory?

There are valuation domains R with Zariski spectrum

$$\operatorname{Spec} R: \quad 0 \subsetneq \mathfrak{p}_1 \subsetneq \mathfrak{p}_2 \subsetneq \mathfrak{p}_3 \subsetneq \cdots \subsetneq \mathfrak{m}.$$

- We do not know which p_i's are idempotent, but m must be such! In particular, there certainly are smashing localizations of D(ModR) which are not compactly generated (the telescope conjecture fails for D(ModR)).
- This is the same as Balmer's spectrum of $(\mathcal{SH}_p, \wedge, \mathbb{S}^0)$, the stable homotopy category of p-local spectra. So compactly generated localizations of \mathcal{SH}_p are formally the same as those of D(ModR).
- It is not known whether there are non-compactly generated smashing localizations of \mathcal{SH}_p . Another hint for the failure of the telescope conjecture in stable homotopy theory?

There are valuation domains R with Zariski spectrum

$$\operatorname{Spec} R: \quad 0 \subsetneq \mathfrak{p}_1 \subsetneq \mathfrak{p}_2 \subsetneq \mathfrak{p}_3 \subsetneq \cdots \subsetneq \mathfrak{m}.$$

- We do not know which p_i's are idempotent, but m must be such! In particular, there certainly are smashing localizations of D(ModR) which are not compactly generated (the telescope conjecture fails for D(ModR)).
- This is the same as Balmer's spectrum of $(\mathcal{SH}_p, \wedge, \mathbb{S}^0)$, the stable homotopy category of p-local spectra. So compactly generated localizations of \mathcal{SH}_p are formally the same as those of D(ModR).
- It is not known whether there are non-compactly generated smashing localizations of \mathcal{SH}_p . Another hint for the failure of the telescope conjecture in stable homotopy theory?

There are valuation domains R with Zariski spectrum

$$\operatorname{Spec} R: \quad 0 \subsetneq \mathfrak{p}_1 \subsetneq \mathfrak{p}_2 \subsetneq \mathfrak{p}_3 \subsetneq \cdots \subsetneq \mathfrak{m}.$$

- We do not know which p_i's are idempotent, but m must be such! In particular, there certainly are smashing localizations of D(ModR) which are not compactly generated (the telescope conjecture fails for D(ModR)).
- This is the same as Balmer's spectrum of $(\mathcal{SH}_p, \wedge, \mathbb{S}^0)$, the stable homotopy category of p-local spectra. So compactly generated localizations of \mathcal{SH}_p are formally the same as those of D(ModR).
- It is not known whether there are non-compactly generated smashing localizations of \mathcal{SH}_p . Another hint for the failure of the telescope conjecture in stable homotopy theory?

There are valuation domains R with Zariski spectrum

$$\operatorname{Spec} R: \quad 0 \subsetneq \mathfrak{p}_1 \subsetneq \mathfrak{p}_2 \subsetneq \mathfrak{p}_3 \subsetneq \cdots \subsetneq \mathfrak{m}.$$

- We do not know which p_i's are idempotent, but m must be such! In particular, there certainly are smashing localizations of D(ModR) which are not compactly generated (the telescope conjecture fails for D(ModR)).
- This is the same as Balmer's spectrum of $(\mathcal{SH}_p, \wedge, \mathbb{S}^0)$, the stable homotopy category of p-local spectra. So compactly generated localizations of \mathcal{SH}_p are formally the same as those of D(ModR).
- It is not known whether there are non-compactly generated smashing localizations of \mathcal{SH}_p . Another hint for the failure of the telescope conjecture in stable homotopy theory?

There are valuation domains R with Zariski spectrum

$$\operatorname{Spec} R: \quad 0 \subsetneq \mathfrak{p}_1 \subsetneq \mathfrak{p}_2 \subsetneq \mathfrak{p}_3 \subsetneq \cdots \subsetneq \mathfrak{m}.$$

- We do not know which p_i's are idempotent, but m must be such! In particular, there certainly are smashing localizations of D(ModR) which are not compactly generated (the telescope conjecture fails for D(ModR)).
- This is the same as Balmer's spectrum of $(\mathcal{SH}_p, \wedge, \mathbb{S}^0)$, the stable homotopy category of p-local spectra. So compactly generated localizations of \mathcal{SH}_p are formally the same as those of D(ModR).
- It is not known whether there are non-compactly generated smashing localizations of \$\mathcal{SH}_p\$. Another hint for the failure of the telescope conjecture in stable homotopy theory?

There are valuation domains R with Zariski spectrum

$$\operatorname{Spec} R: \quad 0 \subsetneq \mathfrak{p}_1 \subsetneq \mathfrak{p}_2 \subsetneq \mathfrak{p}_3 \subsetneq \cdots \subsetneq \mathfrak{m}.$$

- We do not know which p_i's are idempotent, but m must be such! In particular, there certainly are smashing localizations of D(ModR) which are not compactly generated (the telescope conjecture fails for D(ModR)).
- This is the same as Balmer's spectrum of $(\mathcal{SH}_p, \wedge, \mathbb{S}^0)$, the stable homotopy category of p-local spectra. So compactly generated localizations of \mathcal{SH}_p are formally the same as those of D(ModR).
- It is not known whether there are non-compactly generated smashing localizations of \mathcal{SH}_p . Another hint for the failure of the telescope conjecture in stable homotopy theory?

