Tilting modules—homological algebra and structure

Jan Šťovíček

Department of Algebra
Faculty of Mathematics and Physics
Charles University in Prague

Joint Mathematical Conference CSASC 2010
January 24th, 2010
Outline

1 Modules
 • Definition and interpretation
 • Homological algebra

2 Tilting modules and tilting classes
 • Introduction
 • Finite type
1 Modules
 • Definition and interpretation
 • Homological algebra

2 Tilting modules and tilting classes
 • Introduction
 • Finite type
What is a module?

Given a (non-commutative) ring \((\mathbb{R}, +, -, 0, \cdot, 1)\), we define a module as a "vector space" over \(\mathbb{R}\):

Definition

A left \(\mathbb{R}\)-module is an abelian group \((M, +, -, 0)\) such that we can multiply each \(r \in \mathbb{R}\) and \(m \in M\) and the following axioms hold:

1. \(r(m + m') = rm + rm'\),
2. \((r + s)m = rm + sm\),
3. \(r(sm) = (rs)m\),
4. \(1 \cdot m = m\).

Module are far reaching generalization of vector spaces, their properties heavily depend on the ring \(\mathbb{R}\)!
What is a module?

Given a (non-commutative) ring \((R, +, -, 0, \cdot, 1)\), we define a module as a “vector space” over \(R\):

Definition

A left \(R\)-module is an abelian group \((M, +, -, 0)\) such that we can multiply each \(r \in R\) and \(m \in M\) and the following axioms hold:

1. \(r(m + m') = rm + rm'\),
2. \((r + s)m = rm + sm\),
3. \(r(sm) = (rs)m\),
4. \(1 \cdot m = m\).

Module are far reaching generalization of vector spaces, their properties heavily depend on the ring \(R\)!
What is a module?

Given a (non-commutative) ring \((R, +, −, 0, ·, 1)\), we define a module as a “vector space” over \(R\):

Definition

A **left \(R\)-module** is an abelian group \((M, +, −, 0)\) such that we can multiply each \(r \in R\) and \(m \in M\) and the following axioms hold:

1. \(r(m + m') = rm + rm'\),
2. \((r + s)m = rm + sm\),
3. \(r(sm) = (rs)m\),
4. \(1 \cdot m = m\).

Module are far reaching generalization of vector spaces, their properties heavily depend on the ring \(R\)!
What is a module?

Given a (non-commutative) ring \((R, +, -, 0, \cdot, 1)\), we define a module as a “vector space” over \(R\):

Definition

A **left \(R\)-module** is an abelian group \((M, +, -, 0)\) such that we can multiply each \(r \in R\) and \(m \in M\) and the following axioms hold:

1. \(r(m + m') = rm + rm'\),
2. \((r + s)m = rm + sm\),
3. \(r(sm) = (rs)m\),
4. \(1 \cdot m = m\).

Module are far reaching generalization of vector spaces, their properties heavily depend on the ring \(R\)!
What is a module?

Given a (non-commutative) ring \((R, +, -, 0, \cdot, 1)\), we define a module as a “vector space” over \(R\):

Definition

A left \(R\)-module is an abelian group \((M, +, -, 0)\) such that we can multiply each \(r \in R\) and \(m \in M\) and the following axioms hold:

1. \(r(m + m') = rm + rm'\),
2. \((r + s)m = rm + sm\),
3. \(r(sm) = (rs)m\),
4. \(1 \cdot m = m\).

Module are far reaching generalization of vector spaces, their properties heavily depend on the ring \(R\)!
A ring is a left module over itself, \(1 \in R \) forms a free basis.

Free modules are modules with a free basis, they are isomorphic to \(R^{(I)} \), where \(I \) is a set.

A module \(P \) is projective if it is a direct summand of a free module, that is, \(P \oplus Q = R^{(I)} \) for some \(Q \) and \(I \).

Each module is of the form \(F/K \), where \(F \) is a free module.
Free and projective modules

- A ring is a left module over itself, \(1 \in R \) forms a free basis.
- Free modules are modules with a free basis, they are isomorphic to \(R^{(I)} \), where \(I \) is a set.
- A module \(P \) is projective if it is a direct summand of a free module, that is, \(P \oplus Q = R^{(I)} \) for some \(Q \) and \(I \).
- Each module is of the form \(F/K \), where \(F \) is a free module.
A ring is a left module over itself, $1 \in R$ forms a free basis.

Free modules are modules with a free basis, they are isomorphic to $R^{(I)}$, where I is a set.

A module P is projective if it is a direct summand of a free module, that is, $P \oplus Q = R^{(I)}$ for some Q and I.

Each module is of the form F/K, where F is a free module.
Free and projective modules

- A ring is a left module over itself, $1 \in R$ forms a free basis.
- Free modules are modules with a free basis, they are isomorphic to $R^{(I)}$, where I is a set.
- A module P is **projective** if it is a direct summand of a free module, that is, $P \oplus Q = R^{(I)}$ for some Q and I.
- Each module is of the form F/K, where F is a free module.
A ring is a left module over itself, $1 \in R$ forms a free basis.

Free modules are modules with a free basis, they are isomorphic to $R^{(I)}$, where I is a set.

A module P is \textbf{projective} if it is a direct summand of a free module, that is, $P \oplus Q = R^{(I)}$ for some Q and I.

Each module is of the form F/K, where F is a free module.
Free and projective modules

- A ring is a left module over itself, $1 \in R$ forms a free basis.
- Free modules are modules with a free basis, they are isomorphic to $R^{(I)}$, where I is a set.
- A module P is **projective** if it is a direct summand of a free module, that is, $P \oplus Q = R^{(I)}$ for some Q and I.
- Each module is of the form F/K, where F is a free module.
Modules over specific rings—vector bundles

Take a compact Hausdorff space:

\[M : \]

Let \(R \) be the ring of all continuous real (or complex) valued functions on \(M \).

Theorem (Swan, 1961)

There is a bijective correspondence between isomorphism classes of vector bundles on \(M \) and isomorphism classes of finitely generated projective \(R \)-modules.
Modules over specific rings—vector bundles

Take a compact Hausdorff space:

\[M : \]

Let \(R \) be the ring of all continuous real (or complex) valued functions on \(M \).

Theorem (Swan, 1961)

There is a bijective correspondence between isomorphism classes of vector bundles on \(M \) and isomorphism classes of finitely generated projective \(R \)-modules.
Modules over specific rings—vector bundles

Take a compact Hausdorff space:

\[M : \]

Let \(R \) be the ring of all continuous real (or complex) valued functions on \(M \).

Theorem (Swan, 1961)

There is a bijective correspondence between isomorphism classes of vector bundles on \(M \) and isomorphism classes of finitely generated projective \(R \)-modules.
Modules over specific rings—vector bundles

Take a compact Hausdorff space:

Let R be the ring of all continuous real (or complex) valued functions on M.

Theorem (Swan, 1961)

There is a bijective correspondence between isomorphism classes of vector bundles on M and isomorphism classes of finitely generated projective R-modules.
Let k be a field and Q be a quiver:

\[\bullet\xrightarrow{\alpha_2} \bullet \xleftarrow{\alpha_1} \bullet \xrightarrow{\alpha_3} \bullet \xleftarrow{\alpha_4} \bullet \]

Let $R = kQ$ be the path algebra, that is, a ring defined by the “k-linear extension of compositions of paths”. Then left R-modules correspond to diagrams of the form:

\[U \xleftarrow{f_2} V \xrightarrow{f_1} W \]

\[U \xleftarrow{f_3} W \xrightarrow{f_4} V \]

Classification of modules corresponds to finding normal forms for matrices, eg. pairs of bilinear forms, 4-subspace problem.
Let k be a field and Q be a quiver:

Let $R = kQ$ be the path algebra, that is, a ring defined by the “k-linear extension of compositions of paths”. Then left R-modules correspond to diagrams of the form:

Classification of modules corresponds to finding normal forms for matrices, eg. pairs of bilinear forms, 4-subspace problem.
Let k be a field and Q be a quiver:

Let $R = kQ$ be the **path algebra**, that is, a ring defined by the “k-linear extension of compositions of paths”. Then left R-modules correspond to diagrams of the form:

Classification of modules corresponds to finding normal forms for matrices, eg. pairs of bilinear forms, 4-subspace problem.
Modules over specific rings—matrix problems

Let k be a field and Q be a quiver:

Let $R = kQ$ be the path algebra, that is, a ring defined by the “k-linear extension of compositions of paths”. Then left R-modules correspond to diagrams of the form:

Classification of modules corresponds to finding normal forms for matrices, eg. pairs of bilinear forms, 4-subspace problem.
Let k be a field and Q be a quiver:

\[\bullet \xrightarrow{\alpha_1} \bullet \xleftarrow{\alpha_2} \bullet \xrightarrow{\alpha_3} \bullet \xleftarrow{\alpha_4} \bullet \]

Let $R = kQ$ be the path algebra, that is, a ring defined by the “k-linear extension of compositions of paths”. Then left R-modules correspond to diagrams of the form:

\[\begin{array}{ccc}
U & f_2 & V \\
\downarrow f_1 & & \downarrow f_3 \\
W & & \downarrow f_4 \\
\end{array} \]

Classification of modules corresponds to finding normal forms for matrices, e.g. pairs of bilinear forms, 4-subspace problem.
Modules over specific rings—matrix problems

Let k be a field and Q be a quiver:

$$
\begin{array}{c}
\bullet \\
\alpha_2 \downarrow \\
\alpha_1 \downarrow \\
\alpha_3 \uparrow \\
\alpha_4 \uparrow \\
\bullet
\end{array}
$$

Let $R = kQ$ be the path algebra, that is, a ring defined by the “k-linear extension of compositions of paths”. Then left R-modules correspond to diagrams of the form:

$$
\begin{array}{c}
U \\
f_2 \\
f_1 \\
f_3 \\
f_4 \\
W \\
V
\end{array}
$$

Classification of modules corresponds to finding normal forms for matrices, e.g. pairs of bilinear forms, 4-subspace problem.
Let k be a field and Q be a quiver:

Let $R = kQ$ be the path algebra, that is, a ring defined by the “k-linear extension of compositions of paths”. Then left R-modules correspond to diagrams of the form:

Classification of modules corresponds to finding normal forms for matrices, eg. pairs of bilinear forms, 4-subspace problem.
If R is a ring and M, N are R-modules, denote by $\text{Hom}_R(M, N)$ the set of all homomorphisms from M to N. This is an abelian group via $(f + g)(m) = f(m) + g(m)$.

Another important concept: extensions. Let $\text{Ext}_R^1(M, N)$ be the set of all short exact sequences

$$
\varepsilon : 0 \longrightarrow N \overset{i}{\longrightarrow} E \overset{p}{\longrightarrow} M \longrightarrow 0
$$

modulo the relation identifying ε and ε' when

$$
\varepsilon : 0 \longrightarrow N \overset{i}{\longrightarrow} E \overset{p}{\longrightarrow} M \longrightarrow 0
$$

and

$$
\varepsilon' : 0 \longrightarrow N \overset{i'}{\longrightarrow} E' \overset{p'}{\longrightarrow} M \longrightarrow 0
$$

This is an abelian group via the so called Baer sum.
If R is a ring and M, N are R-modules, denote by $\text{Hom}_R(M, N)$ the set of all homomorphisms from M to N. This is an abelian group via $(f + g)(m) = f(m) + g(m)$.

Another important concept: extensions. Let $\text{Ext}_R^1(M, N)$ be the set of all short exact sequences

$$
\varepsilon : \quad 0 \longrightarrow N \stackrel{i}{\longrightarrow} E \stackrel{p}{\longrightarrow} M \longrightarrow 0
$$

modulo the relation identifying ε and ε' when

$$
\varepsilon : \quad 0 \longrightarrow N \stackrel{i}{\longrightarrow} E \stackrel{p}{\longrightarrow} M \longrightarrow 0
$$

$$
\varepsilon' : \quad 0 \longrightarrow N \stackrel{i'}{\longrightarrow} E' \stackrel{p'}{\longrightarrow} M \longrightarrow 0
$$

This is an abelian group via the so called Baer sum.
Hom and Ext

- If R is a ring and M, N are R-modules, denote by $\text{Hom}_R(M, N)$ the set of all homomorphisms from M to N. This is an abelian group via $(f + g)(m) = f(m) + g(m)$.

- Another important concept: extensions. Let $\text{Ext}^1_R(M, N)$ be the set of all short exact sequences

 $$
 0 \rightarrow N \xrightarrow{i} E \xrightarrow{p} M \rightarrow 0
 $$

 modulo the relation identifying ε and ε' when

 $$
 0 \rightarrow N \xrightarrow{i} E \xrightarrow{p} M \rightarrow 0
 $$

 $$
 \begin{array}{c}
 \varepsilon : 0 \rightarrow N \xrightarrow{i} E \xrightarrow{p} M \rightarrow 0 \\
 \varepsilon' : 0 \rightarrow N \xrightarrow{i'} E' \xrightarrow{p'} M \rightarrow 0
 \end{array}
 $$

 This is an abelian group via the so called Baer sum.
Hom and Ext

- If R is a ring and M, N are R-modules, denote by $\text{Hom}_R(M, N)$ the set of all homomorphisms from M to N. This is an abelian group via $(f + g)(m) = f(m) + g(m)$.

- Another important concept: extensions. Let $\text{Ext}^1_R(M, N)$ be the set of all short exact sequences

$$
\varepsilon : \quad 0 \longrightarrow N \xrightarrow{i} E \xrightarrow{p} M \longrightarrow 0
$$

modulo the relation identifying ε and ε' when

$$
\varepsilon : \quad 0 \longrightarrow N \xrightarrow{i} E \xrightarrow{p} M \longrightarrow 0 \\
\varepsilon' : \quad 0 \longrightarrow N \xrightarrow{i'} E' \xrightarrow{p'} M \longrightarrow 0
$$

This is an abelian group via the so called Baer sum.
Hom and Ext

- If R is a ring and M, N are R-modules, denote by $\text{Hom}_R(M, N)$ the set of all homomorphisms from M to N. This is an abelian group via $(f + g)(m) = f(m) + g(m)$.

- Another important concept: extensions. Let $\text{Ext}^1_R(M, N)$ be the set of all short exact sequences

\[\varepsilon : 0 \rightarrow N \xrightarrow{i} E \xrightarrow{p} M \rightarrow 0 \]

modulo the relation identifying ε and ε' when

\[\varepsilon : 0 \rightarrow N \xrightarrow{i} E \xrightarrow{p} M \rightarrow 0 \]

\[\varepsilon' : 0 \rightarrow N \xrightarrow{i'} E' \xrightarrow{p'} M \rightarrow 0 \]

This is an abelian group via the so called Baer sum.
Hom and Ext

- If R is a ring and M, N are R-modules, denote by $\text{Hom}_R(M, N)$ the set of all homomorphisms from M to N. This is an abelian group via $(f + g)(m) = f(m) + g(m)$.

- Another important concept: extensions. Let $\text{Ext}_R^1(M, N)$ be the set of all short exact sequences

$$
\varepsilon : 0 \longrightarrow N \longrightarrow^i E \longrightarrow^p M \longrightarrow 0
$$

modulo the relation identifying ε and ε' when

$$
\varepsilon : 0 \longrightarrow N \longrightarrow^i E \longrightarrow^p M \longrightarrow 0
$$

modulo the relation identifying ε and ε' when

$$
\varepsilon' : 0 \longrightarrow N \longrightarrow^{i'} E' \longrightarrow^{p'} M \longrightarrow 0
$$

This is an abelian group via the so called Baer sum.
Hom and Ext

- If \(R \) is a ring and \(M, N \) are \(R \)-modules, denote by \(\text{Hom}_R(M, N) \) the set of all homomorphisms from \(M \) to \(N \). This is an abelian group via \((f + g)(m) = f(m) + g(m)\).

- Another important concept: extensions. Let \(\text{Ext}^1_R(M, N) \) be the set of all short exact sequences

\[
\varepsilon : \quad 0 \longrightarrow N \overset{i}{\longrightarrow} E \overset{p}{\longrightarrow} M \longrightarrow 0
\]

modulo the relation identifying \(\varepsilon \) and \(\varepsilon' \) when

\[
\varepsilon' : \quad 0 \longrightarrow N \overset{i'}{\longrightarrow} E' \overset{p'}{\longrightarrow} M \longrightarrow 0
\]

This is an abelian group via the so called Baer sum.
There is a close relation between Hom and Ext which leads to the definition of higher Ext groups.

For modules M, N and $n \geq 1$ we define $\text{Ext}_R^n(M, N)$ to be the set

$$0 \rightarrow N \rightarrow E_1 \rightarrow E_2 \rightarrow \ldots \rightarrow E_n \rightarrow M \rightarrow 0$$

modulo a certain equivalence relation.

$\text{Ext}_R^n(M, N)$ is again naturally an abelian group.

Projective modules are important in computing these Ext-groups.

Fact:

P is a projective module \iff

$\text{Ext}_R^1(P, M) = 0$ for each module M \iff

$\text{Ext}_R^n(P, M) = 0$ for each module M and $n \geq 1$.
Hom and Ext continued

- There is a close relation between Hom and Ext which leads to definition of higher Ext groups.
- For modules M, N and $n \geq 1$ we define $\text{Ext}^n_R(M, N)$ to be the set

$$0 \rightarrow N \rightarrow E_1 \rightarrow E_2 \rightarrow \ldots \rightarrow E_n \rightarrow M \rightarrow 0$$

modulo a certain equivalence relation.
- $\text{Ext}^n_R(M, N)$ is again naturally an abelian group.
- Projective modules are important in computing these Ext-groups.
- Fact:

$$P \text{ is a projective module } \iff \text{Ext}^1_R(P, M) = 0 \text{ for each module } M \iff \text{Ext}^n_R(P, M) = 0 \text{ for each module } M \text{ and } n \geq 1.$$
There is a close relation between Hom and Ext which leads to definition of higher Ext groups.

For modules M, N and $n \geq 1$ we define $\text{Ext}^n_R(M, N)$ to be the set

$$0 \longrightarrow N \longrightarrow E_1 \longrightarrow E_2 \longrightarrow \ldots \longrightarrow E_n \longrightarrow M \longrightarrow 0$$

modulo a certain equivalence relation.

$\text{Ext}^n_R(M, N)$ is again naturally an abelian group.

Projective modules are important in computing these Ext-groups.

Fact:

P is a projective module \iff

$\text{Ext}^1_R(P, M) = 0$ for each module M \iff

$\text{Ext}^n_R(P, M) = 0$ for each module M and $n \geq 1$.
Hom and Ext continued

- There is a close relation between Hom and Ext which leads to definition of higher Ext groups.
- For modules M, N and $n \geq 1$ we define $\text{Ext}_R^n(M, N)$ to be the set

 $0 \longrightarrow N \longrightarrow E_1 \longrightarrow E_2 \longrightarrow \ldots \longrightarrow E_n \longrightarrow M \longrightarrow 0$

modulo a certain equivalence relation.
- $\text{Ext}_R^n(M, N)$ is again naturally an abelian group.
- Projective modules are important in computing these Ext-groups.
- Fact:

 P is a projective module \iff

 $\text{Ext}_R^1(P, M) = 0$ for each module M \iff

 $\text{Ext}_R^n(P, M) = 0$ for each module M and $n \geq 1$.
Hom and Ext continued

- There is a close relation between Hom and Ext which leads to definition of higher Ext groups.
- For modules M, N and $n \geq 1$ we define $\text{Ext}_R^n(M, N)$ to be the set

$$
0 \rightarrow N \rightarrow E_1 \rightarrow E_2 \rightarrow \ldots \rightarrow E_n \rightarrow M \rightarrow 0
$$

modulo a certain equivalence relation.
- $\text{Ext}_R^n(M, N)$ is again naturally an abelian group.
- Projective modules are important in computing these Ext-groups.
- Fact:

$$
P \text{ is a projective module} \iff \text{Ext}_R^1(P, M) = 0 \text{ for each module } M \iff \text{Ext}_R^n(P, M) = 0 \text{ for each module } M \text{ and } n \geq 1.
$$
There is a close relation between Hom and Ext which leads to definition of higher Ext groups.

For modules M, N and $n \geq 1$ we define $\text{Ext}_R^n(M, N)$ to be the set

$$0 \to N \to E_1 \to E_2 \to \ldots \to E_n \to M \to 0$$

modulo a certain equivalence relation.

$\text{Ext}_R^n(M, N)$ is again naturally an abelian group.

Projective modules are important in computing these Ext-groups.

Fact:

P is a projective module \iff

$\text{Ext}_R^1(P, M) = 0$ for each module M \iff

$\text{Ext}_R^n(P, M) = 0$ for each module M and $n \geq 1$.

Hom and Ext continued

- There is a close relation between Hom and Ext which leads to definition of higher Ext groups.
- For modules M, N and $n \geq 1$ we define $\text{Ext}^n_R(M, N)$ to be the set
 $$0 \to N \to E_1 \to E_2 \to \ldots \to E_n \to M \to 0$$
 modulo a certain equivalence relation.
- $\text{Ext}^n_R(M, N)$ is again naturally an abelian group.
- Projective modules are important in computing these Ext-groups.
- Fact:

 P is a projective module \iff
 $$\text{Ext}^1_R(P, M) = 0 \text{ for each module } M$$
 \iff
 $$\text{Ext}^n_R(P, M) = 0 \text{ for each module } M \text{ and } n \geq 1.$$
There is a close relation between Hom and Ext which leads to definition of higher Ext groups.
For modules M, N and $n \geq 1$ we define $\text{Ext}^n_R(M, N)$ to be the set

$$0 \to N \to E_1 \to E_2 \to \ldots \to E_n \to M \to 0$$

modulo a certain equivalence relation.
$\text{Ext}^n_R(M, N)$ is again naturally an abelian group.
Projective modules are important in computing these Ext-groups.
Fact:

P is a projective module \iff $\text{Ext}^1_R(P, M) = 0$ for each module M \iff $\text{Ext}^n_R(P, M) = 0$ for each module M and $n \geq 1$.
There is a close relation between Hom and Ext which leads to definition of higher Ext groups.

For modules M, N and $n \geq 1$ we define $\text{Ext}^n_R(M, N)$ to be the set

$$0 \rightarrow N \rightarrow E_1 \rightarrow E_2 \rightarrow \ldots \rightarrow E_n \rightarrow M \rightarrow 0$$

modulo a certain equivalence relation.

$\text{Ext}^n_R(M, N)$ is again naturally an abelian group.

Projective modules are important in computing these Ext-groups.

Fact:

P is a projective module \iff

$\text{Ext}^1_R(P, M) = 0$ for each module M \iff

$\text{Ext}^n_R(P, M) = 0$ for each module M and $n \geq 1$.

Outline

1. Modules
 - Definition and interpretation
 - Homological algebra

2. Tilting modules and tilting classes
 - Introduction
 - Finite type
Generalization of projective modules

Definition

Let \(R \) be a ring. A module \(T \) is called \textit{tilting} if

1. \(\text{Ext}^n(T^{(I)}, T^{(I)}) = 0 \) for each set \(I \),
2. there exists an exact sequence of the form
 \[
 0 \rightarrow R^{(J_1)} \rightarrow R^{(J_2)} \rightarrow \ldots \rightarrow R^{(J_n)} \rightarrow T \rightarrow 0,
 \]
3. there exists an exact sequence of the form
 \[
 0 \rightarrow R \rightarrow T^{(K_1)} \rightarrow T^{(K_2)} \rightarrow \ldots \rightarrow T^{(K_m)} \rightarrow 0.
 \]

Remarks:

- Finitely generated tilting give connection between modules over \(R \) and \(S = \text{End}_R(T) \) (via so called derived equivalences).
- Infinitely generated tilting modules give insight into the structure of infinitely generated modules and into behavior of Ext-functors.
Generalization of projective modules

Definition

Let R be a ring. A module T is called tilting if

1. $\text{Ext}^n(T^{(I)}, T^{(I)}) = 0$ for each set I,
2. there exists an exact sequence of the form $0 \rightarrow R^{(J_1)} \rightarrow R^{(J_2)} \rightarrow \ldots \rightarrow R^{(J_n)} \rightarrow T \rightarrow 0,$
3. there exists an exact sequence of the form $0 \rightarrow R \rightarrow T^{(K_1)} \rightarrow T^{(K_2)} \rightarrow \ldots \rightarrow T^{(K_m)} \rightarrow 0.$

Remarks:

- Finitely generated tilting give connection between modules over R and $S = \text{End}_R(T)$ (via so called derived equivalences).
- Infinitely generated tilting modules give insight into the structure of infinitely generated modules and into behavior of Ext-functors.
Generalization of projective modules

Definition

Let R be a ring. A module T is called **tilting** if

1. $\text{Ext}^n(T(I), T(I)) = 0$ for each set I,
2. there exists an exact sequence of the form

 $0 \to R^{(J_1)} \to R^{(J_2)} \to \ldots \to R^{(J_n)} \to T \to 0$,
3. there exists an exact sequence of the form

 $0 \to R \to T^{(K_1)} \to T^{(K_2)} \to \ldots \to T^{(K_m)} \to 0$.

Remarks:

- Finitely generated tilting give connection between modules over R and $S = \text{End}_R(T)$ (via so called derived equivalences).
- Infinitely generated tilting modules give insight into the structure of infinitely generated modules and into behavior of Ext-functors.
Generalization of projective modules

Definition

Let R be a ring. A module T is called tilting if

1. $\text{Ext}^n(T^{(I)}, T^{(I)}) = 0$ for each set I,
2. there exists an exact sequence of the form
 \[0 \to R^{(J_1)} \to R^{(J_2)} \to \ldots \to R^{(J_n)} \to T \to 0, \]
3. there exists an exact sequence of the form
 \[0 \to R \to T^{(K_1)} \to T^{(K_2)} \to \ldots \to T^{(K_m)} \to 0. \]

Remarks:

- Finitely generated tilting give connection between modules over R and $S = \text{End}_R(T)$ (via so called derived equivalences).
- Infinitely generated tilting modules give insight into the structure of infinitely generated modules and into behavior of Ext-functors.
Generalization of projective modules

Definition

Let R be a ring. A module T is called **tilting** if

1. $\text{Ext}^n(T^{(I)}, T^{(I)}) = 0$ for each set I,
2. there exists an exact sequence of the form
 \[0 \to R^{(J_1)} \to R^{(J_2)} \to \ldots \to R^{(J_n)} \to T \to 0,\]
3. there exists an exact sequence of the form
 \[0 \to R \to T^{(K_1)} \to T^{(K_2)} \to \ldots \to T^{(K_m)} \to 0.\]

Remarks:

- Finitely generated tilting give connection between modules over R and $S = \text{End}_R(T)$ (via so called derived equivalences).
- Infinitely generated tilting modules give insight into the structure of infinitely generated modules and into behavior of Ext-functors.
Generalization of projective modules

Definition

Let R be a ring. A module T is called tilting if

1. $\text{Ext}^n(T^{(I)}, T^{(I)}) = 0$ for each set I,
2. there exists an exact sequence of the form
 \[0 \to R^{(J_1)} \to R^{(J_2)} \to \ldots \to R^{(J_n)} \to T \to 0, \]
3. there exists an exact sequence of the form
 \[0 \to R \to T^{(K_1)} \to T^{(K_2)} \to \ldots \to T^{(K_m)} \to 0. \]

Remarks:

- Finitely generated tilting give connection between modules over R and $S = \text{End}_R(T)$ (via so called derived equivalences).
- Infinitely generated tilting modules give insight into the structure of infinitely generated modules and into behavior of Ext-functors.
Generalization of projective modules

Definition

Let \(R \) be a ring. A module \(T \) is called \textit{tilting} if

1. \(\text{Ext}^n(T(I), T(I)) = 0 \) for each set \(I \),
2. there exists an exact sequence of the form
\[
0 \longrightarrow R^{(J_1)} \longrightarrow R^{(J_2)} \longrightarrow \ldots \longrightarrow R^{(J_n)} \longrightarrow T \longrightarrow 0,
\]
3. there exists an exact sequence of the form
\[
0 \longrightarrow R \longrightarrow T^{(K_1)} \longrightarrow T^{(K_2)} \longrightarrow \ldots \longrightarrow T^{(K_m)} \longrightarrow 0.
\]

Remarks:

- Finitely generated tilting give connection between modules over \(R \) and \(S = \text{End}_R(T) \) (via so called derived equivalences).
- Infinitely generated tilting modules give insight into the structure of infinitely generated modules and into behavior of \(\text{Ext} \)-functors.
Definition

Let R be a ring and T a tilting module. Then

$$\mathcal{T} = \{ M \mid \text{Ext}^n(T, M) = 0 \text{ for each } n \geq 1 \}$$

is called the tilting class corresponding to T.

Remarks:

- Tilting classes are often easier to deal with. Often we know we have a tilting class, but do not understand the tilting module.
- We have for each $P \in \mathcal{T}$:

 P is a summand in some $T^{(l)}$ \iff

 $\text{Ext}^1_R(P, M) = 0$ for each module $M \in \mathcal{T}$ \iff

 $\text{Ext}^n_R(P, M) = 0$ for each module $M \in \mathcal{T}$ and $n \geq 1$.

Tilting classes

Definition

Let R be a ring and T a tilting module. Then

$$\mathcal{T} = \{ M \mid \text{Ext}^n(T, M) = 0 \text{ for each } n \geq 1 \}$$

is called the tilting class corresponding to T.

Remarks:

- Tilting classes are often easier to deal with. Often we know we have a tilting class, but do not understand the tilting module.
- We have for each $P \in \mathcal{T}$:

 P is a summand in some $T^{(l)}$ \iff

 $$\text{Ext}^1_R(P, M) = 0 \text{ for each module } M \in \mathcal{T} \iff$$

 $$\text{Ext}^n_R(P, M) = 0 \text{ for each module } M \in \mathcal{T} \text{ and } n \geq 1.$$
Tilting classes

Definition

Let R be a ring and T a tilting module. Then

$$\mathcal{T} = \{M \mid \text{Ext}^n(T, M) = 0 \text{ for each } n \geq 1\}$$

is called the tilting class corresponding to T.

Remarks:

- Tilting classes are often easier to deal with. Often we know we have a tilting class, but do not understand the tilting module.
- We have for each $P \in \mathcal{T}$:

 P is a summand in some $T^{(l)}$ \iff

 $\text{Ext}_R^1(P, M) = 0$ for each module $M \in \mathcal{T}$ \iff

 $\text{Ext}_R^n(P, M) = 0$ for each module $M \in \mathcal{T}$ and $n \geq 1$.

Definition

Let R be a ring and T a tilting module. Then

$$\mathcal{T} = \{M \mid \text{Ext}^n(T, M) = 0 \text{ for each } n \geq 1\}$$

is called the tilting class corresponding to T.

Remarks:

- Tilting classes are often easier to deal with. Often we know we have a tilting class, but do not understand the tilting module.
- We have for each $P \in \mathcal{T}$:

 \[P \text{ is a summand in some } T^{(l)} \iff \text{Ext}^1_R(P, M) = 0 \text{ for each module } M \in \mathcal{T} \iff \text{Ext}^n_R(P, M) = 0 \text{ for each module } M \in \mathcal{T} \text{ and } n \geq 1. \]
Tilting classes

Definition

Let R be a ring and T a tilting module. Then

$$\mathcal{T} = \{ M \mid \text{Ext}^n(T, M) = 0 \text{ for each } n \geq 1 \}$$

is called the **tilting class** corresponding to T.

Remarks:

- Tilting classes are often easier to deal with. Often we know we have a tilting class, but do not understand the tilting module.
- We have for each $P \in \mathcal{T}$:

 $$P \text{ is a summand in some } T^{(l)} \iff \text{Ext}^1_R(P, M) = 0 \text{ for each module } M \in \mathcal{T} \iff \text{Ext}^n_R(P, M) = 0 \text{ for each module } M \in \mathcal{T} \text{ and } n \geq 1.$$
Tilting classes

Definition

Let R be a ring and T a tilting module. Then

$$\mathcal{T} = \{M | \text{Ext}^n(T, M) = 0 \text{ for each } n \geq 1\}$$

is called the tilting class corresponding to T.

Remarks:

- Tilting classes are often easier to deal with. Often we know we have a tilting class, but do not understand the tilting module.
- We have for each $P \in \mathcal{T}$:

 P is a summand in some $T(I) \iff \text{Ext}^1_R(P, M) = 0$ for each module $M \in \mathcal{T} \iff \text{Ext}^n_R(P, M) = 0$ for each module $M \in \mathcal{T}$ and $n \geq 1$.

Tilting classes

Definition

Let R be a ring and T a tilting module. Then

$$\mathcal{T} = \{ M \mid \text{Ext}^n(T, M) = 0 \text{ for each } n \geq 1 \}$$

is called the **tilting class** corresponding to T.

Remarks:

- Tilting classes are often easier to deal with. Often we know we have a tilting class, but do not understand the tilting module.
- We have for each $P \in \mathcal{T}$:

 $$P \text{ is a summand in some } T^{(l)} \iff \text{Ext}^1_R(P, M) = 0 \text{ for each module } M \in \mathcal{T} \iff \text{Ext}^n_R(P, M) = 0 \text{ for each module } M \in \mathcal{T} \text{ and } n \geq 1.$$
Theorem (Bazzoni, Eklof, Š., Trlifaj, 2005)

Let R be a ring and T a tilting class of R modules. Then T is of finite type. That is, there is a set S of strongly finitely presented modules such that

$$T = \{ M \mid \text{Ext}^1_R(S, M) = 0 \text{ for each } S \in S \}$$

That is, we have replaced

1. Ext^n_R for $n \geq 1$ by just Ext^1_R and
2. a single infinitely generated module T by a set of strongly finitely presented modules.
Theorem (Bazzoni, Eklof, Š., Trlifaj, 2005)

Let R be a ring and \mathcal{T} a tilting class of R modules. Then \mathcal{T} is of finite type. That is, there is a set S of strongly finitely presented modules such that

$$\mathcal{T} = \{ M \mid \text{Ext}_R^1(S, M) = 0 \text{ for each } S \in S \}$$

That is, we have replaced

1. Ext_R^n for $n \geq 1$ by just Ext_R^1 and
2. a single infinitely generated module T by a set of strongly finitely presented modules.
Theorem (Bazzoni, Eklof, Š., Trlifaj, 2005)

Let R be a ring and \mathcal{T} a tilting class of R modules. Then \mathcal{T} is of finite type. That is, there is a set S of strongly finitely presented modules such that

$$\mathcal{T} = \{ M \mid \text{Ext}^1_R(S, M) = 0 \text{ for each } S \in S \}$$

That is, we have replaced

1. Ext^n_R for $n \geq 1$ by just Ext^1_R and
2. a single infinitely generated module T by a set of strongly finitely presented modules.
Theorem (Bazzoni, Eklof, Š., Trlifaj, 2005)

Let R be a ring and \mathcal{T} a tilting class of R modules. Then \mathcal{T} is of finite type. That is, there is a set S of strongly finitely presented modules such that

$$\mathcal{T} = \{ M \mid \text{Ext}_R^1(S, M) = 0 \text{ for each } S \in S \}$$

That is, we have replaced

1. Ext_R^n for $n \geq 1$ by just Ext_R^1 and
2. a single infinitely generated module T by a set of strongly finitely presented modules.
Finite type

Theorem (Bazzoni, Eklof, Š., Trlifaj, 2005)

Let R be a ring and \mathcal{T} a tilting class of R modules. Then \mathcal{T} is of finite type. That is, there is a set S of strongly finitely presented modules such that

$$\mathcal{T} = \{ M | \text{Ext}_R^1(S, M) = 0 \text{ for each } S \in S \}$$

That is, we have replaced

1. Ext_R^n for $n \geq 1$ by just Ext_R^1 and
2. a single infinitely generated module T by a set of strongly finitely presented modules.
Characterization of tilting classes over a given ring R.

Connection to model theory: Each tilting class \mathcal{T} is axiomatizable in the language \mathcal{L}_R of left R-modules (with function symbols $+$, $-$, 0 and $r \cdot -$ for each $r \in R$). This is because for a fixed strongly finitely presented module S, the condition $\text{Ext}^1(S, M) = 0$ for given M can be expressed by a first order formula in \mathcal{L}_R.

Structure of tilting modules: Given a tilting class $\mathcal{T} = \{ M \mid \text{Ext}^1_R(S, M) = 0 \text{ for each } S \in S \}$, there is a tilting module T for \mathcal{T}, which is the union of a transfinite smooth chain

$$0 = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_\alpha \subseteq T_{\alpha+1} \subseteq \cdots \subseteq T_\sigma = T$$

with $T_{\alpha+1}/T_\alpha \in S$ for each $S \in S$.
Consequences

- Characterization of tilting classes over a given ring R.
- Connection to model theory: Each tilting class \mathcal{T} is axiomatizable in the language \mathcal{L}_R of left R-modules (with function symbols $+$, $-$, 0 and $r \cdot -$ for each $r \in R$). This is because for a fixed strongly finitely presented module S, the condition $\text{Ext}^1(S, M) = 0$ for given M can be expressed by a first order formula in \mathcal{L}_R.
- Structure of tilting modules: Given a tilting class $\mathcal{T} = \{M \mid \text{Ext}^1_R(S, M) = 0 \text{ for each } S \in S\}$, there is a tilting module T for \mathcal{T}, which is the union of a transfinite smooth chain

$$0 = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_\alpha \subseteq T_{\alpha+1} \subseteq \cdots \subseteq T_\sigma = T$$

with $T_{\alpha+1}/T_\alpha \in S$ for each $S \in S$.
Consequences

- Characterization of tilting classes over a given ring R.
- Connection to model theory: Each tilting class \mathcal{T} is **axiomatizable** in the language \mathcal{L}_R of left R-modules (with function symbols $+$, $-$, 0 and $r \cdot -$ for each $r \in R$).
 This is because for a fixed strongly finitely presented module S, the condition $\text{Ext}^1_R(S, M) = 0$ for given M can be expressed by a first order formula in \mathcal{L}_R.
- Structure of tilting modules: Given a tilting class $\mathcal{T} = \{M \mid \text{Ext}^1_R(S, M) = 0 \text{ for each } S \in S\}$, there is a tilting module T for \mathcal{T}, which is the union of a transfinite smooth chain

$$0 = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_\alpha \subseteq T_{\alpha+1} \subseteq \cdots \subseteq T_\sigma = T$$

with $T_{\alpha+1}/T_\alpha \in S$ for each $S \in S$.
Consequences

- Characterization of tilting classes over a given ring R.
- Connection to model theory: Each tilting class \mathcal{T} is **axiomatizable** in the language \mathcal{L}_R of left R-modules (with function symbols $+$, $-$, 0 and $r \cdot -$ for each $r \in R$).
 This is because for a fixed strongly finitely presented module S, the condition $\text{Ext}^1_S(S, M) = 0$ for given M can be expressed by a first order formula in \mathcal{L}_R.
- Structure of tilting modules: Given a tilting class $\mathcal{T} = \{M \mid \text{Ext}^1_R(S, M) = 0 \text{ for each } S \in S\}$, there is a tilting module T for \mathcal{T}, which is the union of a transfinite smooth chain

 \[0 = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_\alpha \subseteq T_{\alpha+1} \subseteq \cdots \subseteq T_\sigma = T \]

 with $T_{\alpha+1}/T_\alpha \in S$ for each $S \in S$.
Consequences

- Characterization of tilting classes over a given ring R.
- Connection to model theory: Each tilting class \mathcal{T} is axiomatizable in the language \mathcal{L}_R of left R-modules (with function symbols $+$, $-$, 0 and $r \cdot -$ for each $r \in R$). This is because for a fixed strongly finitely presented module S, the condition $\text{Ext}^1(S, M) = 0$ for given M can be expressed by a first order formula in \mathcal{L}_R.
- Structure of tilting modules: Given a tilting class $\mathcal{T} = \{ M \mid \text{Ext}^1_R(S, M) = 0 \text{ for each } S \in S \}$, there is a tilting module T for \mathcal{T}, which is the union of a transfinite smooth chain

$$
0 = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_\alpha \subseteq T_{\alpha+1} \subseteq \cdots \subseteq T_\sigma = T
$$

with $T_{\alpha+1}/T_\alpha \in S$ for each $S \in S$.
Consequences

- Characterization of tilting classes over a given ring R.
- Connection to model theory: Each tilting class \mathcal{T} is **axiomatizable** in the language \mathcal{L}_R of left R-modules (with function symbols $+$, $-$, 0 and $r \cdot -$ for each $r \in R$).
 This is because for a fixed strongly finitely presented module S, the condition $\text{Ext}^1(S, M) = 0$ for given M can be expressed by a first order formula in \mathcal{L}_R.

- Structure of tilting modules: Given a tilting class $\mathcal{T} = \{ M \mid \text{Ext}^1_R(S, M) = 0 \text{ for each } S \in S \}$, there is a tilting module T for \mathcal{T}, which is the union of a transfinite smooth chain

 $$0 = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_\alpha \subseteq T_{\alpha+1} \subseteq \cdots \subseteq T_\sigma = T$$

 with $T_{\alpha+1}/T_\alpha \in S$ for each $S \in S$.

Jan Šťovíček (Charles University)
Consequences

- Characterization of tilting classes over a given ring R.
- Connection to model theory: Each tilting class \mathcal{T} is axiomatizable in the language \mathcal{L}_R of left R-modules (with function symbols $+$, $-$, 0 and $r \cdot -$ for each $r \in R$). This is because for a fixed strongly finitely presented module S, the condition $\text{Ext}^1(S, M) = 0$ for given M can be expressed by a first order formula in \mathcal{L}_R.
- Structure of tilting modules: Given a tilting class $\mathcal{T} = \{ M \mid \text{Ext}^1_R(S, M) = 0 \text{ for each } S \in S \}$, there is a tilting module T for \mathcal{T}, which is the union of a transfinite smooth chain $0 = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_\alpha \subseteq T_{\alpha+1} \subseteq \cdots \subseteq T_\sigma = T$

with $T_{\alpha+1}/T_\alpha \in S$ for each $S \in S$.
Consequences

- Characterization of tilting classes over a given ring R.
- Connection to model theory: Each tilting class \mathcal{T} is axiomatizable in the language \mathcal{L}_R of left R-modules (with function symbols $+$, $-$, 0 and $r \cdot -$ for each $r \in R$).
 This is because for a fixed strongly finitely presented module S, the condition $\text{Ext}^1(S, M) = 0$ for given M can be expressed by a first order formula in \mathcal{L}_R.
- Structure of tilting modules: Given a tilting class $\mathcal{T} = \{M \mid \text{Ext}^1_R(S, M) = 0 \text{ for each } S \in S\}$, there is a tilting module T for \mathcal{T}, which is the union of a transfinite smooth chain

$$0 = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_\alpha \subseteq T_\alpha + 1 \subseteq \cdots \subseteq T_\sigma = T$$

with $T_{\alpha+1}/T_\alpha \in S$ for each $S \in S$.
Characterization of tilting classes over a given ring R.

Connection to model theory: Each tilting class \mathcal{T} is axiomatizable in the language \mathcal{L}_R of left R-modules (with function symbols $+$, $-$, 0 and $r \cdot -$ for each $r \in R$). This is because for a fixed strongly finitely presented module S, the condition $\Ext^1(S, M) = 0$ for given M can be expressed by a first order formula in \mathcal{L}_R.

Structure of tilting modules: Given a tilting class $\mathcal{T} = \{ M \mid \Ext^1_R(S, M) = 0 \text{ for each } S \in S \}$, there is a tilting module T for \mathcal{T}, which is the union of a transfinite smooth chain

$$0 = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_\alpha \subseteq T_{\alpha+1} \subseteq \cdots \subseteq T_\sigma = T$$

with $T_{\alpha+1}/T_\alpha \in S$ for each $S \in S$.
Consequences

- Characterization of tilting classes over a given ring R.
- Connection to model theory: Each tilting class \mathcal{T} is axiomatizable in the language \mathcal{L}_R of left R-modules (with function symbols $+$, $-$, 0 and $r \cdot -$ for each $r \in R$).
 This is because for a fixed strongly finitely presented module S, the condition $\text{Ext}^1(S, M) = 0$ for given M can be expressed by a first order formula in \mathcal{L}_R.
- Structure of tilting modules: Given a tilting class $\mathcal{T} = \{ M \mid \text{Ext}^1_R(S, M) = 0 \text{ for each } S \in S \}$, there is a tilting module T for \mathcal{T}, which is the union of a transfinite smooth chain

$$0 = T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_\alpha \subseteq T_{\alpha + 1} \subseteq \cdots \subseteq T_\sigma = T$$

with $T_{\alpha + 1}/T_\alpha \in S$ for each $S \in S$.