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Noncommutative algebraic geometry based
on quantum flag manifolds

Part II.
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Homogeneous coordinate rings

Let V ⊆ Pn
C and

S(V ) = C[x0, x1, . . . , xn]/(f homogeneous, f |V ≡ 0)

be its homogeneous coordinate ring. Then

S(V ) =
∞⊕

n=0

S(V )n

is naturally Z-graded.
Question: We know that the elements of S(V ) are not functions
on V . What are they?
The homogeneous parts S(V )n, n ≥ 0 are global sections of
certain line bundles Ln.
So every projective variety is the set of zeros of sections in line
bundles.
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The tautological bundle

There is an important line bundle over Pn
C, the tautological bundle

OPn
C
(1).

It is dual to OPn
C
(−1) ⊆ On+1

Pn
C

, whose the fiber over
(a0 : a1 : · · · : an) is the line 〈a0,a1, . . . ,an〉 ⊆ Cn+1.

OP1
R
(1) :

If ι : V ⊆ Pn
C, consider the restricted line bundle L := ι∗OPn

C
(1).

This is an example of what is called ample (algebraic geometry)
or positive (in the context of Kähler manifolds) line bundle.
Fact: S(V ) ∼=

⊕∞
n=0 Γ(V ,L ⊗n). The homogeneous coordinate

ring is the direct sum of global sections of tensor powers of L .
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Homogeneous coordinate rings and line bundles

The twist functor: If F ∈ QcohV and n ∈ Z, put

F (n) := F ⊗OV L ⊗n

(that is, F (n)(U) := F (U)⊗OV (U) L (U)⊗n on U in an open
basis of V ).
The graded module associated to a sheaf: If F ∈ QcohV , we put

Γ∗(F ) :=
⊕
n∈Z

Γ(F (n)) =
⊕
n∈Z

Hom
(
(L ∗)⊗n,F

)
.

Example: Γ∗(OV ) ∼= S(V ).

Theorem (Serre, 1955)

1 The functor Γ∗ : QcohV → ModZS(V ) is fully faithful.
2 Γ∗ has an exact left adjoint Q : ModZS(V )→ QcohV which

satisfies a universal property:
QcohV = ModZS(V )/ModZ

0 S(V ) (Serre quotient).
3 Similarly, cohV = modZS(V )/modZ

0 S(V ).

6/17 Jan Št’ovı́ček Noncommutative flags, part II.



Table of Contents

1 Coherent sheaves on projective varieties

2 Quantized homogeneous rings of flags

3 Relation to the Heckenberger-Kolb calculus
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Homogeneous coordinate rings of Grassmannians

We have SLn/P ∼= Grn,r , where

P =

(
Pr Q
0 Pn−r

)
,

where Pr ∈ Mr (C) and Pn−r ∈ Mn−r (C). The bijection sends the
coset UP, U = (uij )

n
i,j=1 ∈ SLn to the linear hull of the first r

columns of U.

If we view Grn,r ⊆ P(n
r)−1

C via the Plücker embedding, the quotient
map SLn � Grn,r sends U = (uij )

n
i,j=1 to a point with

homogeneous coordinates
∑
σ(−1)sgn(σ)uσ(i1),1uσ(i2),2 · · · uσ(ir ),r ,

one for each sequence i1 < i2 < · · · < ir .
In terms of coordinate rings, this shows that S(Grn,r ) coincides
with the subring

C

[∑
σ

(−1)sgn(σ)uσ(i1),1uσ(i2),2 · · · uσ(ir ),r | i1 < i2 < · · · < ir

]
⊆ C[SLn].
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Quantum Grassmannians

In terms of coordinate rings, this shows that S(Grn,r ) coincides
with the subring

C

[∑
σ

(−1)sgn(σ)uσ(i1),1uσ(i2),2 · · · uσ(ir ),r | i1 < i2 < · · · < ir

]
⊆ C[SLn].

We have C[SLn] = U(sln)◦ ((−)◦ is the Hopf dual).
Quantum deformation: We can deform C[SLn] to Uq(sln)◦ and
define Sq[Grn,r] as the subring

C

[∑
σ

(−q)`(σ)uσ(i1),1uσ(i2),2 · · · uσ(ir ),r | i1 < i2 < · · · < ir

]
⊆ Uq(sln)◦.

Representation-theoretic perspective: Again
Sq[Grn,r] ∼=

⊕∞
k=0 V (k$r )∗, where V (k$r ) is the corresponding

representation of Uq(sln).
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Quantized homogeneous coordinate rings of flags

One can do the same for all flags (Soibelman 1992, Taft and
Towber 1991, Lakshmibai and Reshetikin 1992, Braveman 1994,
. . . ).
Let g be a complex semisimple Lie algebra, G the corresponding
complex simply connected algebraic group and P a parabolic
subgroup. Then the flag F = G/P is a projective variety and

∞⊕
k=0

V (kλ)∗ ∼= Sq(F ) ⊆ Uq(g)◦,

where λ is the sum of fundamental weights for F and V (kλ) are
the corresponding finite dimensional representations of Uq(g).
One can define a quantization for the category of coherent
sheaves: cohqF := modZSq(F )/modZ

0 Sq(F ).
This is an abelian category and we can, for instance, define and
study the analogue of the sheaf cohomology as well as other
algebraic properties.
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Compact Lie versus algebraic groups

Aim: Relate the quantized algebraic and differential geometry.
We have SUn ⊆ SLn, where

1 SLn is a complex affine algebraic group,
2 SUn is a real compact Lie group but it is also a real algebraic group!

Rings of functions in place:
1 For SLn we have the complex coordinate ring C[SLn],
2 For SUn we have the hierarchy

C(SUn) ⊇ C∞(SUn) ⊇ O(SUn)

where O(SUn) is the ring of polynomial functions s : SUn → C of
real algebraic varieties.

3 The magic here: C[SLn] ∼= O(SUn)
(via the restriction of s : SLn → C to SUn).
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A pocket dictionary: algebraic to differential geometry
A “cultural” problem:

1 In differential geometry, a compact complex manifold is a real
manifold with an extra structure (flat connection
∂ : C∞(V )→ Ω(0,1)).

2 In algebraic geometry, one usually encounters only polynomial or
rational (so holomorphic) functions.

To relate the two, we need a meeting point of (1) and (2).
We have Grn,r ∼= SLn/P ∼= SUn/L, where

P =

(
Pr Q
0 Pn−r

)
and L = P ∩ SUn =

(
Lr 0
0 Ln−r

)
.

Now:
1 The expression Grn,r ∼= SLn/P allows to view the Grassmannian as

a projective complex algebraic variety.
2 The expression Grn,r ∼= SUn/L allows to view the Grassmannian as

a affine real algebraic variety.
The meeting point: Try to view a complex algebraic variety V as
a real algebraic variety with a “complex structure” (a flat
connection ∂ : O(V )→ Ω(0,1)).
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Dolbeault dg algebra

If V is a complex manifold, we have the Dolbeault complex:

0 −→ C∞(V )
∂−→ Ω(0,1) ∂−→ Ω(0,2) ∂−→ · · ·

We can wedge forms (∧ : Ω(0,i) ⊗ Ω(0,j) −→ Ω(0,i+j)). Then
Ω(0,•) =

⊕
i Ω(0,i) is a Z-graded associative algebra over C.

Moreover, we have the graded Leibniz rule:
∂(ωi ∧ ωj ) = ∂(ωi ) ∧ ωj + (−1)iωi ∧ ∂(ωj ) for each ωi ∈ Ω(0,i) and
ωj ∈ Ω(0,j). In other words, (Ω(0,•)(V ),∧, ∂) is a differential graded
(dg) algebra.
If V = Grn,r = SUn/L, then

O(Grn,r ) ⊆ C∞(Grn,r ) ⊆ C(Grn,r )

and O(Grn,r ) is dense with respect to || − ||∞.
Now, the Dolbeault dg algebra for Grn,r does restrict to real
algebraic sections:

0 −→ O(Grn,r )
∂−→ Ω

(0,1)
alg

∂−→ Ω
(0,2)
alg

∂−→ · · ·

14/17 Jan Št’ovı́ček Noncommutative flags, part II.



The differential calculus of Heckenberger and Kolb

The Dolbeault dg algebra for Grn,r does restrict to real algebraic
sections:

0 −→ O(Grn,r )
∂−→ Ω

(0,1)
alg

∂−→ Ω
(0,2)
alg

∂−→ · · ·

and can be quantized:

0 −→ Oq(Grn,r )
∂−→ Ω

(0,1)
q

∂−→ Ω
(0,2)
q

∂−→ · · ·

(
(
Ω

(0,•)
q (Grn,r ),∧, ∂

)
is a dg algebra again).

If we impose some more natural conditions on Ω
(0,•)
q (Grn,r ), it is

unique (Heckenberger and Kolb, 2006)!
In fact, Heckenberger and Kolb quantized the Dolbeault dg
algebra for all compact Hermitian symmetric flags.
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The Koszul-Malgrange theorem

Theorem (Koszul and Malgrange, 1958)

Let V be a compact complex manifold. Then there is a bijective
correspondence between

1 holomorphic vector bundles p : E → V and
2 smooth complex vector bundles equipped with a flat connection
∇E : Γ∞(E)→ Γ∞(E)⊗C∞(V ) Ω(0,1), where

Γ∞(E) = {s : V → E smooth map | p ◦ s = 1V}.

The holomorphic sections of E are precisely ∇E .

By a version of the Serre-Swan theorem, Γ∞(E) is a finitely
generated projective C∞(V )-module.
Define quantized algebraic vector bundles over Grn,r as flat
connections ∇ : P → P ⊗Oq(Grn,r ) Ω

(0,1)
q , where P is a finitely

generated projective Oq(Grn,r )-module.
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The first match (quantized alg. vs. diff. geometry)
Recall: On Grn,r = SUn+1/L, we have only one reasonable
quantized Dolbeault dg algebra (Ω

(0,•)
q ,∧, ∂).

Since Grn,r is homogeneous, one can use representation theory
of l to construct quantum deformations Ln,q of tensor powers
L ⊗n of the tautological bundle L .
That is, there are finitely generated projective Ln,q are finitely
generated projective Oq(Grn,r )-modules and certain flat
connections, unique by Ó Buachalla and Mrozinski,

∇Ln,q : Ln,q −→ Ln,q ⊗Oq(Grn,r ) Ω
(0,1)
q .

Theorem (Ó Buachalla and Mrozinski, 2017)

For each n ≥ 0, We have Sq(Grn,r )n ∼= ker∇Ln,q .
So the holomorphic sections of line bundles based on the
Heckenberger-Kolb calculus and the Koszul-Malgrange theorem
agree with the older “naive” construction of the quantized coordinate
ring.
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