Tilting modules—homological algebra and structure

Jan Šťovíček

Department of Algebra Faculty of Mathematics and Physics Charles University in Prague

Joint Mathematical Conference CSASC 2010 January 24th, 2010

4 3 5 4 3 5

< 🗇 🕨

Outline

Modules

- Definition and interpretation
- Homological algebra

Tilting modules and tilting classes

- Introduction
- Finite type

-

< 6 b

Outline

Modules

- Definition and interpretation
- Homological algebra

Tilting modules and tilting classes

- Introduction
- Finite type

Given a (non-commutative) ring $(R, +, -, 0, \cdot, 1)$, we define a module as a "vector space" over R:

Definition

A left *R*-module is an abelian group (M, +, -, 0) such that we can multiply each $r \in R$ and $m \in M$ and the following axioms hold:

- (*r* + *s*)m = rm + sm,
- I (sm) = (rs)m,
- $④ 1 \cdot m = m.$

Module are far reaching generalization of vector spaces, their properties heavily depend on the ring R!

Given a (non-commutative) ring $(R, +, -, 0, \cdot, 1)$, we define a module as a "vector space" over R:

Definition

A left *R*-module is an abelian group (M, +, -, 0) such that we can multiply each $r \in R$ and $m \in M$ and the following axioms hold:

- (r+s)m = rm + sm,
- I (sm) = (rs)m,
- $1 \cdot m = m.$

Module are far reaching generalization of vector spaces, their properties heavily depend on the ring R!

Given a (non-commutative) ring $(R, +, -, 0, \cdot, 1)$, we define a module as a "vector space" over R:

Definition

A left *R*-module is an abelian group (M, +, -, 0) such that we can multiply each $r \in R$ and $m \in M$ and the following axioms hold:

```
    r(m + m') = rm + rm',
    (r + s)m = rm + sm,
    r(sm) = (rs)m,
    1 ⋅ m = m.
```

Module are far reaching generalization of vector spaces, their properties heavily depend on the ring *R*!

Given a (non-commutative) ring $(R, +, -, 0, \cdot, 1)$, we define a module as a "vector space" over R:

Definition

A left *R*-module is an abelian group (M, +, -, 0) such that we can multiply each $r \in R$ and $m \in M$ and the following axioms hold:

Module are far reaching generalization of vector spaces, their properties heavily depend on the ring R!

Given a (non-commutative) ring $(R, +, -, 0, \cdot, 1)$, we define a module as a "vector space" over R:

Definition

A left *R*-module is an abelian group (M, +, -, 0) such that we can multiply each $r \in R$ and $m \in M$ and the following axioms hold:

Module are far reaching generalization of vector spaces, their properties heavily depend on the ring R!

• A ring is a left module over itself, $1 \in R$ forms a free basis.

- Free modules are modules with a free basis, they are isomorphic to *R*^(*I*), where *I* is a set.
- A module P is projective if it is a direct summand of a free module, that is, P ⊕ Q = R^(I) for some Q and I.
- Each module is of the form F/K, where F is a free module.

- A ring is a left module over itself, $1 \in R$ forms a free basis.
- Free modules are modules with a free basis, they are isomorphic to *R*^(*I*), where *I* is a set.
- A module P is projective if it is a direct summand of a free module, that is, P ⊕ Q = R^(I) for some Q and I.
- Each module is of the form F/K, where F is a free module.

- A ring is a left module over itself, $1 \in R$ forms a free basis.
- Free modules are modules with a free basis, they are isomorphic to *R*^(*I*), where *I* is a set.
- A module P is projective if it is a direct summand of a free module, that is, P ⊕ Q = R^(I) for some Q and I.
- Each module is of the form F/K, where F is a free module.

- A ring is a left module over itself, $1 \in R$ forms a free basis.
- Free modules are modules with a free basis, they are isomorphic to *R*^(*I*), where *I* is a set.
- A module P is projective if it is a direct summand of a free module, that is, P ⊕ Q = R^(I) for some Q and I.
- Each module is of the form F/K, where F is a free module.

- A ring is a left module over itself, $1 \in R$ forms a free basis.
- Free modules are modules with a free basis, they are isomorphic to *R*^(*I*), where *I* is a set.
- A module P is projective if it is a direct summand of a free module, that is, P ⊕ Q = R^(I) for some Q and I.

• Each module is of the form F/K, where F is a free module.

- A ring is a left module over itself, $1 \in R$ forms a free basis.
- Free modules are modules with a free basis, they are isomorphic to *R*^(*I*), where *I* is a set.
- A module P is projective if it is a direct summand of a free module, that is, P ⊕ Q = R^(I) for some Q and I.
- Each module is of the form F/K, where F is a free module.

Take a compact Hausdorff space:

Let R be the ring of all continuous real (or complex) valued functions on \mathcal{M} .

Theorem (Swan, 1961)

 \mathcal{M} :

There is a bijective correspondence between isomorphism classes of vector bundles on \mathcal{M} and isomorphism classes of finitely generated projective R-modules.

Take a compact Hausdorff space:

Let *R* be the ring of all continuous real (or complex) valued functions on \mathcal{M} .

Theorem (Swan, 1961)

There is a bijective correspondence between isomorphism classes of vector bundles on \mathcal{M} and isomorphism classes of finitely generated projective R-modules.

Take a compact Hausdorff space:

Let *R* be the ring of all continuous real (or complex) valued functions on \mathcal{M} .

Theorem (Swan, 1961)

There is a bijective correspondence between isomorphism classes of vector bundles on \mathcal{M} and isomorphism classes of finitely generated projective R-modules.

4 3 5 4 3

Take a compact Hausdorff space:

Let *R* be the ring of all continuous real (or complex) valued functions on \mathcal{M} .

Theorem (Swan, 1961)

There is a bijective correspondence between isomorphism classes of vector bundles on \mathcal{M} and isomorphism classes of finitely generated projective R-modules.

Modules over specific rings—matrix problems Let *k* be a field and *Q* be a quiver:

Let R = kQ be the path algebra, that is, a ring defined by the "*k*-linear extension of compositions of paths". Then left *R*-modules correspond to diagrams of the form:

Classification of modules corresponds to finding normal forms for matrices, eg. pairs of bilinear forms, 4-subspace problem.

A B F A B F

Let k be a field and Q be a quiver:

Let R = kQ be the path algebra, that is, a ring defined by the "*k*-linear extension of compositions of paths". Then left *R*-modules correspond to diagrams of the form:

Classification of modules corresponds to finding normal forms for matrices, eg. pairs of bilinear forms, 4-subspace problem.

(B)

Let k be a field and Q be a quiver:

Let R = kQ be the path algebra, that is, a ring defined by the "*k*-linear extension of compositions of paths". Then left *R*-modules correspond to diagrams of the form:

Classification of modules corresponds to finding normal forms for matrices, eg. pairs of bilinear forms, 4-subspace problem.

(B) (A) (B)

Let k be a field and Q be a quiver:

Let R = kQ be the path algebra, that is, a ring defined by the "*k*-linear extension of compositions of paths". Then left *R*-modules correspond to diagrams of the form:

Classification of modules corresponds to finding normal forms for matrices, eg. pairs of bilinear forms, 4-subspace problem.

モトイモト

Let k be a field and Q be a quiver:

Let R = kQ be the path algebra, that is, a ring defined by the "*k*-linear extension of compositions of paths". Then left *R*-modules correspond to diagrams of the form:

Classification of modules corresponds to finding normal forms for matrices, eg. pairs of bilinear forms, 4-subspace problem.

Let k be a field and Q be a quiver:

Let R = kQ be the path algebra, that is, a ring defined by the "*k*-linear extension of compositions of paths". Then left *R*-modules correspond to diagrams of the form:

Classification of modules corresponds to finding normal forms for matrices, eg. pairs of bilinear forms, 4-subspace problem.

Let k be a field and Q be a quiver:

Let R = kQ be the path algebra, that is, a ring defined by the "*k*-linear extension of compositions of paths". Then left *R*-modules correspond to diagrams of the form:

Classification of modules corresponds to finding normal forms for matrices, eg. pairs of bilinear forms, 4-subspace problem.

- If *R* is a ring and *M*, *N* are *R*-modules, denote by Hom_R(*M*, *N*) the set of all homomorphisms from *M* to *N*. This is an abelian group via (*f* + *g*)(*m*) = *f*(*m*) + *g*(*m*).
- Another important concept: extensions. Let Ext¹_R(M, N) be the set of all short exact sequences

$$\varepsilon: 0 \longrightarrow N \xrightarrow{i} E \xrightarrow{p} M \longrightarrow 0$$

modulo the relation identifying ε and ε' when

This is an abelian group via the so called Baer sum.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- If *R* is a ring and *M*, *N* are *R*-modules, denote by Hom_R(*M*, *N*) the set of all homomorphisms from *M* to *N*. This is an abelian group via (*f* + *g*)(*m*) = *f*(*m*) + *g*(*m*).
- Another important concept: extensions. Let Ext¹_R(M, N) be the set of all short exact sequences

$$\varepsilon: 0 \longrightarrow N \xrightarrow{i} E \xrightarrow{p} M \longrightarrow 0$$

modulo the relation identifying ε and ε' when

This is an abelian group via the so called Baer sum.

- If *R* is a ring and *M*, *N* are *R*-modules, denote by $\text{Hom}_R(M, N)$ the set of all homomorphisms from *M* to *N*. This is an abelian group via (f + g)(m) = f(m) + g(m).
- Another important concept: extensions. Let Ext¹_R(M, N) be the set of all short exact sequences

$$\varepsilon: 0 \longrightarrow N \xrightarrow{i} E \xrightarrow{p} M \longrightarrow 0$$

modulo the relation identifying ε and ε' when

This is an abelian group via the so called Baer sum.

- If *R* is a ring and *M*, *N* are *R*-modules, denote by $\text{Hom}_R(M, N)$ the set of all homomorphisms from *M* to *N*. This is an abelian group via (f + g)(m) = f(m) + g(m).
- Another important concept: extensions. Let Ext¹_R(M, N) be the set of all short exact sequences

$$\varepsilon: 0 \longrightarrow N \xrightarrow{i} E \xrightarrow{p} M \longrightarrow 0$$

modulo the relation identifying ε and ε' when

This is an abelian group via the so called Baer sum.

- If *R* is a ring and *M*, *N* are *R*-modules, denote by $\text{Hom}_R(M, N)$ the set of all homomorphisms from *M* to *N*. This is an abelian group via (f + g)(m) = f(m) + g(m).
- Another important concept: extensions. Let Ext¹_R(M, N) be the set of all short exact sequences

$$\varepsilon: 0 \longrightarrow N \xrightarrow{i} E \xrightarrow{p} M \longrightarrow 0$$

modulo the relation identifying arepsilon and arepsilon' when

This is an abelian group via the so called Baer sum.

- If *R* is a ring and *M*, *N* are *R*-modules, denote by $\text{Hom}_R(M, N)$ the set of all homomorphisms from *M* to *N*. This is an abelian group via (f + g)(m) = f(m) + g(m).
- Another important concept: extensions. Let Ext¹_R(M, N) be the set of all short exact sequences

$$\varepsilon: 0 \longrightarrow N \xrightarrow{i} E \xrightarrow{p} M \longrightarrow 0$$

modulo the relation identifying ε and ε' when

This is an abelian group via the so called Baer sum.

- If *R* is a ring and *M*, *N* are *R*-modules, denote by $\text{Hom}_R(M, N)$ the set of all homomorphisms from *M* to *N*. This is an abelian group via (f + g)(m) = f(m) + g(m).
- Another important concept: extensions. Let Ext¹_R(M, N) be the set of all short exact sequences

$$\varepsilon: 0 \longrightarrow N \xrightarrow{i} E \xrightarrow{p} M \longrightarrow 0$$

modulo the relation identifying ε and ε' when

This is an abelian group via the so called Baer sum.

- There is a close relation between Hom and Ext which leads to definition of higher Ext groups.
- For modules M, N and $n \ge 1$ we define $\operatorname{Ext}_{R}^{n}(M, N)$ to be the set

$$0 \longrightarrow N \longrightarrow E_1 \longrightarrow E_2 \longrightarrow \ldots \longrightarrow E_n \longrightarrow M \longrightarrow 0$$

modulo a certain equivalence relation.

- $\operatorname{Ext}_{R}^{n}(M, N)$ is again naturally an abelian group.
- Projective modules are important in computing these Ext-groups.
 Fact:

P is a projective module \iff Ext $_{R}^{1}(P, M) = 0$ for each module $M \iff$ Ext $_{R}^{n}(P, M) = 0$ for each module *M* and $n \ge 1$

4 **A** N A **B** N A **B** N

- There is a close relation between Hom and Ext which leads to definition of higher Ext groups.
- For modules M, N and $n \ge 1$ we define $\operatorname{Ext}_{R}^{n}(M, N)$ to be the set

$$0 \longrightarrow N \longrightarrow E_1 \longrightarrow E_2 \longrightarrow \ldots \longrightarrow E_n \longrightarrow M \longrightarrow 0$$

modulo a certain equivalence relation.

- $\operatorname{Ext}_{R}^{n}(M, N)$ is again naturally an abelian group.
- Projective modules are important in computing these Ext-groups.
 Eact:

P is a projective module \iff Ext¹_R(*P*, *M*) = 0 for each module *M* \iff Extⁿ_R(*P*, *M*) = 0 for each module *M* and *n* > 1

不同 トイモトイモ

- There is a close relation between Hom and Ext which leads to definition of higher Ext groups.
- For modules M, N and $n \ge 1$ we define $\operatorname{Ext}_{R}^{n}(M, N)$ to be the set

$$0 \longrightarrow N \longrightarrow E_1 \longrightarrow E_2 \longrightarrow \ldots \longrightarrow E_n \longrightarrow M \longrightarrow 0$$

modulo a certain equivalence relation.

- $\operatorname{Ext}_{R}^{n}(M, N)$ is again naturally an abelian group.
- Projective modules are important in computing these Ext-groups.
 Fact:

P is a projective module \iff

 $\operatorname{Ext}^{1}_{R}(P, M) = 0$ for each module $M \iff$

 $\operatorname{Ext}_{R}^{n}(P, M) = 0$ for each module M and $n \geq 1$.

不同 トイモトイモ

- There is a close relation between Hom and Ext which leads to definition of higher Ext groups.
- For modules M, N and $n \ge 1$ we define $\operatorname{Ext}_{B}^{n}(M, N)$ to be the set

$$0 \longrightarrow N \longrightarrow E_1 \longrightarrow E_2 \longrightarrow \ldots \longrightarrow E_n \longrightarrow M \longrightarrow 0$$

modulo a certain equivalence relation.

- $\operatorname{Ext}_{R}^{n}(M, N)$ is again naturally an abelian group.
- Projective modules are important in computing these Ext-groups.Fact:

P is a projective module
$$\iff$$

 $\operatorname{Ext}^{1}_{R}(P, M) = 0$ for each module $M \iff$

 $\operatorname{Ext}_{R}^{n}(P, M) = 0$ for each module M and $n \geq 1$.

4 D K 4 B K 4 B K 4 B K

- There is a close relation between Hom and Ext which leads to definition of higher Ext groups.
- For modules M, N and $n \ge 1$ we define $\operatorname{Ext}_{R}^{n}(M, N)$ to be the set

$$0 \longrightarrow N \longrightarrow E_1 \longrightarrow E_2 \longrightarrow \ldots \longrightarrow E_n \longrightarrow M \longrightarrow 0$$

modulo a certain equivalence relation.

- $\operatorname{Ext}_{R}^{n}(M, N)$ is again naturally an abelian group.
- Projective modules are important in computing these Ext-groups.Fact:

P is a projective module \iff

 $\operatorname{Ext}^{1}_{R}(P, M) = 0$ for each module $M \iff$

 $\operatorname{Ext}_{R}^{n}(P, M) = 0$ for each module M and $n \geq 1$.

イロト イポト イラト イラト

- There is a close relation between Hom and Ext which leads to definition of higher Ext groups.
- For modules M, N and $n \ge 1$ we define $\operatorname{Ext}_{R}^{n}(M, N)$ to be the set

$$0 \longrightarrow N \longrightarrow E_1 \longrightarrow E_2 \longrightarrow \ldots \longrightarrow E_n \longrightarrow M \longrightarrow 0$$

modulo a certain equivalence relation.

- $\operatorname{Ext}_{R}^{n}(M, N)$ is again naturally an abelian group.
- Projective modules are important in computing these Ext-groups.
 Fact:

P is a projective module
$$\iff$$

 $\operatorname{Ext}_{R}^{1}(P, M) = 0$ for each module $M \iff$

 $\operatorname{Ext}_{R}^{n}(P, M) = 0$ for each module M and $n \geq 1$.

- There is a close relation between Hom and Ext which leads to definition of higher Ext groups.
- For modules M, N and $n \ge 1$ we define $\operatorname{Ext}_{B}^{n}(M, N)$ to be the set

$$0 \longrightarrow N \longrightarrow E_1 \longrightarrow E_2 \longrightarrow \ldots \longrightarrow E_n \longrightarrow M \longrightarrow 0$$

modulo a certain equivalence relation.

- $\operatorname{Ext}_{R}^{n}(M, N)$ is again naturally an abelian group.
- Projective modules are important in computing these Ext-groups.
 Fact:

P is a projective module \iff

 $\operatorname{Ext}^{1}_{B}(P, M) = 0$ for each module $M \iff$

 $\operatorname{Ext}_{R}^{n}(P, M) = 0$ for each module M and $n \geq 1$.

- There is a close relation between Hom and Ext which leads to definition of higher Ext groups.
- For modules M, N and $n \ge 1$ we define $\operatorname{Ext}_{B}^{n}(M, N)$ to be the set

$$0 \longrightarrow N \longrightarrow E_1 \longrightarrow E_2 \longrightarrow \ldots \longrightarrow E_n \longrightarrow M \longrightarrow 0$$

modulo a certain equivalence relation.

- $\operatorname{Ext}_{R}^{n}(M, N)$ is again naturally an abelian group.
- Projective modules are important in computing these Ext-groups.
 Fact:

P is a projective module \iff Ext¹_{*R*}(*P*, *M*) = 0 for each module *M* \iff

 $\operatorname{Ext}_{R}^{n}(P, M) = 0$ for each module M and $n \geq 1$.

- There is a close relation between Hom and Ext which leads to definition of higher Ext groups.
- For modules M, N and $n \ge 1$ we define $\operatorname{Ext}_{R}^{n}(M, N)$ to be the set

$$0 \longrightarrow N \longrightarrow E_1 \longrightarrow E_2 \longrightarrow \ldots \longrightarrow E_n \longrightarrow M \longrightarrow 0$$

modulo a certain equivalence relation.

- $\operatorname{Ext}_{R}^{n}(M, N)$ is again naturally an abelian group.
- Projective modules are important in computing these Ext-groups.
 Fact:

$$P$$
 is a projective module \iff
 $\operatorname{Ext}_{R}^{1}(P, M) = 0$ for each module $M \iff$
 $\operatorname{Ext}_{R}^{n}(P, M) = 0$ for each module M and $n \ge 1$.

Outline

Modules

- Definition and interpretation
- Homological algebra

Tilting modules and tilting classes

- Introduction
- Finite type

э

Definition

Let *R* be a ring. A module *T* is called tilting if

• Ext^{*n*}($T^{(I)}, T^{(I)}$) = 0 for each set *I*,

2 there exists an exact sequence of the form $0 \longrightarrow R^{(J_1)} \longrightarrow R^{(J_2)} \longrightarrow \ldots \longrightarrow R^{(J_n)} \longrightarrow T \longrightarrow 0,$

(3) there exists an exact sequence of the form $0 \longrightarrow R \longrightarrow T^{(K_1)} \longrightarrow T^{(K_2)} \longrightarrow \ldots \longrightarrow T^{(K_m)} \longrightarrow 0.$

Remarks:

- Finitely generated tilting give connection between modules over R and S = End_R(T) (via so called derived equivalences).
- Infinitely generated tilting modules give insight into the structure of infinitely generated modules and into behavior of Ext-functors.

Definition

Let *R* be a ring. A module *T* is called tilting if

• Ext^{*n*}(
$$T^{(I)}, T^{(I)}$$
) = 0 for each set *I*,

there exists an exact sequence of the form

$$0 \longrightarrow R^{(J_1)} \longrightarrow R^{(J_2)} \longrightarrow \ldots \longrightarrow R^{(J_n)} \longrightarrow T \longrightarrow 0,$$

(a) there exists an exact sequence of the form $0 \longrightarrow R \longrightarrow T^{(K_1)} \longrightarrow T^{(K_2)} \longrightarrow \ldots \longrightarrow T^{(K_m)} \longrightarrow 0$

Remarks:

- Finitely generated tilting give connection between modules over R and S = End_R(T) (via so called derived equivalences).
- Infinitely generated tilting modules give insight into the structure of infinitely generated modules and into behavior of Ext-functors.

Definition

Let *R* be a ring. A module *T* is called tilting if

• Ext^{*n*}(
$$T^{(I)}, T^{(I)}$$
) = 0 for each set *I*,

there exists an exact sequence of the form

$$0 \longrightarrow R^{(J_1)} \longrightarrow R^{(J_2)} \longrightarrow \ldots \longrightarrow R^{(J_n)} \longrightarrow T \longrightarrow 0,$$

Solution 1
Solution 1
Solution 1
Solution 1
Solution 2
Solution

Remarks:

- Finitely generated tilting give connection between modules over R and S = End_R(T) (via so called derived equivalences).
- Infinitely generated tilting modules give insight into the structure of infinitely generated modules and into behavior of Ext-functors.

Definition

Let *R* be a ring. A module *T* is called tilting if

• Ext^{*n*}(
$$T^{(I)}, T^{(I)}$$
) = 0 for each set *I*,

there exists an exact sequence of the form

$$0 \longrightarrow R^{(J_1)} \longrightarrow R^{(J_2)} \longrightarrow \ldots \longrightarrow R^{(J_n)} \longrightarrow T \longrightarrow 0,$$

So there exists an exact sequence of the form $0 \longrightarrow R \longrightarrow T^{(K_1)} \longrightarrow T^{(K_2)} \longrightarrow \ldots \longrightarrow T^{(K_m)} \longrightarrow 0.$

Remarks:

 Finitely generated tilting give connection between modules over R and S = End_R(T) (via so called derived equivalences).

 Infinitely generated tilting modules give insight into the structure of infinitely generated modules and into behavior of Ext-functors.

Definition

Let *R* be a ring. A module *T* is called tilting if

• Ext^{*n*}(
$$T^{(I)}, T^{(I)}$$
) = 0 for each set *I*,

there exists an exact sequence of the form

$$0 \longrightarrow R^{(J_1)} \longrightarrow R^{(J_2)} \longrightarrow \ldots \longrightarrow R^{(J_n)} \longrightarrow T \longrightarrow 0,$$

• there exists an exact sequence of the form $0 \longrightarrow B \longrightarrow T^{(K_1)} \longrightarrow T^{(K_2)} \longrightarrow \cdots \longrightarrow T^{(K_m)} \longrightarrow 0$

Remarks:

 Finitely generated tilting give connection between modules over R and S = End_R(T) (via so called derived equivalences).

 Infinitely generated tilting modules give insight into the structure of infinitely generated modules and into behavior of Ext-functors.

Definition

Let *R* be a ring. A module *T* is called tilting if

• Ext^{*n*}(
$$T^{(l)}, T^{(l)}$$
) = 0 for each set *l*,

there exists an exact sequence of the form

$$0 \longrightarrow R^{(J_1)} \longrightarrow R^{(J_2)} \longrightarrow \ldots \longrightarrow R^{(J_n)} \longrightarrow T \longrightarrow 0,$$

• there exists an exact sequence of the form • $T(K_1) = T(K_2)$

$$0 \longrightarrow R \longrightarrow T^{(K_1)} \longrightarrow T^{(K_2)} \longrightarrow \ldots \longrightarrow T^{(K_m)} \longrightarrow 0.$$

Remarks:

- Finitely generated tilting give connection between modules over R and S = End_R(T) (via so called derived equivalences).
- Infinitely generated tilting modules give insight into the structure of infinitely generated modules and into behavior of Ext-functors.

Definition

Let *R* be a ring. A module *T* is called tilting if

• Ext^{*n*}(
$$T^{(I)}, T^{(I)}$$
) = 0 for each set *I*,

there exists an exact sequence of the form

$$0 \longrightarrow R^{(J_1)} \longrightarrow R^{(J_2)} \longrightarrow \ldots \longrightarrow R^{(J_n)} \longrightarrow T \longrightarrow 0,$$

• there exists an exact sequence of the form -(K)

$$0 \longrightarrow R \longrightarrow T^{(K_1)} \longrightarrow T^{(K_2)} \longrightarrow \ldots \longrightarrow T^{(K_m)} \longrightarrow 0.$$

Remarks:

- Finitely generated tilting give connection between modules over R and S = End_R(T) (via so called derived equivalences).
- Infinitely generated tilting modules give insight into the structure of infinitely generated modules and into behavior of Ext-functors.

Definition

Let *R* be a ring and *T* a tilting module. Then

 $\mathcal{T} = \{ M \mid \mathsf{Ext}^n(T, M) = 0 \text{ for each } n \ge 1 \}$

is called the tilting class corresponding to \mathcal{T} .

Remarks:

- Tilting classes are often easier to deal with. Often we know we have a tilting class, but do not understand the tilting module.
- We have for each $P \in T$:

P is a summand in some $T^{(I)} \iff$

 $\operatorname{Ext}^{1}_{R}(P,M) = 0$ for each module $M \in \mathcal{T} \iff$

 $\operatorname{Ext}_{R}^{n}(P,M) = 0$ for each module $M \in \mathcal{T}$ and $n \geq 1$.

- 12

Definition

Let R be a ring and T a tilting module. Then

```
\mathcal{T} = \{ M \mid \mathsf{Ext}^n(T, M) = 0 \text{ for each } n \ge 1 \}
```

is called the tilting class corresponding to T.

Remarks:

- Tilting classes are often easier to deal with. Often we know we have a tilting class, but do not understand the tilting module.
- We have for each $P \in T$:

P is a summand in some $T^{(I)} \iff$

 $\operatorname{Ext}^{1}_{R}(P,M) = 0$ for each module $M \in \mathcal{T} \iff$

 $\operatorname{Ext}_{R}^{n}(P,M) = 0$ for each module $M \in \mathcal{T}$ and $n \geq 1$.

- 31

Definition

Let R be a ring and T a tilting module. Then

```
\mathcal{T} = \{ M \mid \mathsf{Ext}^n(T, M) = 0 \text{ for each } n \ge 1 \}
```

is called the tilting class corresponding to T.

Remarks:

- Tilting classes are often easier to deal with. Often we know we have a tilting class, but do not understand the tilting module.
- We have for each $P \in T$:

P is a summand in some $T^{(I)} \iff$

 $\operatorname{Ext}^1_R(P,M) = 0$ for each module $M \in \mathcal{T} \iff$

 $\operatorname{Ext}^n_R(P,M) = 0$ for each module $M \in \mathcal{T}$ and $n \ge 1$.

- 31

Definition

Let R be a ring and T a tilting module. Then

```
\mathcal{T} = \{ M \mid \mathsf{Ext}^n(T, M) = 0 \text{ for each } n \ge 1 \}
```

is called the tilting class corresponding to T.

Remarks:

• Tilting classes are often easier to deal with. Often we know we have a tilting class, but do not understand the tilting module.

• We have for each $P \in T$:

P is a summand in some $T^{(I)} \iff$

 $\operatorname{Ext}^{1}_{R}(P,M) = 0$ for each module $M \in \mathcal{T} \iff$

 $\operatorname{Ext}^n_R(P,M)=0$ for each module $M\in\mathcal{T}$ and $n\geq 1$.

Definition

Let R be a ring and T a tilting module. Then

```
\mathcal{T} = \{ M \mid \mathsf{Ext}^n(T, M) = 0 \text{ for each } n \ge 1 \}
```

is called the tilting class corresponding to T.

Remarks:

- Tilting classes are often easier to deal with. Often we know we have a tilting class, but do not understand the tilting module.
- We have for each $P \in T$:

P is a summand in some $T^{(l)} \iff$

 $\operatorname{Ext}^{1}_{R}(P,M) = 0$ for each module $M \in \mathcal{T} \iff$

 $\operatorname{Ext}_{R}^{n}(P,M) = 0$ for each module $M \in \mathcal{T}$ and $n \geq 1$.

Definition

Let R be a ring and T a tilting module. Then

```
\mathcal{T} = \{ M \mid \mathsf{Ext}^n(T, M) = 0 \text{ for each } n \ge 1 \}
```

is called the tilting class corresponding to T.

Remarks:

- Tilting classes are often easier to deal with. Often we know we have a tilting class, but do not understand the tilting module.
- We have for each $P \in T$:

P is a summand in some $T^{(l)} \iff$

 $\operatorname{Ext}^1_R(P,M) = 0$ for each module $M \in \mathcal{T} \iff$

 $\operatorname{Ext}_{R}^{n}(P,M) = 0$ for each module $M \in \mathcal{T}$ and $n \geq 1$.

Definition

Let R be a ring and T a tilting module. Then

```
\mathcal{T} = \{ M \mid \mathsf{Ext}^n(T, M) = 0 \text{ for each } n \ge 1 \}
```

is called the tilting class corresponding to T.

Remarks:

- Tilting classes are often easier to deal with. Often we know we have a tilting class, but do not understand the tilting module.
- We have for each $P \in T$:

P is a summand in some $T^{(I)} \iff$

 $\operatorname{Ext}^1_R(P,M) = 0$ for each module $M \in \mathcal{T} \iff$

 $\operatorname{Ext}_{R}^{n}(P,M) = 0$ for each module $M \in \mathcal{T}$ and $n \geq 1$.

Theorem (Bazzoni, Eklof, Š., Trlifaj, 2005)

Let R be a ring and T a tilting class of R modules. Then T is of finite type. That is, there is a set S of strongly finitely presented modules such that

 $\mathcal{T} = \{ M \mid \mathsf{Ext}^1_R(S, M) = 0 \text{ for each } S \in \mathcal{S} \}$

That is, we have replaced

- Ext^{*n*} for $n \ge 1$ by just Ext¹ and
- a single infinitely generated module T by a set of strongly finitely presented modules.

Theorem (Bazzoni, Eklof, Š., Trlifaj, 2005)

Let R be a ring and T a tilting class of R modules. Then T is of finite type. That is, there is a set S of strongly finitely presented modules such that

 $\mathcal{T} = \{ M \mid \mathsf{Ext}^1_R(S, M) = 0 \text{ for each } S \in \mathcal{S} \}$

That is, we have replaced

- Ext^{*n*} for $n \ge 1$ by just Ext¹ and
- a single infinitely generated module T by a set of strongly finitely presented modules.

Theorem (Bazzoni, Eklof, Š., Trlifaj, 2005)

Let R be a ring and T a tilting class of R modules. Then T is of finite type. That is, there is a set S of strongly finitely presented modules such that

$$\mathcal{T} = \{ M \mid \mathsf{Ext}^1_R(S, M) = 0 \text{ for each } S \in \mathcal{S} \}$$

That is, we have replaced

- Ext^{*n*}_{*R*} for $n \ge 1$ by just Ext¹_{*R*} and
- a single infinitely generated module T by a set of strongly finitely presented modules.

4 D K 4 B K 4 B K 4 B K

Theorem (Bazzoni, Eklof, Š., Trlifaj, 2005)

Let R be a ring and T a tilting class of R modules. Then T is of finite type. That is, there is a set S of strongly finitely presented modules such that

$$\mathcal{T} = \{ M \mid \mathsf{Ext}^1_R(S, M) = 0 \text{ for each } S \in \mathcal{S} \}$$

That is, we have replaced

- Ext^{*n*}_{*B*} for $n \ge 1$ by just Ext¹_{*B*} and
- a single infinitely generated module T by a set of strongly finitely presented modules.

4 3 5 4 3 5 5

Theorem (Bazzoni, Eklof, Š., Trlifaj, 2005)

Let R be a ring and T a tilting class of R modules. Then T is of finite type. That is, there is a set S of strongly finitely presented modules such that

$$\mathcal{T} = \{ M \mid \mathsf{Ext}^1_R(S, M) = 0 \text{ for each } S \in \mathcal{S} \}$$

That is, we have replaced

- Ext^{*n*}_{*R*} for $n \ge 1$ by just Ext¹_{*R*} and
- a single infinitely generated module T by a set of strongly finitely presented modules.

4 3 5 4 3 5 5

• Characterization of tilting classes over a given ring *R*.

 Connection to model theory: Each tilting class *T* is axiomatizable in the language *L_R* of left *R*-modules (with function symbols +, -, 0 and *r* · − for each *r* ∈ *R*).

This is because for a fixed strongly finitely presented module S, the condition $\text{Ext}^1(S, M) = 0$ for given M can be expressed by a first order formula in \mathcal{L}_R .

• Structure of tilting modules: Given a tilting class $\mathcal{T} = \{M \mid \operatorname{Ext}_R^1(S, M) = 0 \text{ for each } S \in S\}$, there is a tilting module T for \mathcal{T} , which is the union of a transfinite smooth chain

$$0 = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_{\alpha} \subseteq T_{\alpha+1} \subseteq \cdots \subseteq T_{\sigma} = T$$

with $T_{\alpha+1}/T_{\alpha} \in S$ for each $S \in S$.

< ロ > < 同 > < 回 > < 回 >

- Characterization of tilting classes over a given ring *R*.
- Connection to model theory: Each tilting class *T* is axiomatizable in the language *L_R* of left *R*-modules (with function symbols +, -, 0 and *r* · − for each *r* ∈ *R*).

This is because for a fixed strongly finitely presented module *S*, the condition $\text{Ext}^1(S, M) = 0$ for given *M* can be expressed by a first order formula in \mathcal{L}_R .

• Structure of tilting modules: Given a tilting class $\mathcal{T} = \{M \mid \operatorname{Ext}_R^1(S, M) = 0 \text{ for each } S \in S\}$, there is a tilting module T for \mathcal{T} , which is the union of a transfinite smooth chain

$$0 = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_{\alpha} \subseteq T_{\alpha+1} \subseteq \cdots \subseteq T_{\sigma} = T$$

with $T_{\alpha+1}/T_{\alpha} \in S$ for each $S \in S$.

< ロ > < 同 > < 回 > < 回 >

- Characterization of tilting classes over a given ring *R*.
- Connection to model theory: Each tilting class *T* is axiomatizable in the language *L_R* of left *R*-modules (with function symbols +, -, 0 and *r* := for each *r* ∈ *R*).

This is because for a fixed strongly finitely presented module *S*, the condition $\text{Ext}^1(S, M) = 0$ for given *M* can be expressed by a first order formula in \mathcal{L}_R .

• Structure of tilting modules: Given a tilting class $\mathcal{T} = \{M \mid \operatorname{Ext}_R^1(S, M) = 0 \text{ for each } S \in S\}$, there is a tilting module \mathcal{T} for \mathcal{T} , which is the union of a transfinite smooth chain

$$0 = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_{\alpha} \subseteq T_{\alpha+1} \subseteq \cdots \subseteq T_{\sigma} = T$$

with $T_{\alpha+1}/T_{\alpha} \in S$ for each $S \in S$.

- Characterization of tilting classes over a given ring *R*.
- Connection to model theory: Each tilting class *T* is axiomatizable in the language *L_R* of left *R*-modules (with function symbols +, -, 0 and *r* · − for each *r* ∈ *R*).

This is because for a fixed strongly finitely presented module S, the condition $\text{Ext}^1(S, M) = 0$ for given M can be expressed by a first order formula in \mathcal{L}_R .

• Structure of tilting modules: Given a tilting class $\mathcal{T} = \{M \mid \operatorname{Ext}_R^1(S, M) = 0 \text{ for each } S \in S\}$, there is a tilting module \mathcal{T} for \mathcal{T} , which is the union of a transfinite smooth chain

$$0 = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_{\alpha} \subseteq T_{\alpha+1} \subseteq \cdots \subseteq T_{\sigma} = T$$

with $T_{\alpha+1}/T_{\alpha} \in S$ for each $S \in S$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Characterization of tilting classes over a given ring *R*.
- Connection to model theory: Each tilting class *T* is axiomatizable in the language *L_R* of left *R*-modules (with function symbols +, -, 0 and *r* · − for each *r* ∈ *R*).

This is because for a fixed strongly finitely presented module *S*, the condition $\text{Ext}^1(S, M) = 0$ for given *M* can be expressed by a first order formula in \mathcal{L}_R .

• Structure of tilting modules: Given a tilting class $\mathcal{T} = \{M \mid \operatorname{Ext}_R^1(S, M) = 0 \text{ for each } S \in S\}$, there is a tilting module \mathcal{T} for \mathcal{T} , which is the union of a transfinite smooth chain

$$0 = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_{\alpha} \subseteq T_{\alpha+1} \subseteq \cdots \subseteq T_{\sigma} = T$$

with $T_{\alpha+1}/T_{\alpha} \in S$ for each $S \in S$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Characterization of tilting classes over a given ring *R*.
- Connection to model theory: Each tilting class *T* is axiomatizable in the language *L_R* of left *R*-modules (with function symbols +, -, 0 and *r* · − for each *r* ∈ *R*).

This is because for a fixed strongly finitely presented module S, the condition $\text{Ext}^1(S, M) = 0$ for given M can be expressed by a first order formula in \mathcal{L}_R .

• Structure of tilting modules: Given a tilting class $\mathcal{T} = \{M \mid \operatorname{Ext}_R^1(S, M) = 0 \text{ for each } S \in S\}$, there is a tilting module T for \mathcal{T} , which is the union of a transfinite smooth chain

$$0 = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_{\alpha} \subseteq T_{\alpha+1} \subseteq \cdots \subseteq T_{\sigma} = T$$

with $T_{\alpha+1}/T_{\alpha} \in S$ for each $S \in S$.

3

- Characterization of tilting classes over a given ring *R*.
- Connection to model theory: Each tilting class *T* is axiomatizable in the language *L_R* of left *R*-modules (with function symbols +, -, 0 and *r* · − for each *r* ∈ *R*).

This is because for a fixed strongly finitely presented module S, the condition $\text{Ext}^1(S, M) = 0$ for given M can be expressed by a first order formula in \mathcal{L}_R .

• Structure of tilting modules: Given a tilting class $\mathcal{T} = \{M \mid \operatorname{Ext}_R^1(S, M) = 0 \text{ for each } S \in S\}$, there is a tilting module T for \mathcal{T} , which is the union of a transfinite smooth chain

$$0 = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_{\alpha} \subseteq T_{\alpha+1} \subseteq \cdots \subseteq T_{\sigma} = T$$

with $T_{\alpha+1}/T_{\alpha} \in S$ for each $S \in S$.

3

- Characterization of tilting classes over a given ring *R*.
- Connection to model theory: Each tilting class *T* is axiomatizable in the language *L_R* of left *R*-modules (with function symbols +, -, 0 and *r* · − for each *r* ∈ *R*).

This is because for a fixed strongly finitely presented module S, the condition $\text{Ext}^1(S, M) = 0$ for given M can be expressed by a first order formula in \mathcal{L}_R .

• Structure of tilting modules: Given a tilting class $T = \{M \mid \text{Ext}_R^1(S, M) = 0 \text{ for each } S \in S\}$, there is a tilting module T for T, which is the union of a transfinite smooth chain

$$0 = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_{\alpha} \subseteq T_{\alpha+1} \subseteq \cdots \subseteq T_{\sigma} = T$$

with $T_{\alpha+1}/T_{\alpha} \in S$ for each $S \in S$.

3

4 E N 4 E N

- Characterization of tilting classes over a given ring *R*.
- Connection to model theory: Each tilting class *T* is axiomatizable in the language *L_R* of left *R*-modules (with function symbols +, -, 0 and *r* · − for each *r* ∈ *R*).

This is because for a fixed strongly finitely presented module S, the condition $\text{Ext}^1(S, M) = 0$ for given M can be expressed by a first order formula in \mathcal{L}_R .

• Structure of tilting modules: Given a tilting class $\mathcal{T} = \{M \mid \operatorname{Ext}_R^1(S, M) = 0 \text{ for each } S \in S\}$, there is a tilting module T for \mathcal{T} , which is the union of a transfinite smooth chain

$$0 = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_{\alpha} \subseteq T_{\alpha+1} \subseteq \cdots \subseteq T_{\sigma} = T$$

with $T_{\alpha+1}/T_{\alpha} \in S$ for each $S \in S$.

3

不可能 不可能

- Characterization of tilting classes over a given ring *R*.
- Connection to model theory: Each tilting class *T* is axiomatizable in the language *L_R* of left *R*-modules (with function symbols +, -, 0 and *r* · − for each *r* ∈ *R*).

This is because for a fixed strongly finitely presented module S, the condition $\text{Ext}^1(S, M) = 0$ for given M can be expressed by a first order formula in \mathcal{L}_R .

• Structure of tilting modules: Given a tilting class $\mathcal{T} = \{M \mid \operatorname{Ext}_R^1(S, M) = 0 \text{ for each } S \in S\}$, there is a tilting module T for \mathcal{T} , which is the union of a transfinite smooth chain

$$0 = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_{\alpha} \subseteq T_{\alpha+1} \subseteq \cdots \subseteq T_{\sigma} = T$$

with $T_{\alpha+1}/T_{\alpha} \in S$ for each $S \in S$.

3

不可能 不可能