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What is a module?

Given a (non-commutative) ring (R, +,−, 0, ·, 1), we define a module
as a “vector space” over R:

Definition
A left R-module is an abelian group (M, +,−, 0) such that we can
multiply each r ∈ R and m ∈ M and the following axioms hold:

1 r(m + m′) = rm + rm′,
2 (r + s)m = rm + sm,
3 r(sm) = (rs)m,
4 1 ·m = m.

Module are far reaching generalization of vector spaces, their
properties heavily depend on the ring R!
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Free and projective modules

A ring is a left module over itself, 1 ∈ R forms a free basis.
Free modules are modules with a free basis, they are isomorphic
to R(I), where I is a set.
A module P is projective if it is a direct summand of a free module,
that is, P ⊕Q = R(I) for some Q and I.
Each module is of the form F/K , where F is a free module.
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Modules over specific rings—vector bundles

Take a compact Hausdorff space:

M :

Let R be the ring of all continuous real (or complex) valued functions
onM.

Theorem (Swan, 1961)
There is a bijective correspondence between isomorphism classes of
vector bundles onM and isomorphism classes of finitely generated
projective R-modules.
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Modules over specific rings—matrix problems
Let k be a field and Q be a quiver:

•
α1

//

α3 ��@
@@

@@
@@

•
α2oo

•
α4

??~~~~~~~

Let R = kQ be the path algebra, that is, a ring defined by the “k -linear
extension of compositions of paths”. Then left R-modules correspond
to diagrams of the form:

U
f1

//

f3   A
AA

AA
AA

A V
f2oo

W
f4

>>}}}}}}}}

Classification of modules corresponds to finding normal forms for
matrices, eg. pairs of bilinear forms, 4-subspace problem.
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Hom and Ext

If R is a ring and M, N are R-modules, denote by HomR(M, N) the
set of all homomorphisms from M to N. This is an abelian group
via (f + g)(m) = f (m) + g(m).
Another important concept: extensions. Let Ext1R(M, N) be the set
of all short exact sequences

ε : 0 −−−−→ N i−−−−→ E
p−−−−→ M −−−−→ 0

modulo the relation identifying ε and ε′ when

ε : 0 −−−−→ N i−−−−→ E
p−−−−→ M −−−−→ 0∥∥∥ y ∥∥∥

ε′ : 0 −−−−→ N i ′−−−−→ E ′ p′
−−−−→ M −−−−→ 0

This is an abelian group via the so called Baer sum.
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Jan Št’ovíček (Charles University) Tilting modules January 24, 2010 8 / 14



Hom and Ext

If R is a ring and M, N are R-modules, denote by HomR(M, N) the
set of all homomorphisms from M to N. This is an abelian group
via (f + g)(m) = f (m) + g(m).
Another important concept: extensions. Let Ext1R(M, N) be the set
of all short exact sequences

ε : 0 −−−−→ N i−−−−→ E
p−−−−→ M −−−−→ 0

modulo the relation identifying ε and ε′ when

ε : 0 −−−−→ N i−−−−→ E
p−−−−→ M −−−−→ 0∥∥∥ y ∥∥∥

ε′ : 0 −−−−→ N i ′−−−−→ E ′ p′
−−−−→ M −−−−→ 0

This is an abelian group via the so called Baer sum.

Jan Št’ovíček (Charles University) Tilting modules January 24, 2010 8 / 14



Hom and Ext

If R is a ring and M, N are R-modules, denote by HomR(M, N) the
set of all homomorphisms from M to N. This is an abelian group
via (f + g)(m) = f (m) + g(m).
Another important concept: extensions. Let Ext1R(M, N) be the set
of all short exact sequences

ε : 0 −−−−→ N i−−−−→ E
p−−−−→ M −−−−→ 0

modulo the relation identifying ε and ε′ when

ε : 0 −−−−→ N i−−−−→ E
p−−−−→ M −−−−→ 0∥∥∥ y ∥∥∥

ε′ : 0 −−−−→ N i ′−−−−→ E ′ p′
−−−−→ M −−−−→ 0

This is an abelian group via the so called Baer sum.
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Hom and Ext continued

There is a close relation between Hom and Ext which leads to
definition of higher Ext groups.
For modules M, N and n ≥ 1 we define ExtnR(M, N) to be the set

0 −→ N −→ E1 −→ E2 −→ . . . −→ En −→ M −→ 0

modulo a certain equivalence relation.
ExtnR(M, N) is again naturally an abelian group.
Projective modules are important in computing these Ext-groups.
Fact:

P is a projective module⇐⇒

Ext1R(P, M) = 0 for each module M ⇐⇒

ExtnR(P, M) = 0 for each module M and n ≥ 1.
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Generalization of projective modules
Definition
Let R be a ring. A module T is called tilting if

1 Extn(T (I), T (I)) = 0 for each set I,
2 there exists an exact sequence of the form

0 −→ R(J1) −→ R(J2) −→ . . . −→ R(Jn) −→ T −→ 0,

3 there exists an exact sequence of the form

0 −→ R −→ T (K1) −→ T (K2) −→ . . . −→ T (Km) −→ 0.

Remarks:

Finitely generated tilting give connection between modules over R
and S = EndR(T ) (via so called derived equivalences).
Infinitely generated tilting modules give insight into the structure of
infinitely generated modules and into behavior of Ext-functors.
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and S = EndR(T ) (via so called derived equivalences).
Infinitely generated tilting modules give insight into the structure of
infinitely generated modules and into behavior of Ext-functors.
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Jan Št’ovíček (Charles University) Tilting modules January 24, 2010 11 / 14



Generalization of projective modules
Definition
Let R be a ring. A module T is called tilting if

1 Extn(T (I), T (I)) = 0 for each set I,
2 there exists an exact sequence of the form

0 −→ R(J1) −→ R(J2) −→ . . . −→ R(Jn) −→ T −→ 0,

3 there exists an exact sequence of the form

0 −→ R −→ T (K1) −→ T (K2) −→ . . . −→ T (Km) −→ 0.

Remarks:

Finitely generated tilting give connection between modules over R
and S = EndR(T ) (via so called derived equivalences).
Infinitely generated tilting modules give insight into the structure of
infinitely generated modules and into behavior of Ext-functors.
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Tilting classes

Definition
Let R be a ring and T a tilting module. Then

T = {M | Extn(T , M) = 0 for each n ≥ 1}

is called the tilting class corresponding to T .

Remarks:

Tilting classes are often easier to deal with. Often we know we
have a tilting class, but do not understand the tilting module.
We have for each P ∈ T :

P is a summand in some T (I) ⇐⇒

Ext1R(P, M) = 0 for each module M ∈ T ⇐⇒

ExtnR(P, M) = 0 for each module M ∈ T and n ≥ 1.
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Jan Št’ovíček (Charles University) Tilting modules January 24, 2010 12 / 14



Tilting classes

Definition
Let R be a ring and T a tilting module. Then

T = {M | Extn(T , M) = 0 for each n ≥ 1}

is called the tilting class corresponding to T .

Remarks:

Tilting classes are often easier to deal with. Often we know we
have a tilting class, but do not understand the tilting module.
We have for each P ∈ T :

P is a summand in some T (I) ⇐⇒

Ext1R(P, M) = 0 for each module M ∈ T ⇐⇒

ExtnR(P, M) = 0 for each module M ∈ T and n ≥ 1.
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Finite type

Theorem (Bazzoni, Eklof, Š., Trlifaj, 2005)
Let R be a ring and T a tilting class of R modules. Then T is of finite
type. That is, there is a set S of strongly finitely presented modules
such that

T = {M | Ext1R(S, M) = 0 for each S ∈ S}

That is, we have replaced

1 ExtnR for n ≥ 1 by just Ext1R and
2 a single infinitely generated module T by a set of strongly finitely

presented modules.
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Consequences

Characterization of tilting classes over a given ring R.
Connection to model theory: Each tilting class T is axiomatizable
in the language LR of left R-modules (with function symbols +, −,
0 and r · − for each r ∈ R).
This is because for a fixed strongly finitely presented module S,
the condition Ext1(S, M) = 0 for given M can be expressed by a
first order formula in LR.
Structure of tilting modules: Given a tilting class
T = {M | Ext1R(S, M) = 0 for each S ∈ S}, there is a tilting module
T for T , which is the union of a transfinite smooth chain

0 = T0 ⊆ T1 ⊆ T2 ⊆ · · · ⊆ Tα ⊆ Tα+1 ⊆ · · · ⊆ Tσ = T

with Tα+1/Tα ∈ S for each S ∈ S.
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Jan Št’ovíček (Charles University) Tilting modules January 24, 2010 14 / 14



Consequences

Characterization of tilting classes over a given ring R.
Connection to model theory: Each tilting class T is axiomatizable
in the language LR of left R-modules (with function symbols +, −,
0 and r · − for each r ∈ R).
This is because for a fixed strongly finitely presented module S,
the condition Ext1(S, M) = 0 for given M can be expressed by a
first order formula in LR.
Structure of tilting modules: Given a tilting class
T = {M | Ext1R(S, M) = 0 for each S ∈ S}, there is a tilting module
T for T , which is the union of a transfinite smooth chain

0 = T0 ⊆ T1 ⊆ T2 ⊆ · · · ⊆ Tα ⊆ Tα+1 ⊆ · · · ⊆ Tσ = T

with Tα+1/Tα ∈ S for each S ∈ S.
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Jan Št’ovíček (Charles University) Tilting modules January 24, 2010 14 / 14



Consequences

Characterization of tilting classes over a given ring R.
Connection to model theory: Each tilting class T is axiomatizable
in the language LR of left R-modules (with function symbols +, −,
0 and r · − for each r ∈ R).
This is because for a fixed strongly finitely presented module S,
the condition Ext1(S, M) = 0 for given M can be expressed by a
first order formula in LR.
Structure of tilting modules: Given a tilting class
T = {M | Ext1R(S, M) = 0 for each S ∈ S}, there is a tilting module
T for T , which is the union of a transfinite smooth chain

0 = T0 ⊆ T1 ⊆ T2 ⊆ · · · ⊆ Tα ⊆ Tα+1 ⊆ · · · ⊆ Tσ = T

with Tα+1/Tα ∈ S for each S ∈ S.
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