CHARLES UNIVERSITY PRAGUE

faculty of mathematics and physics

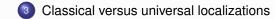
Jan Šťovíček

Flat epimorphisms of commutative noetherian rings

(joint with Lidia Angeleri Hügel, Frederik Marks, Ryo Takahashi and Jorge Vitória)

> CSASC 2018, Bratislava September 13th, 2018

Universal localizations



Universal localizations

2 The goal

3 Classical versus universal localizations

Universal localizations—general facts

- Classical localization: start with a (non-commutative!) ring A and try to make a set of elements universally invertible.
- Bergman, Cohn, Schofield: make a set of matrices of over A invertible (matrices = right A-module maps Aⁿ → A^m).
- More generally, make a set of maps σ: P → Q between finitely generated projective left A-modules invertible. Such ring morphisms are called universal localizations and always exist:

Theorem (Schofield, 1985)

Let Σ be a set of morphisms between finitely generated projective A-modules. Then there exists a ring homomorphism $f\colon A\to A_\Sigma$ such that

- $\sigma \otimes_A A_{\Sigma}$ is invertible for each $\sigma \in \Sigma$,
- I is an initial ring homomorphism with this property.

Moreover, *f* is epimorphism in the category of rings and $\operatorname{Tor}_1^A(A_{\Sigma}, A_{\Sigma}) = 0.$

Universal localizations—flatness

- Specific to commutative rings A:
 - An n × n matrix M is invertible if and only if det M is invertible. So inverting square matrices is the same as inverting elements.
 - A non-square matrix cannot be invertible unless A = 0 (commutative rings have invariant basis number).
- Consequence: If A → A_Σ is a universal localization and p ∈ Spec A, then A_p → (A_Σ)_p ≃ (A_p)_{Σ_p} is a classical localization, so flat over A.

Theorem (AH-M-Š-T-V)

If $A \to A_{\Sigma}$ is a universal localisation with A commutative, then A_{Σ} is also commutative and flat over A.

• For commutative noetherian rings, we have even more:

Theorem (AH-M-Š-T-V)

If A is commutative noetherian and $A \rightarrow B$ is a ring epimorphism with $\text{Tor}_1^A(B,B) = 0$, then B is commutative and flat over A.

2 The goal

3 Classical versus universal localizations

For a commutative ring we have inclusions

$$\left\{ \begin{array}{c} \text{equiv. classes} \\ \text{of classical} \\ \text{localisations} \\ f: A \longrightarrow B \end{array} \right\} \subseteq \left\{ \begin{array}{c} \text{equiv. classes} \\ \text{of universal} \\ \text{localisations} \\ f: A \longrightarrow B \end{array} \right\} \subseteq \left\{ \begin{array}{c} \text{equiv. classes} \\ \text{of flat} \\ \text{epimorphisms} \\ f: A \longrightarrow B \end{array} \right\} \subseteq \left\{ \begin{array}{c} \text{equiv. classes} \\ \text{of flat} \\ \text{epimorphisms} \\ f: A \longrightarrow B \end{array} \right\}$$

- The aim is to understand when are these inclusions equalities.
- It turns out that the answer is controlled by groups of divisors of *A*.

Classical versus universal localizations

Reduction to projectives of rank one

- Assume that Spec *A* is connected (if *A* is commutative noetherian, then it is a finite product of rings with connected spectra).
- Then each finitely generated projective A-module P has a rank,
 i.e. there is n ≥ 0 such that P_p ≃ Aⁿ_p for each p ∈ Spec A.

Lemma

Let $\sigma: P \rightarrow Q$ be a map between finitely generated projectives.

- If rk P = rk Q, then σ is invertible if and only if ∧ⁿσ is invertible (and ∧ⁿσ is a map between projectives of rank one).
- If $\operatorname{rk} P = \operatorname{rk} Q$, then σ is not invertible unless A = 0.
- Upshot: Any universal localization of a commutative ring with connected spectrum is w.l.o.g. given by maps between rank one projective modules.

The Picard group

- Rank one projectives are also called invertible modules (because *P* ⊗_A *P*^{*} ≃ *A*, where *P*^{*} = Hom_A(*P*, *A*)) or line bundles (geometric interpretation).
- Isoclasses of invertible modules with ⊗ form the so-called Picard group Pic(A) of A. (If A is a Dedekind domain, this is the usual ideal class group.)

Theorem (AH-M-Š-T-V)

Let A be commutative noetherian.

- Universal localizations are all classical if Pic(A) is torsion.
- Sor locally factorial (e.g. regular) rings, the converse also holds.
 - Remark 1: Any abelian group can be Pic(A) for a Dedekind domain [Claborn].
 - Remark 2: Universal localizations of commutative noetherian rings universally invert sections of line bundles over Spec *A* rather than only elements (= sections of the structure sheaf).

Classical versus universal localizations

Height one

Theorem (Gabriel, 1962 and Lazard, 1969)

Let A be commutative noetherian and $f : A \rightarrow B$ a flat ring epimorphism.

- *f*[♭]: Spec B → Spec A induces a homeomorphism onto its image (as a subspace of Spec A).
- The subset V = Spec A \ im f^b is closed under specialization and determines f up to equivalence.
 - The following theorem extends observations by Krause and lyengar, the proof uses properties of local cohomology:

Theorem (AH-M-Š-T-V)

Let $f: A \to B$ be a flat ring epimorphism with A commutative noetherian and let $V = \operatorname{Spec} A \setminus \operatorname{im} f^{\flat}$. Then the minimal (=most generic) primes in V are of height at most one.

Theorem (AH-M-Š-T-V)

Let A be a commutative noetherian ring. If A is one-dimensional or locally factorial, then every flat epimorphism $A \rightarrow B$ is a universal localization.

Sketch proof.

Let $f: A \to B$ be a flat ring epimorphism and let $V = \operatorname{Spec} A \setminus \operatorname{im} f^{\flat}$. If *A* is locally factorial and $\mathfrak{p} \in \operatorname{Spec} A$ has height at most 1, then \mathfrak{p} is projective over *A*. In this case, we universally localize at

$$\Sigma = \{ \mathfrak{p} \stackrel{\subseteq}{\to} A \mid \mathfrak{p} \in V \text{ minimal} \}.$$

The one-dimensional case is more technical, it uses prime avoidance.

The divisor class group

- Let *A* be a commutative noetherian ring and *K* its classical ring of fractions (localize at the non-zero divisors of *A*).
- There is another group of divisors, Weil divisors. We let Div(*A*) be the free abelian group with height one primes of *A* as a basis.
- Principal divisors: If x ∈ K[×], then div(x) ∈ Div(A) counts the multiplicities zeros and poles of x along height one primes.
- The divisor class groups: $Cl(A) = Div(A)/{div(x) | x \in K^{\times}}$.

Facts

There is a canonical group homomorphism div: $Pic(A) \rightarrow Cl(A)$.

- If A is locally factorial (e.g. Dedekind domain), then div is an isomorphism.
- If A is normal (= a finite product of integrally closed domains), then div is injective.

Theorem (AH-M-Š-T-V)

Let A be a commutative noetherian normal ring such that Cl(A)/Pic(A) is torsion (e.g. if A is locally factorial). Then every flat epimorphism $A \rightarrow B$ is a universal localization.

- Remark 1: The converse holds for two-dimensional normal finitely generated algebras over a field (and in some other situations).
- Remark 2: We have various examples illustrating the necessity of most of our assumptions.

Thank you for your attention!