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Universal localizations—general facts

@ Classical localization: start with a (non-commutative!) ring A and
try to make a set of elements universally invertible.

@ Bergman, Cohn, Schofield: make a set of matrices of over A
invertible (matrices = right A-module maps A" — A™).

@ More generally, make a set of maps o: P — Q between finitely
generated projective left A-modules invertible. Such ring
morphisms are called universal localizations and always exist:

Theorem (Schofield, 1985)

Let ¥ be a set of morphisms between finitely generated projective
A-modules. Then there exists a ring homomorphism f: A — As such
that

@ o ®4 As is invertible foreacho € T,
@ f is an initial ring homomorphism with this property.

Moreover, f is epimorphism in the category of rings and
Tor{(As, As) = 0.

<
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Universal localizations—flatness

@ Specific to commutative rings A:
@ An n x nmatrix M is invertible if and only if det M is invertible.
So inverting square matrices is the same as inverting elements.
@ A non-square matrix cannot be invertible unless A = 0
(commutative rings have invariant basis number).
@ Consequence: If A — Ay is a universal localization and

p € SpecA, then A, — (Ax), =~ (Ay)s, is a classical localization,
so flat over A.

Theorem (AH-M-S-T-V)

If A — As is a universal localisation with A commutative, then As is
also commutative and flat over A.

@ For commutative noetherian rings, we have even more:

Theorem (AH-M-S-T-V)

If A is commutative noetherian and A — B is a ring epimorphism with
Tor}(B, B) = 0, then B is commutative and flat over A.
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Two inclusions

@ For a commutative ring we have inclusions

equiv. classes equiv. classes equiv. classes
of classical of universal of flat
localisations | — | localisations | ~— | epimorphisms
f-A—B f:A—B f-A— B

@ The aim is to understand when are these inclusions equalities.

@ It turns out that the answer is controlled by groups of divisors
of A.
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Reduction to projectives of rank one

@ Assume that Spec A is connected (if A is commutative
noetherian, then it is a finite product of rings with connected
spectra).

@ Then each finitely generated projective A-module P has a rank,
i.e. there is n > 0 such that P, = A] for each p € Spec A.

Leto: P — Q be a map between finitely generated projectives.

@ Ifrk P =rk Q, then o is invertible if and only if \"o is invertible
(and \"o is a map between projectives of rank one).

@ Ifrk P =rk Q, then o is not invertible unless A = 0.

@ Upshot: Any universal localization of a commutative ring with
connected spectrum is w.l.0.g. given by maps between rank one
projective modules.

9/15 Jan Stovigek Flat epimorphisms



The Picard group

@ Rank one projectives are also called invertible modules (because
P ®a P* ~ A, where P* = Homyx(P, A)) or line bundles
(geometric interpretation).

@ Isoclasses of invertible modules with @ form the so-called Picard
group Pic(A) of A. (If Ais a Dedekind domain, this is the usual
ideal class group.)

Theorem (AH-M-S-T-V)
Let A be commutative noetherian.

@ Universal localizations are all classical if Pic(A) is torsion.
@ For locally factorial (e.g. regular) rings, the converse also holds.

@ Remark 1: Any abelian group can be Pic(A) for a Dedekind
domain [Claborn].

@ Remark 2: Universal localizations of commutative noetherian
rings universally invert sections of line bundles over Spec A
rather than only elements (= sections of the structure sheaf).
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Height one

Theorem (Gabriel, 1962 and Lazard, 1969)

Let A be commutative noetherian and f: A — B a flat ring
epimorphism.

@ 7 : Spec B — Spec A induces a homeomorphism onto its image
(as a subspace of Spec A).

@ The subset V = Spec A\ im f* is closed under specialization and
determines f up to equivalence.

v

@ The following theorem extends observations by Krause and
lyengar, the proof uses properties of local cohomology:

Theorem (AH-M-S-T-V)

Let f: A— B be a flat ring epimorphism with A commutative
noetherian and let V = Spec A\ im f°. Then the minimal (=most
generic) primes in V are of height at most one.
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The one-dimensional and locally factorie

Theorem (AH-M-S-T-V)

Let A be a commutative noetherian ring. If A is one-dimensional or
locally factorial, then every flat epimorphism A — B is a universal
localization.

| \

Sketch proof.

Let f: A— B be a flat ring epimorphism and let V = Spec A\ im f°.

If Ais locally factorial and p € Spec A has height at most 1, then p is
projective over A. In this case, we universally localize at

T = {p%A|p€ V minimal}.

The one-dimensional case is more technical, it uses prime
avoidance. !
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The divisor class group

@ Let A be a commutative noetherian ring and K its classical ring
of fractions (localize at the non-zero divisors of A).

@ There is another group of divisors, Weil divisors. We let Div(A)
be the free abelian group with height one primes of A as a basis.

@ Principal divisors: If x € K*, then div(x) € Div(A) counts the
multiplicities zeros and poles of x along height one primes.

@ The divisor class groups: CI(A) = Div(A)/{div(x) | x € K*}.

There is a canonical group homomorphism div: Pic(A) — CI(A).

@ If Ais locally factorial (e.g. Dedekind domain), then div is an
isomorphism.

@ If Ais normal (= a finite product of integrally closed domains),
then div is injective.
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Flat ring epimorphism for normal rings

Theorem (AH-M-S-T-V)

Let A be a commutative noetherian normal ring such that
CI(A)/Pic(A) is torsion (e.g. if A is locally factorial). Then every flat
epimorphism A — B is a universal localization.

@ Remark 1: The converse holds for two-dimensional normal
finitely generated algebras over a field (and in some other
situations).

@ Remark 2: We have various examples illustrating the necessity of
most of our assumptions.

Thank you for your attention!
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